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0. Introduction

What is the maximum level a certain river is likely to reach over the next
25 years? What is the likely magnitude of the strongest earthquake to oc-
cur during the life of a planned nuclear plant? These fundamental practical
questions have motivated (arguably also fundamental) mathematics, some of
which are the object of this book. The value Xt of the quantity of interest at
time t is modeled by a random variable. What can be said about the maxi-
mum value of Xt over a certain range of t? How can we guarantee that, with
probability close to one, this maximum will not exceed a given threshold?

A collection of random variables (Xt)t∈T , where t belongs to a certain
index set T , is called a stochastic process, and the topic of this book is the
study of the supremum of certain stochastic processes, and more precisely
the search of upper and lower bounds for these suprema. The key word of
the book is

inequalities.

The “classical theory of processes” deals mostly with the case where T is
a subset of the real line or of R

n. We do not focus on that case, and the
book does not really expand on the most basic and robust results which
are important in this situation. Our most important index sets are “high-
dimensional”: the large sets of data which are currently the focus of so much
attention consist of data which usually depends on many parameters. Our
specific goal is to demonstrate the impact and the range of modern abstract
methods, in particular through their treatment of several classical questions
which are not accessible to “classical methods”.

A. Kolmogorov invented the most important idea to bound stochastic pro-
cesses: chaining. This wonderfully efficient method answers with little effort
a number of basic questions, but fails to provide a complete understanding,
even in natural situations. This is best discussed in the case of Gaussian pro-
cesses, where the family (Xt)t∈T consists of centered jointly Gaussian random
variables (r.v.s). These are arguably the most important of all. A Gaussian
process defines in a canonical manner a distance d on its index set T by the
formula

d(s, t) = (E(Xs −Xt)
2)1/2 . (0.1)

Probably the single most important conceptual progress about Gaussian pro-
cesses was the gradual realization that the metric space (T, d) is the key object
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to understand them, even if T happens to be an interval of the real line. This
led R. Dudley to develop in 1967 an abstract version of Kolmgorov’s chain-
ing argument adapted to this situation. The resulting very efficient bound
for Gaussian processes is unfortunately not always tight. Roughly speaking,
“there sometimes remains a parasitic logarithmic factor in the estimates”.

The discovery around 1985 (by X. Fernique and the author) of a precise
(and in a sense, exact) relationship between the “size” of a Gaussian process
and the “size” of this metric space provided the missing understanding in
the case of these processes. Attempts to extend this result to other processes
spanned a body of work which forms the core of this book.

A significant part of the book is devoted to situations where skill is re-
quired to “remove the last parasitic logarithm in the estimates.” These situ-
ations occur with unexpected frequency in all kinds of problems. A particu-
larly striking example is as follows. Consider n2 independent uniform random
points (Xi)i≤n2 which are uniformly distributed in the unit square [0, 1]2.
How far a typical sample is from being very uniformly spread on the unit
square? To measure this we construct a one-to-one map π from {1, . . . , n2}
to the vertices v1, . . . , vn2 of a uniform n×n grid in the unit square. If we try
to minimize the average distance between Xi and vπ(i) we can do as well as
about

√
log n/n but no better. If we try to minimize the maximum distance

between Xi and vπ(i), we can do as well as about (log n)3/4/n but no better.
The factor 1/n is just due to scaling, but the fractional powers of log n require
a surprising amount of work.

The book is largely self-contained, but it mostly deals with rather subtle
questions such as the previous one. It also devotes considerable energy to the
problem of finding lower bounds for certain processes, a topic considerably
more difficult and less developed than the search for upper bounds. Even
though some of the main ideas of at least Chapter 2 could (and should!) be
taught at an elementary level, this is an advanced text.

This book is a sense a continuation of the monograph [61], or at least
of part of it. I made no attempt to cover again all the relevant material of
[61], but familiarity with [61] is certainly not a prerequisite, and maybe not
even helpful. The way certain results are presented there is arguably obsolete,
and, more importantly, many of the problems considered in [61] (in particular
limit theorems) are no longer the focus of much interest.

One of my main goals is to communicate as much as possible of my expe-
rience from working on stochastic processes, and I have covered most of my
results in this area. A number of these results were proved many years ago. I
still like them, but some seem to be waiting for their first reader. The odds
of these results meeting this first reader while staying buried in the original
papers seemed nil, but might increase in the present book form. In order to
present a somewhat coherent body of work I have also included recent results
by others in the same general direction. I find these results deep and very
beautiful. They are sometimes difficult to access for the non-specialist. Ex-
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plaining them here in a unified and often simplified presentation could serve
a useful purpose. Still, the choice of topics is highly personal and does not
represent a systematic effort to cover all the important directions. I can only
hope that the book contains enough state-of-art knowledge about sufficiently
many fundamental questions to be useful.

A number of seemingly important questions remain open, and one of my
main goals is to popularize these. Opinions differ as to what constitutes a
really important problem, but I like those I explain here because they deal
with fundamental structures. Several of them were raised a generation ago
in [61], but have seen little progress or even attention since. These problems
might be challenging. At least, I tried my best to make progress on them.

This book had a previous edition [145]. The change between the two edi-
tions are not only cosmetic or pedagogical, and the degree of improvement
in the mathematics themselves is almost embarrassing at times, resulting in
a large decrease of size. Only a limited quantity of material of secondary
importance was removed, and the reduction of well over 100 pages is mostly
due to better proofs. Mathematics is indeed a game of iterations. Part of the
improvement was permitted by a better understanding of the consequences
of the landmark result of Bednorz and Lata la [23] (whose proof is one of our
main goals). This landmark of modern probability seems bound to have a con-
siderable influence. As I painfully experienced how slowly my understanding
develops, I have been very cautious in adding new material.

I would like to express my infinite gratitude to Shahar Mendelson. While
he was donating his time to help another of my projects, it became clear
through our interactions that, while I had produced great efforts towards
the quality of the mathematics contained in my books, I certainly had not
put enough efforts in the exposition of this material. I concluded that there
should be real room for improvement in the text of [145], and this is why I
started to revise it. While tying to explain better the material to others, I
ended up understanding it much better myself!





1. What is this Book About?

1.1 Philosophy and Style

This short chapter describes the philosophy underlying this book, and some
of its highlights. This description, using words rather than formulas, is neces-
sarily imprecise, and is only intended to provide some insight into our point
of view.

The practitioner of stochastic processes is likely to be struggling at any
given time with his favorite model of the moment, a model which typically
involves a rich and complicated structure. There is a near infinite supply of
such models. The importance with which we view any one of them is likely
to vary over time.

The first advice the author received from his advisor Gustave Choquet
was as follows: Always consider a problem under the minimum structure in
which it makes sense. This advice will probably be as fruitful in the future as
it has been in the past, and it has strongly influenced this work. By following
it, one is naturally led to study problems with a kind of minimal and intrinsic
structure. Not so many structures are really basic, and one may hope that
these will remain of interest for a very long time. This book is devoted to the
study of such structures.

The feeling, real or imaginary, that one is studying objects of intrinsic im-
portance is enjoyable, but the success of the approach of studying “minimal
structures” has ultimately to be judged by its results. As we shall demon-
strate, the tools arising from this approach provide the final words to a num-
ber of classical problems.

Some readers may be disturbed to see that certain standard considerations
are given little or no attention. You will find rather little about “convergence”
here, at least explicitly. There are no apparent σ-algebras, and measurablity is
hardly mentioned at all. We prove inequalities, and for this one may basically
pretend that every index set is finite. Thus we shall never define “essential
supremum” or “separable processes”, etc. The missing “details” belong to
pre-1950 mathematics, and it would serve no purpose to rewrite them.
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1.2 Basic Chaining: The Kolmogorov Conditions

Kolmogorov invented chaining, the main tool of this book. He stated the “Kol-
mogorov conditions”, which robustly ensure the good behavior of a stochas-
tic process on R

m. These conditions are studied in any advanced probability
course. If you have taken such a course, this section will refresh your mind
about these conditions, and the next few sections will present the natural
generalization of the chaining method in an abstract metric space, prepar-
ing you for the final version of the method which is presented in Chapter 2.
Learning in detail about these historical developments now makes sense only
if you have already heard of them. For this reason, the material up to Sec-
tion 1.5 included is directed towards a reader who has already some fluency
with probability theory. If, on the other hand, you have never heard of these
things, you should start directly with Chapter 2, which is written at a far
greater level of detail and assumes minimal familiarity with even basic prob-
ability theory.

A stochastic process a collection of random variables (r.v.s) (Xt)t∈T . The
fundamental idea of chaining is to replace the index set T by a sequence
of finite approximations Tn, and to study the r.v.s Xt through successive
approximations Xπn(t) where πn(t) ∈ Tn. As a first approximation let us
consider a single point t0 so T0 = {t0}. The fundamental relation is then

Xt −Xt0 =
∑

n≥1

(Xπn(t) −Xπn−1(t)) , (1.1)

where in all cases we need the sum on the right will be finite. This relation
gives its name to the method, the chain of approximations πn(t) links t0
and t. To control the differences Xt − Xt0 it suffices then to control all the
differences |Xπn(t) −Xπn−1(t)|.

Let us apply this method to processes that satisfy the so-called Kol-
mogorov conditions: that is processes (Xt)t∈T where T = [0, 1]m, for which

∀ s, t ∈ [0, 1]m , E|Xs −Xt|p ≤ d(s, t)α . (1.2)

where d(s, t) denotes the Euclidean distance and p > 0, α > m. Let us study
the continuity of such processes. The most obvious candidate for approximat-
ing set Tn is the grid Gn, the set of points x in [0, 1]m such that the coordi-
nates of 2nx are integers 6= 0. Thus cardGn = 2nm. It is completely natural
to choose πn(u) ∈ Gn as close to u as possible, so that d(u, πn(u)) ≤ √

m2−n,
and d(πn(u), πn−1(u)) ≤ 3

√
m2−n.

Forn n ≥ 1 let us then define

Un = {(s, t) ; s ∈ Gn , t ∈ Gn , d(s, t) ≤ 3
√
m2−n} , (1.3)

so that we have the crucial property

cardUn ≤ K(m)2nm , (1.4)
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where K(m) denotes a number depending only on m, which need not be the
same on each occurrence. Consider then the r.v.

Yn = max{|Xs −Xt| ; (s, t) ∈ Un} , (1.5)

so that (and since Gn−1 ⊂ Gn) for each u,

|Xπn(u) −Xπn−1(u)| ≤ Yn .

To avoid having to explain what is “a version of the process”, and since we
care only about inequalities, we will consider only the r.v.s Xt for t ∈ G =:
⋃

n≥0Gn. We first claim that

sup
s,t∈G;d(s,t)≤2−k

|Xs −Xt| ≤ 3
∑

n≥k

Yn . (1.6)

To prove this consider m ≥ k such that s, t ∈ Gm, so that s = πm(s) and
t = πm(t). Since d(s, t) ≤ 2−k, we have

d(πk(s), πk(t)) ≤ d(s, πk(s)) + d(s, t) + d(t, πk(t)) ≤ 3
√
m2−k ,

so that (πk(s), πk(t)) ∈ Uk and

|Xπk(s) −Xπk(t)| ≤ Yk .

To obtain (1.6) we then use the previous inequalities and the identities

Xs −Xt = Xs −Xπk(s) +Xπk(s) −Xπk(t) +Xπk(t) −Xt ,

and, for u ∈ {s, t},

Xu −Xπk(u) = Xπm(u) −Xπk(u) =
∑

k≤n<m

Xπn+1(u) −Xπn(u) .

Let us now draw some consequences of (1.6). For a finite family of numbers
Vi ≥ 0, we have

(max
i
Vi)

p ≤
∑

i

V p
i , (1.7)

and thus
EY p

n ≤ E

∑

(s,t)∈Un

|Xs −Xt|p ≤ K(m,α)2n(m−α) ,

since E|Xs−Xt|p ≤ K(m,α)2−nα for (s, t) ∈ Un and using (1.4). To proceed
one needs to distinguish whether or not p ≥ 1. For specificity we assume
p ≥ 1. Since, as we just proved, ‖Yn‖p := (E|Yn|p)1/p ≤ K(m, p)2n(m−α)/p,
the triangle inequality in Lp yields

∥

∥

∑

n≥k

Yn
∥

∥

p
≤ K(m, p, α)2k(m−α)/p . (1.8)
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Combining with (1.6) we then obtain

∥

∥

∥
sup

s,t∈G;d(s,t)≤2−k

|Xs −Xt|
∥

∥

∥

p
≤ K(m, p, α)2k(m−α)/p , (1.9)

a sharp inequality from which it is then simple to prove (with some loss of
sharpness) results such as the fact that for 0 < β < α−m one has

E sup
s,t∈G

|Xs −Xt|p
d(s, t)β

<∞ . (1.10)

Thus, chaining not only proves that the process (Xt)t∈T has a continuous
version, it also provides the very good estimate (1.9). One reason for which
everything is so easy in this case is that the size of the terms Xπn+1(u)−Xπn(u)

decreases like a geometric series.

1.3 More Chaining in R
m

One may also consider conditions more general than (1.2), for example

∀n ≥ 0 , ∀ s, t ∈ T , d(s, t) ≤ 3
√
m2−n ⇒ Eϕ

( |Xs −Xt|
cn

)

≤ dn , (1.11)

where ϕ is a convex function ≥ 0 with ϕ(0) = 0, and cn, dn are numbers. The
factor 3

√
m is to simplify the statement of the forthcoming inequality (1.15)

and is not important. Equivalently, one may consider conditions such as

∀ s, t ∈ T , Eϕ
( |Xs −Xt|
ψ(d(s, t))

)

≤ θ(d(s, t)) . (1.12)

where ψ and θ are functions. We follow exactly the same method as pre-
viously, but instead of (1.7) we use now that for r.v.s Vi ≥ 0 we have
ϕ(maxi Vi) ≤

∑

i ϕ(Vi), so that

ϕ(Emax
i
Vi) ≤ Eϕ(max

i
Vi) ≤

∑

i

Eϕ(Vi)

and hence
Emax

i
Vi ≤ ϕ−1

(

∑

i

Eϕ(Vi)
)

. (1.13)

Therefore the r.v. Yn of (1.5) satisfies

EYn ≤ cnϕ
−1(K(m)2nmdn) , (1.14)

and combining with (1.6),
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E sup
s,t∈G,d(s,t)≤2−k

|Xs −Xt| ≤ 3
∑

n≥k

cnϕ
−1(K(m)2nmdn) . (1.15)

The series in (1.15) has no reason to converge like a geometric series, so we
already are being more sophisticated than in the case of the Kolmogorov
conditions.1

1.4 Chaining in a Metric Space: Dudley’s Bound

Suppose now that we want to study the uniform convergence on [0, 1] of a
random Fourier seriesXt =

∑

k≥1 akgk cos(2πikt) where (gk) are independent
standard Gaussian r.v.s. It took a very long time to understand that the
fruitful way to attack the question is to forget about the natural distance on
[0, 1] and rather to consider the distance d given by

d(s, t)2 = E(Xs −Xt)
2 =

∑

k

a2k(cos(2iπks) − cos(2iπkt))2 . (1.16)

More generally one is lead to consider Gaussian processes indexed by an
abstract set T .2 We say that (Xt)t∈T is a Gaussian process when the family
(Xt)t∈T is jointly Gaussian centered. Then, just as in (1.16), the process
induces a canonical distance d on T given by d(s, t) = (E(Xs − Xt)

2)1/2.
Starting with the next chapter we will control the r.v.s |Xs − Xt| through
their tail properties, and to avoid repetition, we use a different condition,
which, in the case of Gaussian processes at least, is just another way to
present the same situation.3 We impose the condition

∀ s, t ∈ T , Eϕ
( |Xs −Xt|

d(s, t)

)

≤ 1 , (1.17)

where ϕ is convex function with ϕ(0) = 0, ϕ ≥ 0. Until much later, we need
only the choice ϕ(x) = exp(x2/4) − 1.4

In the absence of further structure on our metric space, how do we choose
the approximating sets Tn? Thinking back to the Kolmogorov conditions it
is very natural to introduce the following definition.

1 In the left-hand side of (1.15) we would like to do better than controlling the
expectation, but one really needs some regularity of the function ϕ for this.
It suffices here to say that when ϕ(x) = |x|p for p ≥ 1 we may replace the
expectation by the norm of Lp, proceeding exactly as we did in the case of the
Kolmogorov conditions.

2 Let us stress the point. Even though the index set is a subset of Rm we have no

chance to really understand the process unless we forget this irrelevant structure.
3 If you find the presentation too abstract here, you may like to go directly to
Chapter 2.

4 The factor 1/4 in the exponential is simply to ensure that (1.17) is satisfied by a
Gaussian process for the canonical distance, because if g is a standard Gaussian
r.v. then E exp(g2/4) ≤ 2.
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Definition 1.4.1. For ǫ > 0 the covering number N(T, d, ǫ) of a metric
space (T, d) is the smallest integer N such that T can be covered by N balls
of radius ǫ.

Equivalently, N(T, d, ε) is the smallest number N such that there exists a set
V ⊂ T with cardV ≤ N and such that each point of T is within distance ǫ
of V .

Let us denote by ∆(T ) = sups,t∈T d(s, t) the diameter of T , and observe
that N(T, d,∆(T )) = 1. We construct our approximating points Tn as follows.
Consider the largest integer n0 with ∆(T ) ≤ 2−n0 . For n ≥ n0 consider a
set Tn ⊂ T with cardTn = N(T, d, 2−n) such that each point of T is within
distance 2−n of a point of Tn.

We then perform the chaining as in the case of the Kolmogorov conditions,
using for πn(t) a point in Tn with d(x, πn(x)) ≤ 2−n. Consider

Un = {(s, t) ; s ∈ Tn , t ∈ Tn−1 , d(s, t) ≤ 3 · 2−n} ,

so that

cardUn ≤ cardTn cardTn−1 ≤ cardT 2
n = N(T, d, 2−n)2 .

This crude bound in hard to improve in general and should be compared to
(1.4). Using (1.13) the r.v.

Yn = max{|Xs −Xt| ; (s, t) ∈ Un}

satisfies
EYn ≤ 3 · 2−nϕ−1(N(T, d, 2−n−1)2) ,

and exactly as in the case of the Kolmogorov conditions we obtain

E sup
d(s,t)≤2−k

|Xs −Xt| ≤ L
∑

n≥k

2−nϕ−1(N(T, d, 2−n−1)2) ,

where L is a number (which may change between occurrences). We delay the
exercise of writing this inequality in integral form as

E sup
d(s,t)≤δ

|Xs −Xt| ≤ L

∫ δ

0

ϕ−1(N(T, d, ǫ)2)dǫ . (1.18)

In the case of the function ϕ(x) = exp(x2/4) − 1, so that ϕ−1(x) =
2
√

log(1 + x), inequality (1.18) is easily shown to be equivalent to the fol-
lowing more elegant formulation:

Theorem 1.4.2 (Dudley’s bound). If (Xt)t∈T is a Gaussian process with
natural distance d then

E sup
d(s,t)≤δ

|Xs −Xt| ≤ L

∫ δ

0

√

logN(T, d, ǫ)dǫ . (1.19)



1.5 Chaining in a Metric Space: Pisier’s Bound 11

This very general inequality is by far the most useful result on continuity of
Gaussian processes.

Exercise 1.4.3. Prove that the previous bound gives the correct modulus
of continuity for Brownian motion on [0, 1].

The message of Chapter 2 is simple:

• However useful, Dudley’s bound is not optimal in a number of fundamen-
tally important situations.

• It requires no more work to obtain a better bound which is optimal in
every situation.

1.5 Chaining in a Metric Space: Pisier’s Bound

In the bound (1.18) occurs the term N(T, d, ǫ)2 rather than N(T, d, ǫ). This
does not matter if ϕ(x) = exp(x2/4) − 1, but it does matter if ϕ(x) = |x|p.
We really do not have the right integral in the right-hand side. In this section
we show how to correct this, demonstrating at the same time that even in
a structure as general as a metric space not all arguments are trivial. This
material can be skipped at first reading.

To improve the brutal chaining argument leading to (1.18), without loss
of generality we assume that T is finite. For n ≥ n0 we consider a map
θn : Tn+1 → Tn such that d(θn(t), t) ≤ 2−n for each t ∈ Tn. Since we assume
that T is finite, we have T = Tm when m is large enough. We fix such an
m, and we define πn(t) = t for each t ∈ T and each n ≥ m. Starting with
n = m we then define recursively πn(t) = θn(πn+1(t)) for n ≥ n0. The point
of this construction is that πn+1(t) determines πn(t) so that there are at most
N(T, d, 2−n−1) pairs (πn+1(t), πn(t)), and the bound (1.13) implies

E sup
t∈T

|Xπn+1(t) −Xπn(t)| ≤ 2−nϕ−1(N(T, d, 2−n−1)) . (1.20)

Using the chaining identity

Xt −Xπn(t) =
∑

k≥n

Xπk+1(t) −Xπk(t) ,

we have proved the following.

Lemma 1.5.1. We have

E sup
t∈T

|Xt −Xπn(t)| ≤
∑

k≥n

2−kϕ−1(N(T, d, 2−k−1)) . (1.21)

Taking n = n0 this yields the following clean result (due to G. Pisier):
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Theorem 1.5.2. We have

E sup
s,t∈T

|Xs −Xt| ≤ L

∫ ∆(T )

0

ϕ−1(N(T, d, ǫ))dǫ . (1.22)

In order to get a modulus of continuity, a clever twist is required in the
argument.

Theorem 1.5.3. For any δ > 0, n ≥ n0 we have

E sup
d(s,t)<δ

|Xs −Xt| ≤ δϕ−1(N(T, d, 2−n)2) + 4
∑

k≥n

2−kϕ−1(N(T, d, 2−k−1)) .

(1.23)

To ensure that the right-hand side is small, we fix n large enough so that
the sum is small, and then we take δ small enough that the first term of the
right-hand side is small.

Proof. We fix n and we set Z = supt∈T |Xt −Xπn(t)|. We define

V = {(πn(s), πn(t)) ; d(s, t) < δ} ⊂ Tn × Tn .

For (a, b) ∈ V , let (s(a, b), t(a, b)) ∈ T ×T such that δ(s(a, b), t(a, b)) < δ and
a = πn(s(a, b)), b = πn(t(a, b)). Thus

sup
(a,b)∈V

|Xa −Xb| ≤ sup
(a,b)∈V

|Xs(a,b) −Xt(a,b)| + 2Z ,

and using (1.13)

E sup
(a,b)∈V

|Xs(a,b) −Xt(a,b)| ≤ δϕ−1(N(T, d, 2−n)2) ,

so that
E sup

(a,b)∈V

|Xa −Xb| ≤ δϕ−1(N(T, d, 2−n)2) + 2EZ . (1.24)

Now,
sup

d(s,t)<δ

|Xs −Xt| ≤ sup
(a,b)∈V

|Xa −Xb| + 2Z .

Taking expectation and using (1.24) and (1.21) finishes the proof. ⊓⊔

1.6 Does this Book Contain any Idea?

Idea 1. It is possible to organize chaining optimally using increasing se-
quences of partitions.

Idea 2. There is an automatic device to construct such sequences of par-
titions, using “functionals”, quantities with measure the size of the subsets
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of the index set. This yields a complete understanding of boundedness of
Gaussian processes.

Idea 3. Ellipsoids are much smaller than one should think, because they
(and more generally sufficiently convex bodies) are thin around the edges.
This explains the funny fractional powers of logarithms in certain matching
theorems.

Idea 4. One may witness that a metric space is large by the fact that it
contains large trees, or equivalently that it supports an extremely scattered
probability measure.

Idea 5. Consider a set on which T you are given a distance d and a random
distance dω such that it is rare that, given s, t ∈ T the distance dω(s, t)
is much smaller that d(s, t). Then if the appropriate sense (T, d) is large,
it must be the case that (T, dω) is typically large. This principle enormously
constrains the structure of certain bounded processes such as random Fourier
series and infinitely divisible processes.

Idea 6. There are different ways a random series might converge. It might
converge because chaining witnesses that there is cancellation between terms,
or it might converge because the sum of the absolutes values of its terms
already converges. Many processes built on random series can be split in two
parts, each one converging according to one of previous phenomenon.

The book contains many more ideas, but you will have to read more to
discover them.

1.7 Overview by Chapters

For us a stochastic process is a collection of random variables (r.v.s) (Xt)t∈T ,
where T is an index set, and our main objective is to find conditions under
which the trajectories of such a process are bounded. A specific feature of the
space T = [0, 1]m occurring in the Kolmogorov conditions is that it is really
“m-dimensional” and “the same around each point”. Much of the work done
in this book is to handle situations where such a homogeneity does not occur,
and these situations do occur in classical problems.

1.7.1 Gaussian Processes and the Generic Chaining

This subsection gives an overview of Chapter 2. More generally, Subsec-
tion 1.7.n gives the overview for Chapter n+ 1.

The most important question considered in this book is the boundedness
of Gaussian processes. The key object is the metric space (T, d) where T is
the index set and d the intrinsic distance (0.1). As investigated in Section 2.6
this metric space is far from being arbitrary: it is isometric to a subset of a
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Hilbert space. It is however a deadly trap to try to use this specific property
of the metric space (T, d). The proper approach is to just think of it as a
general metric space.

In Section 2.2 we explain the basic idea of the “generic chaining”, one
of the key ideas of this work. Chaining is a succession of steps that pro-
vide successive approximations of the index space (T, d). In the Kolmogorov
chaining, for each n the “variation of the process during the n-th step is con-
trolled uniformly over all possible chains”. Generic chaining allows that the
“variation of the process during the n-th step may depend on which chain we
follow”. Once the argument is properly organized, it is not any more compli-
cated than the classical argument. It is in fact exactly the same. Yet, while
Dudley’s classical bound is not always sharp, the bound obtained through
the generic chaining is optimal.

It is technically convenient to formulate the generic chaining bound using
special sequences of partitions of the metric space (T, d), that we shall call
admissible sequences throughout the book. To key make the generic chaining
bound useful is then to be able to construct admissible sequences. These
admissible sequences measure an aspect of the “size” of the metric space. In
Section 2.3 we introduce another method to measure the “size” of the metric
space, through the behavior of certain “functionals”, that are simply numbers
attached to each subset of the entire space. The fundamental fact is that
the two measures of the size of the metric space one obtains through either
admissible sequences or through functionals are equivalent in full generality.
This is proved in Section 2.3 for the easy part (that the admissible sequence
approach provides a larger measure of size than the functional approach)
and in Section 2.4 for the converse. This converse is, in effect, an algorithm
to construct sequences of partitions in a metric space given a functional.
Functionals are of considerable use throughout the book.

In Section 2.5 we prove that the generic bound can be reversed for
Gaussian processes, therefore providing a characterization of their sample-
boundedness. Generic chaining entirely explains the size of Gaussian pro-
cesses, and the dream of Section 2.7 is that a similar situation will occur for
many processes.

In Section 2.6 we explain why a Gaussian process in a sense is nothing but
a subset of Hilbert space. Remarkably a number of basic questions remain
unanswered, such as how to relate through geometry the size of a subset of
Hilbert space seen as a Gaussian process with the corresponding size of its
convex hull.

Dudley’s bound fails to explain the size of the Gaussian processes indexed
by ellipsoids in Hilbert space. This is investigated in Section 2.8. Ellipsoids
will play a basic role in Chapter 3.
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1.7.2 Matching Theorems

Chapter 3 makes the point that the generic chaining (or some equivalent form
of it) is already required to really understand the irregularities occurring in
the distribution ofN points (Xi)i≤N independently and uniformly distributed
in the unit square. These irregularities are measured by the “cost” of pairing
(=matching) these points with N fixed points that are very uniformly spread,
for various notions of cost.

These optimal results involve mysterious powers of logN . We are able
to trace them back to the geometry of ellipsoids in Hilbert space, so we
start the chapter with an investigation of these ellipsoids in Section 3.2. The
philosophy of the main result, the Ellipsoid Theorem, is that an ellipsoid
is in some sense somewhat smaller than it appears at first. This is due to
convexity: an ellipsoid gets “thinner” when one gets away from its center.
The Ellipsoid Theorem is a special case of a more general result (with the
same proof) about the structure of sufficiently convex bodies, one that will
have important applications in Chapter 16.

In Section 3.3 we provide general background on matchings. In Sec-
tion 3.5 we investigate the case where the cost of a matching is measured
by the average distance between paired points. We prove the result of Ajtai,
Komlós, Tusnády, that the expected cost of an optimal matching is at most
L
√

logN/
√
N where L is a number. The factor 1/

√
N is simply a scaling

factor, but the fractional power of log is optimal as shown in Section 3.6. In
Section 3.7 we investigate the case where the cost of a matching is measured
instead by the maximal distance between paired points. We prove the the-
orem of Leighton and Shor that the expected cost of a matching is at most
L(logN)3/4/

√
N , and the power of log is shown to be optimal in Section 3.8.

With the exception of Section 3.2, the results of Chapter 3 are not con-
nected to any subsequent material before Chapter 14.

1.7.3 Mostly Trees

We describe different notions of trees, and show how one can measure the
“size” of a metric space by the size of the largest trees it contains, in a way
which is equivalent to the measures of size introduced in Chapter 2. This idea
played an important part in the history of Gaussian processes. Its appeal is
mostly that trees are easy to visualize. Building a large tree in a metric
space is an efficient method to bound its size from below. We then learn the
powerful method of measuring the size of a metric space by the existence of
very scattered probability measures: “witnessing measures”.

1.7.4 Bernoulli Processes

In Chapter 5 we investigate Bernoulli processes, where the individual random
variables Xt are linear combinations of independent random signs. Random
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signs are obviously important r.v.s, and occur frequently in connection with
“symmetrization procedures”, a very useful tool. Each Bernoulli process is
associated with a Gaussian process in a canonical manner, when one replaces
the random signs by independent standard Gaussian r.v.s. The Bernoulli
process has better tails than the corresponding Gaussian process (it is “sub-
gaussian”) and is bounded whenever the corresponding Gaussian process is
bounded. There is however a completely different reason for which a Bernoulli
process might be bounded, namely that the sum of the absolute values of the
coefficients of the random signs remain bounded independently of the index t.
A natural question is then to decide whether these two extreme situations are
the only fundamental reasons why a Bernoulli process can be bounded, in the
sense that a suitable “mixture” of them occurs in every bounded Bernoulli
process. This was the “Bernoulli Conjecture” (to be stated formally on page
111), which has been so brilliantly solved by W. Bednorz and R. Lata la.

It is a long road to the solution of the Bernoulli conjecture, and we start to
study the main tools to work with Bernoulli processes. A linear combination
of independent random signs looks like a Gaussian r.v. when the coefficients of
the random signs are small. We can expect that a Bernoulli process will look
like a Gaussian process when these coefficients are suitably small. We also
develop this fundamental idea: the key to understanding Bernoulli processes
is to achieve control in the supremum norm.

The Bernoulli conjecture, on which the author worked so many years,
greatly influenced the way he looked at various processes. In the case of
empirical processes, this is explained in Section 5.8.

1.7.5 Random Fourier Series and Trigonometric Sums

The basic example of a random Fourier series is

Xt =
∑

k≥1

ξk exp(2πikt) , (1.25)

where t ∈ [0, 1] and the r.v.s ξk are independent symmetric. In this chapter
we provide a final answer to the convergence of such series.

The fundamental case where ξk = akgk for numbers ak and independent
Gaussian r.v.s (gk) is of great historical importance. There is however another
motivation for the study of such series. The generic chaining and related
methods is well adapted to the case of “non-homogeneous index space”. The
study of certain of the processes we will consider in the next chapters is
however already subtle even in the absence of the extra difficulty due to
this lack of homogeneity. The setting of random Fourier series allows us to
put aside the issue of lack of homogeneity and to concentrate on the other
difficulties. It provides an ideal setting to understand a basic fact: : many
processes can be exactly controlled, not by using one or two distances, but
by using an entire family of distances. This concept of “family of distance”
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will play a major role later. Another highlight of the chapter is a technical
result allowing to perform efficient chaining for Bernoulli processes.

1.7.6 Partition Scheme for Families of Distances

Once one has survived the initial surprise of the new idea that many processes
are naturally associated to an entire family of distances, it is very pleasant
to realize that the tools of Section 2.4 can be extended to this setting with
essentially the same proof. This is the purpose of Section 7.1.

In Section 7.3 we apply these tools to the situation of “canonical pro-
cesses” where the r.v.s Xt are linear combinations of independent copies of
symmetric r.v.s with density proportional to exp(−|x|α) where α ≥ 1 (and
to considerably more general situations as discovered by R. Lata la). In these
situations, the size of the process can be completely described as a function
of the geometry of the index space, a far reaching extension of the Gaussian
case.

1.7.7 Proof of the Bernoulli Conjecture

Having learned how to manipulate “families of distances” we are now bet-
ter prepared to prove the Bernoulli conjecture. The proof occupies most of
Chapter 0. In the last section of we investigate how to get lower bounds on
Bernoulli processes using “witnessing measures”.

1.7.8 Infinitely Divisible Processes

We study these processes in a general setting: we make no assumption of
stationarity of increments of any kind and our processes are to Lévy processes
what a general Gaussian process is to Brownian motion.

As a prologue we study p-stable processes. These are conditionally Gaus-
sian, and in Section 1.1 we use this property to provide lower bounds for such
processes. Although these bounds are in general very far from being upper
bounds, they are in a sense optimal (where there is “stationarity”, these lower
bounds can be reversed).

Our main tool to study more general infinitely divisible processes is their
representation as conditionally Bernoulli processes. We may now use the
Lata la-Bednorz theorem to considerably simplify the author’s previous re-
sults. For a large class of infinitely divisible processes, we prove lower bounds
which are in a precise sense optimal. These lower bounds are not upper
bounds in general, but they are upper bounds for “the part of boundedness
of the process which is due to cancellation”. Thus, whatever bound might
be true for the “remainder of the process” owes nothing to cancellation. The
results are described in complete detail with all definitions in Section 1.4.
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1.7.9 Unfulfilled Dreams

In Chapter 10 we outlay a long range research program, concerning a natural
class of processes, selector processes, for which it could be true that “chaining
explains all the part of the boundedness which is due to cancellation”, and in
Section 10.2 we state a precise conjecture to that effect. Even if this conjecture
is true, there would remain to describe the “part of the boundedness which
owes nothing to cancellation”, and for this part also we propose sweeping
conjectures. The underlying hope behind these conjectures is that, ultimately,
a bound for a selector process always arises from the use of the ‘union bound’
P(∪nAn) ≤ ∑

n P(An) in a simple situation, the use of basic principles such
as linearity and positivity, or combinations of these.

1.7.10 Empirical Processes

We focus on a special yet fundamental topic: the control of the supremum of
the empirical process over a class of functions.

We demonstrate again the power of the chaining scheme of Section 0.8
by providing a sharper version of Ossiander’s bracketing theorem with a very
simple proof. We then illustrate various techniques by presenting proofs of
two deep recent results.

1.7.11 Gaussian Chaos

Our satisfactory understanding of the properties of Gaussian processes should
bring information about processes that are, in various senses, related to Gaus-
sian processes. Such is the case of order two Gaussian chaos (which are es-
sentially second degree polynomials of Gaussian random variables). It seems
at present a hopelessly difficult task to give lower and upper bounds of the
same order for these processes, but in Section 12.1 we obtain a number of
results in the right direction. Chaos processes are very instructive because
there exists other methods than chaining to control their size (a situation
which we do not expect to occur for processes defined as sums of a random
series).

In Section 12.2 we study the tails of a single multiple order Gaussian
chaos, and present (yet another) deep result of R. Lata la which provides a
rather complete description of these tails.

1.7.12 Convergence of Orthogonal Series; Majorizing Measures

The old problem of characterizing the sequences (am) such that for each or-
thonormal sequence (ϕm) the series

∑

m≥1 amϕm converges a.s. was solved by
A. Paszkiewicz. Using a more abstract point of view, we present a very much
simplified proof of his results (due essentially to W. Bednorz). This leads us



1.7 Overview by Chapters 19

to the question of discussing when a certain condition on the “increments” of
a process implies its boundedness. When the increment condition is of “poly-
nomial type”, this is more difficult than in the case of Gaussian processes,
and requires the notion of “majorizing measure”. We present several elegant
results of this theory, in their seemingly final form recently obtained by W.
Bednorz.

1.7.13 Shor’s Matching Theorem

This chapter continues Chapter 3. We prove a deep improvement of the Ajtai,
Komlós, Tusnády theorem due to P. Shor. Unfortunately, due mostly to our
lack of geometrical understanding, the best conceivable matching theorem,
which would encompass this result as well as those of Chapter 3, and much
more, remains as a challenging problem, “the ultimate matching conjecture”
(a conjecture which is solved in the next chapter in dimension ≥ 3).

1.7.14 The Ultimate Matching Conjecture in Dimension Three

In this case, which is easier than the case of dimension two (but still ap-
parently rather non-trivial), we are able to obtain the seemingly final result
about matchings, a strong version of “the ultimate matching conjecture”.
There are no more fractional powers of logN here, but in a random sample
of N points uniformly distributed in [0, 1]3, local irregularities occur at all
scales between N−1/3 and (logN)1/3N−1/3, and our result can be seen as a
precise global description of these irregularities.

1.7.15 Applications to Banach Space Theory

Chapter 16 gives applications to Banach space theory. The sections of this
Chapter are largely independent of each other, but all reflect past interests of
the author. In Section 16.1.2, we study the cotype of operators from ℓ∞N into
a Banach space. In Section 16.1.5, we prove a comparison principle between
Rademacher (=Bernoulli) and Gaussian averages of vectors in a finite dimen-
sional Banach space, and we use it to compute the Rademacher cotype-2 of a
finite dimensional space using only a few vectors. In Section 16.2.1 we discover
how to classify the elements of the unit ball of L1 “according to the size of
the level sets”. In Section 16.2.2 we explain, given a Banach space E with an
1-unconditional basis (ei), how to “compute” the quantity E‖∑i giei‖ when
gi are independent Gaussian r.v.s, a further variation on the fundamental
theme of the interplay between the L1, L2 and L∞ norms. In Section 16.3.1
we study the norm of the restriction of an operator from ℓqN to the subspace
generated by a randomly chosen small proportion of the coordinate vectors,
and in Section 16.3.2 we use these results to obtain a sharpened version of
the celebrated results of J. Bourgain on the Λp problem. In Section 16.3.3,
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given a uniformly bounded orthonormal system, we study how large a subset
we can find on the span of which the L2 and L1 norms are close to each
other. In Section 16.3.4, given 1 < p < 2 and a k-dimensional subspace of Lp

we investigate for which values of N we can embed nearly isometrically this
subspace as a subspace of ℓpN . We prove that we may choose N as small as
about k log k(log log k)2. A recent proof by G. Schechtman of a theorem of
Y. Gordon concludes this chapter in Section 16.3.5.
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The Generic Chaining





2. Gaussian Processes and the Generic

Chaining

2.1 Overview

The overview of this chapter is given in Chapter 1, Subsection 1.7.1. More
generally, Subsection 1.7.n is the overview of Chapter n+ 1.

2.2 The Generic Chaining

In this section we consider a metric space (T, d) and a process (Xt)t∈T that
satisfies the increment condition:

∀u > 0 , P(|Xs −Xt| ≥ u) ≤ 2 exp

(

− u2

2d(s, t)2

)

. (2.1)

In particular this is the case when (Xt)t∈T is a Gaussian process and d(s, t)2 =
E(Xs −Xt)

2. Unless explicitly specified otherwise (and even when we forget
to repeat it) we will always assume that the process is centered, i.e.

∀t ∈ T , EXt = 0 . (2.2)

We will measure the “size of the process (Xt)t∈T ” by the quantity
E supt∈T Xt. Why this quantity is a good measure of the “size of the pro-
cess” is explained in Lemma 2.2.1 below.

When T is uncountable it is not obvious what the quantity E supt∈T Xt

means. We define it by the following formula:

E sup
t∈T

Xt = sup
{

E sup
t∈F

Xt ; F ⊂ T , F finite
}

, (2.3)

where the right-hand side makes sense as soon as each r.v. Xt is integrable.
This will be the case in almost all the situations considered in this book.

Let us say that a process (Xt)t∈T is symmetric if it has the same law as
the process (−Xt)t∈T . Almost all the processes we shall consider are sym-
metric (although for some of our results this hypothesis is not necessary).
The following justifies using the quantity E suptXt to measure “the size of a
symmetric process”.
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Lemma 2.2.1. If the process (Xt)t∈T is symmetric then

E sup
s,t∈T

|Xs −Xt| = 2E sup
t∈T

Xt .

Proof. We note that

sup
s,t∈T

|Xs −Xt| = sup
s,t∈T

(Xs −Xt) = sup
s∈T

Xs + sup
t∈T

(−Xt) ,

and we take expectations. �

Exercise 2.2.2. Consider a symmetric process (Xt)t∈T . Given any t0 in T
prove that

E sup
t∈T

|Xt| ≤ 2E sup
t∈T

Xt + E|Xt0 | ≤ 3E sup
t∈T

|Xt| . (2.4)

Generally speaking, and unless mentioned otherwise, the exercises have
been designed to be easy. The author however never taught this material in a
classroom, so it might happen that some exercises are not that easy after all
for the beginner. Please do not be discouraged if this should be the case.1 The
exercises have been designed to shed some light on the material at hand, and
to shake the reader out of her natural laziness by inviting her to manipulate
some simple objects.2

In this book, we often state inequalities about the supremum of a symmet-
ric process using the quantity E supt∈T Xt simply because this quantity looks
typographically more elegant than the equivalent quantity E sups,t∈T |Xs −
Xt|.

We actually often need to control the tails of the r.v. sups,t∈T |Xs −Xt|,
not only its first moment. Emphasis is given to the first moment because this
is the difficult part, and once this is achieved, control of higher moments is
often provided by the same arguments.

Our goal is to find bounds for E supt∈T Xt depending on the structure of
the metric space (T, d). We will assume that T is finite, which, as shown by
(2.3), does not decrease generality.

Given any t0 in T , the centering hypothesis (2.2) implies

E sup
t∈T

Xt = E sup
t∈T

(Xt −Xt0) . (2.5)

The latter form has the advantage that we now seek estimates for the expec-
tation of the non-negative r.v. Y = supt∈T (Xt −Xt0). Then,

1 It would have taken supra-human dedication for the author to write in detail all
the solutions, so there is no real warranty that each exercise is really feasible or
even correct.

2 It is probably futile to sue me over the previous statement, since the reader is
referred as “she” through the entire book and not only in connection with the
word “laziness”.
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EY =

∫ ∞

0

P(Y > u) du . (2.6)

Thus it is natural to look for bounds of

P

(

sup
t∈T

(Xt −Xt0) ≥ u
)

. (2.7)

The first bound that comes to mind is the “union bound”

P

(

sup
t∈T

(Xt −Xt0) ≥ u
)

≤
∑

t∈T

P(Xt −Xt0 ≥ u) . (2.8)

It seems worthwhile to draw right away some consequences from this bound,
and to discuss at leisure a number of other simple, yet fundamental facts.
This will take a bit over three pages, after which we will come back to the
main story of bounding Y . Throughout this work, ∆(T ) denotes the diameter
of T ,

∆(T ) = sup
t1,t2∈T

d(t1, t2) . (2.9)

When we need to make clear which distance we use in the definition of the
diameter, we will write ∆(T, d) rather than ∆(T ). Consequently (2.1) and
(2.8) imply

P

(

sup
t∈T

(Xt −Xt0) ≥ u
)

≤ 2 cardT exp
(

− u2

2∆(T )2

)

. (2.10)

Let us now record a simple yet important computation, that will allow us to
use the information (2.10).

Lemma 2.2.3. Consider a r.v. Y ≥ 0 which satisfies

∀u > 0 , P(Y ≥ u) ≤ A exp
(

− u2

B2

)

(2.11)

for certain numbers A ≥ 2 and B > 0. Then

EY ≤ LB
√

logA . (2.12)

Here, as in the entire book, L denotes a universal constant. We make the
convention that this constant is not necessarily the same on each occurrence.
This convention is very convenient, but one certainly needs to get used to
it, as e.g. in the formula supx xy − Lx2 = y2/L. This convention should be
remembered at all times.

When meeting an unknown notation such as this previous L, the reader
might try to look at the index, where some of the most common notation is
recorded.

Proof of Lemma 2.2.3. We use (2.6) and we observe that since P(Y ≥ u) ≤ 1,
then for any number u0 we have
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EY =

∫ ∞

0

P(Y ≥ u)du =

∫ u0

0

P(Y ≥ u)du+

∫ ∞

u0

P(Y ≥ u)du

≤ u0 +

∫ ∞

u0

A exp
(

− u2

B2

)

du

≤ u0 +
1

u0

∫ ∞

u0

uA exp
(

− u2

B2

)

du

= u0 +
AB2

2u0
exp

(

− u20
B2

)

, (2.13)

and the choice of u0 = B
√

logA completes the proof. ⊓⊔
Combining (2.12) and (2.10) we obtain that (considering separately the

case where cardT = 1)

E sup
t∈T

Xt ≤ L∆(T )
√

log cardT . (2.14)

The following special case is fundamental.

Lemma 2.2.4. If (gk)k≥1 are standard Gaussian r.v.s then

E sup
k≤N

gk ≤ L
√

logN . (2.15)

Exercise 2.2.5. (a) Prove that (2.15) holds as soon as the r.v.s gk satisfy

P(gk ≥ t) ≤ 2 exp
(

− t
2

2

)

(2.16)

for t > 0.
(b) For N ≥ 2 construct N centered r.v.s (gk)k≤N satisfying (2.16), and
taking only the values 0,±√

logN and for which E supk≤N gk ≥ √
logN/L.

(You are not yet asked to make these r.v.s independent.)
(d) After learning (2.17) below, solve (b) with the further requirement that
the r.v.s gk are independent. If this is too hard, look at Exercise 2.2.7, (b)
below.

This is taking us a bit ahead, but an equally fundamental fact is that when the
r.v.s (gk) are jointly Gaussian, and “significantly different from each other”
i.e. E(gk − gℓ)

2 ≥ a2 > 0 for k 6= ℓ, the bound (2.15) can be reversed, i.e.
E supk≤N gk ≥ a

√
logN/L, a fact known as Sudakov’s minoration. Sudakov’s

minoration is a non-trivial fact, but it should be really helpful to solve Exer-
cise 2.2.7 below. Before that let us point out a simple fact, that will be used
many times.

Exercise 2.2.6. Consider independent events (Ak)k≥1. Prove that

P

(

⋃

k≤N

Ak

)

≥ 1 − exp
(

−
∑

k≤N

P(Ak)
)

. (2.17)

Hint: P(∪k≤NAk) = 1 −∏

k≤N (1 − P(Ak)).
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In words: independent events such that the sum of their probabilities is small
are basically disjoint.

Exercise 2.2.7. (a) Consider independent r.v.s Yk ≥ 0 and u > 0 with

∑

k≤N

P(Yk ≥ u) ≥ 1 . (2.18)

Prove that
E sup

k≤N
Yk ≥ u

L
.

Hint: use (2.17) to prove that P(supk≤N Yk ≥ u) ≥ 1/L.
(b) We assume (2.18), but now Yk need not be ≥ 0. Prove that

E sup
k≤N

Yk ≥ u

L
− E|Y1| .

Hint: observe that for each event Ω we have E1Ω supk Yk ≥ −E|Y1|.
(c) Prove that if (gk)k≥1 are independent standard Gaussian r.v.s then
E supk≤N gk ≥ √

logN/L.

Before we go back to our main story, we consider in detail the conse-
quences of an “exponential decay of tails” such as in (2.11). This is the point
of the next exercise.

Exercise 2.2.8. (a) Assume that for a certain B > 0 the r.v. Y ≥ 0 satisfies

∀u > 0 , P(Y ≥ u) ≤ 2 exp
(

− u

B

)

. (2.19)

Prove that

E exp
( Y

2B

)

≤ L . (2.20)

Prove that for a > 0 one has (x/a)a ≤ expx. Use this for a = p and x = Y/2B
to deduce from (2.20) that for p ≥ 1 one has

(EY p)1/p ≤ LpB . (2.21)

(b) Assuming now that for a certain B > 0 one has

∀u > 0 , P(Y ≥ u) ≤ 2 exp
(

− u2

B2

)

, (2.22)

prove similarly (or deduce from (a)) that E exp(Y 2/2B2) ≤ L and that for
p ≥ 1 one has

(EY p)1/p ≤ LB
√
p . (2.23)
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In words, (2.21) states that “as p increases, the Lp norm of an exponentially
integrable r.v. does not grow faster than p,” and (2.23) asserts that if the
square of the r.v. is exponentially integrable, then its Lp norm does not grow
faster than

√
p. (These two statements are closely related.) More generally

it is very classical to relate the size of the tails of a r.v. with the rate of
growth of its Lp norm. This is not explicitly used in the sequel, but is good
to know as background information. As the following shows, (2.23) provides
the correct rate of growth in the case of Gaussian r.v.s.

Exercise 2.2.9. If g is a standard Gaussian r.v. it follows from (2.23) that
for p ≥ 1 one has (E|g|p)1/p ≤ L

√
p. Prove one has also

(E|g|p)1/p ≥
√
p

L
. (2.24)

One knows how to compute exactly E|g|p, from which one can deduce (2.24).
You are however asked to provide a proof in the spirit of this work by deducing
(2.24) solely from the information that, say, for u > 0 we have (choosing on
purpose crude constants) P(|g| ≥ u) ≥ exp(−u2/3)/L.

You will find basically no exact computations in this book. The aim is
different. We study quantities which are far too complicated to be computed
exactly, and we try to bound them from above, and sometimes from below
by simpler quantities with as little a gap as possible between the upper and
the lower bounds, the gap being ideally only a multiplicative constant.

We go back to our main story. The bound (2.14) will be effective if the
variables Xt −Xt0 are rather uncorrelated (and if there are not too many of
them). But it will be a disaster if many of the variables (Xt)t∈T are nearly
identical. Thus it seems a good idea to gather those variables Xt which are
nearly identical. To do this, we consider a subset T1 of T , and for t in T we
consider a point π1(t) in T1, which we think of as a (first) approximation of
t. The elements of T to which corresponds the same point π1(t) are, at this
level of approximation, considered as identical. We then write

Xt −Xt0 = Xt −Xπ1(t) +Xπ1(t) −Xt0 . (2.25)

The idea is that it will be effective to use (2.8) for the variables Xπ1(t)−Xt0 ,
because there are not too many of them, and they are rather different (at
least in some global sense and if we have done a good job at finding π1(t)). On
the other hand, since π1(t) is an approximation of t, the variables Xt−Xπ1(t)

are “smaller” than the original variables Xt − Xt0 , so that their supremum
should be easier to handle. The procedure will then be iterated.

Let us set up the general procedure. For n ≥ 0, we consider a subset Tn of
T , and for t ∈ T we consider πn(t) in Tn. (The idea is that the points πn(t)
are successive approximations of t.) We assume that T0 consists of a single
element t0, so that π0(t) = t0 for each t in T . The fundamental relation is

Xt −Xt0 =
∑

n≥1

(

Xπn(t) −Xπn−1(t)

)

, (2.26)
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which holds provided we arrange that πn(t) = t for n large enough, in which
case the series is actually a finite sum. Relation (2.26) decomposes the incre-
ments of the process Xt −Xt0 along the “chain” (πn(t))n≥0 (and this is why
this method is called “chaining”).

It will be convenient to control the set Tn through its cardinality with the
condition

cardTn ≤ Nn (2.27)

where
N0 = 1 ; Nn = 22

n

if n ≥ 1 . (2.28)

The notation (2.28) will be used throughout the book. It is at this stage that
the procedure to control Tn differs form the traditional one, and it is the
crucial point of the generic chaining method.

It is good to notice right away that
√

logNn is about 2n/2, which explains
the ubiquity of this latter quantity. The occurrence of the function

√
log x

itself is related to the fact that it is the inverse of the function exp(−x2)
that governs the size of the tails of a Gaussian r.v. Let us also observe the
fundamental inequality

N2
n ≤ Nn+1 ,

which makes it very convenient to work with this sequence.
Since πn(t) approximates t, it is natural to assume that

d(t, πn(t)) = d(t, Tn) = inf
s∈Tn

d(t, s) . (2.29)

For u > 0, (2.1) implies

P
(

|Xπn(t) −Xπn−1(t)| ≥ u2n/2d(πn(t), πn−1(t))
)

≤ 2 exp(−u22n−1) .

The number of possible pairs (πn(t), πn−1(t)) is bounded by

cardTn · cardTn−1 ≤ NnNn−1 ≤ Nn+1 = 22
n+1

.

Thus, if we denote by Ωu the event defined by

∀n ≥ 1 , ∀t , |Xπn(t) −Xπn−1(t)| ≤ u2n/2d(πn(t), πn−1(t)) , (2.30)

we obtain
P(Ωc

u) ≤ p(u) :=
∑

n≥1

2 · 22
n+1

exp(−u22n−1) . (2.31)

Here again, at the crucial step, we have used the “union bound”: we bound the
probability that one of the events (2.30) fails by the sum of the probabilities
that the individual events fail. When Ωu occurs, (2.26) yields

|Xt −Xt0 | ≤ u
∑

n≥1

2n/2d(πn(t), πn−1(t)) ,
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so that
sup
t∈T

|Xt −Xt0 | ≤ uS

where
S := sup

t∈T

∑

n≥1

2n/2d(πn(t), πn−1(t)) .

Thus
P

(

sup
t∈T

|Xt −Xt0 | > uS
)

≤ p(u) .

For n ≥ 1 and u ≥ 3 we have

u22n−1 ≥ u2

2
+ u22n−2 ≥ u2

2
+ 2n+1 ,

from which it follows that

p(u) ≤ L exp
(

−u
2

2

)

.

We observe here that since p(u) ≤ 1 the previous inequality holds not only
for u ≥ 3 but also for u > 0. (This type or argument will be used repeatedly.)
Therefore

P

(

sup
t∈T

|Xt −Xt0 | > uS
)

≤ L exp
(

− u2

2

)

. (2.32)

In particular (2.32) implies

E sup
t∈T

Xt ≤ LS .

The triangle inequality and (2.6) yield

d(πn(t), πn−1(t)) ≤ d(t, πn(t)) + d(t, πn−1(t))

≤ d(t, Tn) + d(t, Tn−1) ,

so that S ≤ L supt∈T

∑

n≥0 2n/2d(t, Tn), and we have proved the fundamental
bound

E sup
t∈T

Xt ≤ L sup
t∈T

∑

n≥0

2n/2d(t, Tn) . (2.33)

Now, how do we construct the sets Tn? It is obvious that we should
try to make the right-hand side of (2.33) small, but this is obvious only
because we have used an approach which naturally leads to this bound. The
“traditional chaining method” (as used in Section 1.4) chooses the sets Tn so
that supt∈T d(t, Tn) is as small as possible for cardTn ≤ Nn, where

d(t, Tn) = inf
s∈Tn

d(t, s) . (2.34)

We define
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en(T ) = en(T, d) = inf sup
t
d(t, Tn) , (2.35)

where the infimum is taken over all subsets Tn of T with cardTn ≤ Nn.
(Since here T is finite, the infimum is actually a minimum.) We call the
numbers en(T ) the entropy numbers. This definition is not consistent with
the conventions of Operator Theory, which uses e2n to denote what we call
en.3 When T is infinite, the numbers en(T ) are also defined by (2.35) but are
not always finite (e.g. when T = R).

Let us note that, since N0 = 1,

∆(T )

2
≤ e0(T ) ≤ ∆(T ) . (2.36)

Recalling that T is finite, let us then choose for each n a subset Tn of T with
cardTn ≤ Nn and en(T ) = supt∈T d(t, Tn). Since d(t, Tn) ≤ en(T ) for each t,
(2.33) implies the following.

Proposition 2.2.10 (Dudley’s entropy bound [32]). Under the incre-
ment condition (2.1), it holds

E sup
t∈T

Xt ≤ L
∑

n≥0

2n/2en(T ) . (2.37)

We proved this bound only when T is finite, but using (2.3) it also extends
to the case where T is infinite, as is shown by the following easy fact.

Lemma 2.2.11. If U is a subset of T , we have en(U) ≤ 2en(T ).

The point here is that in the definition of en(U) we insist that the balls are
centered in U , not in T .

Proof. Indeed, if a > en(T ), by definition one can cover T by Nn balls (for
the distance d) with radius a, and the intersections of these balls with U are
of diameter ≤ 2a, so U can be covered by Nn balls in U with radius 2a. �

Exercise 2.2.12. Prove that the factor 2 in the inequality en(U) ≤ 2en(T )
cannot be improved even if n = 0.

Dudley’s entropy bound is usually formulated using the covering numbers
of Definition 1.4.1. These relate to the entropy numbers by the formula

en(T ) = inf{ǫ ; N(T, d, ǫ) ≤ Nn} .

Indeed, it is obvious by definition of en(T ) that for ǫ > en(T ), we have
N(T, d, ǫ) ≤ Nn, and that if N(T, d, ǫ) ≤ Nn we have en(T ) ≤ ǫ. Conse-
quently,

3 We can’t help it if Operator Theory gets it wrong.
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ǫ < en(T ) ⇒ N(T, d, ǫ) > Nn

⇒ N(T, d, ǫ) ≥ 1 +Nn .

Therefore

√

log(1 +Nn)(en(T ) − en+1(T )) ≤
∫ en(T )

en+1(T )

√

logN(T, d, ǫ) dǫ .

Since log(1 +Nn) ≥ 2n log 2 for n ≥ 0, summation over n ≥ 0 yields

√

log 2
∑

n≥0

2n/2(en(T ) − en+1(T )) ≤
∫ e0(T )

0

√

logN(T, d, ǫ) dǫ . (2.38)

Now,

∑

n≥0

2n/2(en(T ) − en+1(T )) =
∑

n≥0

2n/2en(T ) −
∑

n≥1

2(n−1)/2en(T )

≥
(

1 − 1√
2

)

∑

n≥0

2n/2en(T ) ,

so (2.38) yields

∑

n≥0

2n/2en(T ) ≤ L

∫ ∞

0

√

logN(T, d, ǫ) dǫ .

Hence Dudley’s bound now appears in the familiar form

E sup
t∈T

Xt ≤ L

∫ ∞

0

√

logN(T, d, ǫ) dǫ . (2.39)

Of course, since log 1 = 0, the integral takes place in fact over 0 ≤ ǫ ≤ ∆(T ).
The right-hand side is often called Dudley’s entropy integral.

Exercise 2.2.13. Prove that
∫ ∞

0

√

logN(T, d, ǫ) dǫ ≤ L
∑

n≥0

2n/2en(T ) ,

showing that (2.37) is not an improvement over (2.39).

Exercise 2.2.14. Assume that for each 0 < ǫ < A we have logN(t, d, ǫ) ≤
(A/ǫ)α. Prove that en(T ) ≤ K(α)A2−n/α.

Here K(α) is a number depending only on α. This, and similar notation
are used throughout the book. It is understood that such numbers need not
be the same on every occurrence and it would help to remember this at all
times. The difference between the notations K and L is that L is a universal
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constant, i.e. a number that does not depend on anything, while K might
depend on some parameters, such as α here.

How does one estimate covering numbers (or, equivalently, entropy num-
bers)? The next exercise introduces the reader to “volume estimates”, a sim-
ple yet fundamental method for this purpose. It deserves to be fully under-
stood. If this exercise is too hard, you can find all the details below in the
proof of Lemma 2.8.5.

Exercise 2.2.15. (a) If (T, d) is a metric space, define the packing number
N∗(T, d, ǫ) as the largest integerN such that T containsN points with mutual
distances ≥ ǫ. Prove that N(T, d, ǫ) ≤ N∗(T, d, ǫ). Prove that if ǫ′ > 2ǫ then
N∗(T, d, ǫ′) ≤ N(T, d, ǫ).
(b) Let us denote by d the Euclidean distance in R

m, and by B the unit
Euclidean ball of center 0. Let us denote by Vol(A) the m-dimensional volume
of a subset A of Rm. By comparing volumes, prove that for any subset A of
R

m,

N(A, d, ǫ) ≥ Vol(A)

Vol(ǫB)
(2.40)

and

N(A, d, 2ǫ) ≤ N∗(A, d, 2ǫ) ≤ Vol(A+ ǫB)

Vol(ǫB)
. (2.41)

(c) Conclude that

(

1

ǫ

)m

≤ N(B, d, ǫ) ≤
(

2 + ǫ

ǫ

)m

. (2.42)

(d) Use (c) to find estimates of en(B) for the correct order for each value of n.
Hint: en(B) is about min(1, 2−2n/m). This decreases very fast as n increases.)
Estimate Dudley’s bound for B provided with the Euclidean distance.
(e) Use (c) to prove that if T is a subset of Rm and if n0 is any integer such
that m2−n0 ≤ 1 then for n > n0 one has en(T ) ≤ L2−2n/2men0

(T ). Hint:
cover T by Nn0

balls of radius 2en0
(T ) and cover each of these by balls of

smaller radius using (c).
(f) This part provides a generalization of (2.40) and (2.41) to a more abstract
setting, but with the same proofs. Consider a metric space (T, d) and a pos-
itive measure µ on T such all balls of a given radius have the same measure,
µ(B(t, ǫ)) = ϕ(ǫ) for each ǫ > 0 and each t ∈ T . For a subset A of T and
ǫ > 0 let Aǫ = {t ∈ T ; d(t, A) ≤ ǫ}, where d(t, A) = infs∈A d(t, s). Prove that

µ(A)

ϕ(2ǫ)
≤ N(A, d, 2ǫ) ≤ µ(Aǫ)

ϕ(ǫ)
.

There are many simple situations where Dudley’s bound is not of the
correct order. Although this takes us a bit ahead, we give such an example in
the next exercise. There the set T is particularly appealing: it is a simplex in
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R
m. Another classical example which is in a sense canonical occurs on page

51. Yet other examples based on fundamental geometry (ellipsoids in R
m)

are explained in Section 2.8.

Exercise 2.2.16. Consider an integer m and an i.i.d. standard Gaussian
sequence (gi)i≤m. For t = (ti)i≤m, let Xt =

∑

i≤m tigi. This is called the
canonical Gaussian process on R

m. Its associated distance is the Euclidean
distance on R

m. It will be much used later. Consider the set

T =
{

(ti)i≤m ; ti ≥ 0 ,
∑

i≤m

ti = 1
}

, (2.43)

the convex hull of the canonical basis. By (2.15) we have E supt∈T Xt =
E supi≤m gi ≤ L

√
logm. Prove that however the right-hand side of (2.37) is

≥ (logm)3/2/L. (Hint: For an integer k ≤ m consider the subset Tk of T
consisting of sequences t = (ti)i≤m ∈ T for which ti ∈ {0, 1/k}. Using part
(f) of Exercise 2.2.15 with T = A = Tk and µ the counting measure prove
that logN(Tk, d, 1/(L

√
k)) ≥ k log(em/k)/L and conclude. You need to be

fluent with Stirling’s formula to succeed.) Thus in this case Dudley’s bound
is off by a factor about logm. Exercise 2.4.9 below will show that in R

m the
situation cannot be worse than this.

The bound (2.33) seems to be genuinely better than the bound (2.37)
because when going from (2.33) to (2.37) we have used the somewhat brutal
inequality

sup
t∈T

∑

n≥0

2n/2d(t, Tn) ≤
∑

n≥0

2n/2 sup
t∈T

d(t, Tn) .

The method leading to the bound (2.33) is probably the most important
idea of this work. The fact that it appears now so naturally does not reflect
the history of the subject, but rather that the proper approach is being used.
When using this bound, we will choose the sets Tn in order to minimize
the right-hand side of (2.33) instead of choosing them as in (2.35). As will
be demonstrated later, this provides essentially the best possible bound for
E supt∈T Xt. To understand that matters are not trivial, the reader should
try, in the situation of Exercise 2.2.16, to find sets Tn such that the right-
hand side of (2.33) is of the correct order

√
logm. It would probably be quite

an athletic feat to succeed at this stage, but the reader is encouraged to keep
this question in mind as her understanding deepens.

The next exercise provides a simple (and somewhat “extremal”) situation
showing that (2.33) is an actual improvement over (2.37).

Exercise 2.2.17. (a) Consider a finite metric space (T, d). Assume that it
contains a point t0 with the property that for n ≥ 0 we have card(T \
B(t0, 2

−n/2)) ≤ Nn−1. Prove that T contains sets Tn with cardTn ≤ Nn and
supt∈T

∑

n≥0 2n/2d(t, Tn) ≤ L. Hint: Tn = {t0} ∪ {t ∈ T ; d(t, t0) > 2−n/2}.
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(b) Given an integer s ≥ 10, construct a finite metric space (T, d) with
the above property, such that cardT ≤ Ns and that en(T ) ≥ 2−n/2/L for
1 ≤ n ≤ s−1, so that Dudley’s integral is of order s. Hint: this might be hard
if you really never though about metric spaces. Try then a set of the type
T = {aℓfℓ; ℓ ≤ M} where aℓ > 0 is a number and (fℓ)ℓ≤M is the canonical
basis of RM .

The idea behind the bound (2.33) admits a technically more convenient
formulation.

Definition 2.2.18. Given a set T an admissible sequence is an increasing
sequence (An) of partitions of T such that cardAn ≤ Nn, i.e. cardA0 = 1
and cardAn ≤ 22

n

for n ≥ 1.

By an increasing sequence of partitions we mean that every set of An+1

is contained in a set of An. Admissible sequences of partitions will be con-
structed recursively, by breaking each element C of An into at mostNn pieces,
obtaining then a partition An+1 of T consisting of at most N2

n ≤ Nn+1 pieces.
Throughout the book we denote by An(t) the unique element of An which

contains t. The double exponential in the definition of (2.28) of Nn occurs
simply since for our purposes the proper measure of the “size” of a partition
A is log cardA. This double exponential ensures that “the size of the partition
An doubles at every step”. This offers a number of technical advantages which
will become clear gradually.

Theorem 2.2.19. (The generic chaining bound). Under the increment con-
dition (2.1) (and if EXt = 0 for each t) then for each admissible sequence
(An) we have

E sup
t∈T

Xt ≤ L sup
t∈T

∑

n≥0

2n/2∆(An(t)) . (2.44)

Here as always, ∆(An(t)) denotes the diameter of An(t) for d. One could
think that (2.44) could be much worse than (2.33), but is will turn out that
this is not the case when the sequence (An) is appropriately chosen.

Proof. We may assume T to be finite. We construct a subset Tn of T by
taking exactly one point in each set A of An. Then for t ∈ T and n ≥ 0, we
have d(t, Tn) ≤ ∆(An(t)) and the result follows from (2.33). �

Definition 2.2.20. Given α > 0, and a metric space (T, d) (that need not
be finite) we define

γα(T, d) = inf sup
t∈T

∑

n≥0

2n/α∆(An(t)) ,

where the infimum is taken over all admissible sequences.

It is useful to observe that since A0(t) = T we have γα(T, d) ≥ ∆(T ).
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Exercise 2.2.21. Prove that if d ≤ Bd′ then γ2(T, d) ≤ Bγ2(T, d′).

Exercise 2.2.22. (a) If T is finite, prove that γ2(T, d) ≤ L∆(T )
√

log cardT .
Hint: Ensure that ∆(An(t)) = 0 if Nn ≥ cardT .
(b) Prove that for n ≥ 0 we have

2n/2en(T ) ≤ Lγ2(T, d) . (2.45)

Hint: observe that 2n/2 max{∆(A);A ∈ An} ≤ supt∈T

∑

n≥0 2n/2∆(An(t)).
(c) Prove that, equivalently, for ǫ > 0 we have

ǫ
√

logN(T, d, ǫ) ≤ Lγ2(T, d) .

The reader should compare (2.45) with Exercise 2.4.8 below.

Combining Theorem 2.2.19 with Definition 2.2.20 yields

Theorem 2.2.23. Under (2.1) and (2.2) we have

E sup
t∈T

Xt ≤ Lγ2(T, d) . (2.46)

To make (2.46) of interest we must be able to control γ2(T, d), i.e. we must
learn how to construct admissible sequences, a topic we shall first address in
Section 2.4.

Let us point out, recalling (2.32), and observing that

|Xs −Xt| ≤ |Xs −Xt0 | + |Xt −Xt0 | , (2.47)

we have actually proved

P

(

sup
s,t∈T

|Xs −Xt| ≥ Luγ2(T, d)
)

≤ 2 exp(−u2) . (2.48)

There is no reason other than the author’s fancy to feature the phantom co-
efficient 1 in the exponent of the right-hand side, but the reader is advised to
write every detail on how this is deduced from (2.32): the different exponents
in (2.32) and (2.48) are made possible by the fact that the constant L is not
the same in these inequalities.

We note that (2.48) implies a lot more than (2.46). Indeed, for each p ≥ 1,
using (2.23)4

E
(

sup
s,t

|Xs −Xt|
)p ≤ K(p)γ2(T, d)p , (2.49)

and in particular

E
(

sup
s,t

|Xs −Xt|
)2 ≤ Lγ2(T, d)2 . (2.50)

4 A tiny bit of extra work, as done e.g. in [145] shows the more precise result that

(E sups,t |Xs −Xt|p)1/p ≤ Kγ2(T, d) + L
√
p∆(T ).
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2.3 Functionals

How do we efficiently construct admissible sequences of partitions? The quan-
tity γ2(T, d) reflects a highly non-trivial geometric characteristic of the metric
space. We will never, ever, enjoy a free lunch. This geometry must be under-
stood in order to build competent admissible sequences. Although this will
become clear only gradually, one crucial way to bring up this geometry is
through functionals. We will say that a map F is a functional on a set T if,
to each subset H of T it associates a number F (H) ≥ 0, and if it is increasing,
i.e.

H ⊂ H ′ ⊂ T ⇒ F (H) ≤ F (H ′) . (2.51)

Intuitively a functional is a measure of “size” for the subsets of T . It allows
to identify which subsets of T are “large” for our purposes. A first example
is given by F (H) = ∆(H). In the same direction, a fundamental example of
a functional is

F (H) = γ2(H, d) . (2.52)

A second, equally important, is the quantity

F (H) = E sup
t∈H

Xt

where (Xt)t∈T is a process indexed by T .
For our purposes the relevant property of functionals is by no means in-

tuitively obvious yet (but we shall soon see that the functional (2.52) does
enjoy this property). Let us first try to explain it in words: if set is the union
of many small pieces far enough from each other, then this set is significantly
larger (as measured by the functional) than the smallest of its pieces. “Sig-
nificantly larger” depends on the scale of the pieces, and on their number.
This property will be called a “growth condition”.

Let us address a secondary point before we give definitions. We denote
by B(t, r) the ball centered at t of radius r, and we note that

∆(B(t, r)) ≤ 2r .

This factor 2 is a nuisance. It is qualitatively the same to say that a set is
contained in a ball of small radius or has small diameter, but quantitatively
we have to account for this factor 2. In countless constructions we will produce
sets A which are “small” because they are contained in a ball of small radius
r. Either we keep track of this property, which is cumbersome, or we control
the size of A through its diameter and we deal with this inelegant factor 2.
We have chosen here the second method.5

What do we mean by “small pieces far from each other”? There is a
scale a > 0 at which this happens, and a parameter r ≥ 8 which gives us
some room. The pieces are small at that scale: they are contained in balls
with radius 2a/r.6 The balls are far from each other: any two centers of such

5 The opposite choice was made in [145].
6 This coefficient 2 is motived by the considerations of the previous paragraph.



38 2. Gaussian Processes and the Generic Chaining

balls are at mutual distance ≥ a. The reason why we require r ≥ 8 is that
we want the following: two points taken in different balls with radius 2a/r
whose centers are at distance ≥ a cannot be too close to each other. This
would not be true for, say, r = 4, so we give ourselves some room, and take
r ≥ 8. Here is the formal definition.

Definition 2.3.1. Given a > 0 and an integer r ≥ 8 we say that subsets
H1, . . . , Hm of T are (a, r)-separated if

∀ℓ ≤ m, Hℓ ⊂ B(tℓ, 2a/r) , (2.53)

where the points t1, t2, . . . , tm in T satisfy

∀ℓ , ℓ′ ≤ m, ℓ 6= ℓ′ ⇒ a ≤ d(tℓ, tℓ′) ≤ 2ar . (2.54)

A secondary feature of this definition is that the small pieces Hℓ are
not only well separated (on a scale a), but they are in the “same region
of T” (on the larger scale ra). This is the content of the last inequality in
condition (2.54).

Exercise 2.3.2. Find interesting examples of metric spaces for which there
are no points t1, . . . , tm as in (2.54), for all values of n (respectively all large
enough values of n).

Now, what means “the union of the pieces is significantly larger than the
smallest of these pieces”? In this first version of the growth condition, it
means that the size of this union is larger than the size of the smallest piece by
a quantity a

√
logN where N is the number of pieces.7 Well, sometimes it will

only be larger by a quantity of say a
√

logN/100. This is how the parameter
c∗ below comes into the picture. One could also multiply the functionals by
a suitable constant (i.e. 1/c∗) to always reduce to the case c∗ = 1 but this is
a matter of taste.

Another feature is that we do not need to consider the case with N pieces
for a general value of N , but only for the case where N = Nn for some n. This
is because we care about the value of logN only within, say, a factor of 2, and
this is precisely what motived the definition of Nn. In order to understand
the definition below one should also recall that

√
logNn is about 2n/2.

Definition 2.3.3. We say that the functional F satisfies the growth condi-
tion with parameters r ≥ 8 and c∗ > 0 if for any integer n ≥ 1 and any
a > 0 the following holds true, where m = Nn. For each collection of subsets
H1, . . . , Hm of T that are (a, r)-separated it holds that

F
(

⋃

ℓ≤m

Hℓ

)

≥ c∗a2n/2 + min
ℓ≤m

F (Hℓ) . (2.55)

7 We remind the reader that the function
√
log y arises from the fact it is the

inverse of the function exp(−x2).
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Exercise 2.3.4. Find examples of spaces (T, d) where the growth condition
holds while F (H) = 0 for each each H ⊂ T . Hint: use Exercise 2.3.2.

The following illustrates how we might use the first part of (2.54).

Exercise 2.3.5. Let (T, d) be isometric to a subset of Rk provided with the
distance induced by a norm. Prove that in order to check that a functional
satisfies the growth condition of Definition 2.3.3, it suffices to consider the
values of n for which Nn+1 ≤ (1 + 2/r)k. Hint: it follows from (2.42) that for
larger values of n there are no points t1, . . . , tm as in (2.54).

You may find it hard to give simple examples of functionals which satisfy
the growth condition (2.55). It will become gradually apparent that this con-
dition imposes strong restrictions on the metric space (T, d) and in particular
a control from above of the quantity γ2(T, d). It bears repeating that γ2(T, d)
reflects the geometry of the space (T, d). Once this geometry is understood, it
is usually possible to guess a good choice for the functional F . Many examples
will be given in subsequent chapters.

As we show now, we really have no choice. Functionals with the growth
property are intimately connected with the quantity γ2(T, d).

Proposition 2.3.6. Assume r ≥ 16. Then the functional F (H) = γ2(H, d)
satisfies the growth condition with parameters r and c∗ = 8.

Proof. Let m = Nn and consider points (tℓ)ℓ≤m of T with d(tℓ, tℓ′) > a if
ℓ 6= ℓ′. Consider sets Hℓ ⊂ B(tℓ, a/8), and the set H =

⋃

ℓ≤mHℓ. We have to
prove that

γ2(H, d) ≥ 1

8
a2n/2 + min

ℓ≤m
γ2(Hℓ, d) . (2.56)

Consider an admissible sequence of partitions of (An) of H, and consider the
set

I = {ℓ ≤ m ; ∃A ∈ An−1 ; A ⊂ Hℓ} .
Thus there is a one-to-one map from I to An−1 and since card I = Nn >
cardAn−1 there exists ℓ 6∈ I. The next goal is to prove that for t ∈ Hℓ one
has

∑

k≥0

2k/2∆(Ak(t)) ≥ 1

4
a2(n−1)/2 +

∑

k≥0

2k/2∆(Ak(t) ∩Hℓ) . (2.57)

Each term of the sum in the left is ≥ to the corresponding term on the right,
so it suffices to prove that

∆(An−1(t)) ≥ ∆(An−1(t) ∩Hℓ) +
1

4
a . (2.58)

For t ∈ Hℓ, since ℓ 6∈ I, we have An(t) 6⊂ Hℓ, so that since An(t) ⊂ H,
the set An(t) must meet a set Hℓ′ for a certain ℓ′ 6= ℓ, and consequently
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it meets the ball B(tℓ′ , a/8). Since d(t, B(tℓ′ , a/8)) ≥ a/2, this implies that
∆(An(t)) ≥ a/2. This proves (2.58) since ∆(An(t) ∩Hℓ) ≤ ∆(Hℓ) ≤ a/4.

Now, since A′
n = {A ∩Hℓ;A ∈ An} is an admissible sequence of Hℓ, we

have by definition

sup
t∈Hℓ

∑

k≥0

2k/2∆(Ak(t) ∩Hℓ) ≥ γ2(Hℓ, d) .

Hence, taking the supremum over t in Hℓ in (2.57) we get

sup
t∈Hℓ

∑

k≥n

2k/2∆(Ak(t)) ≥ 1

2
a2n/2 + γ2(Hℓ, d) ≥ 1

2
a2n/2 + min

ℓ
γ2(Hℓ, d) .

Since the admissible sequence (An) is arbitrary, we have proved (2.56). ⊓⊔

2.4 Partitioning Schemes

In this section we use functionals satisfying the growth condition to construct
admissible sequences of partitions. The basic result is as follows.

Theorem 2.4.1. Assume that there exist on T a functional which satisfies
the growth condition of Definition 2.3.3 with parameters r and c∗. Then

γ2(T, d) ≤ Lr

c∗
F (T ) + Lr∆(T ) . (2.59)

This theorem and its generalizations form the backbone of this book. The
essence of this theorem is that it produces (by actually constructing them)
a sequence of partitions that witnesses the inequality (2.59). For this reason,
it could be called “the fundamental partitioning theorem.”

Exercise 2.4.2. Consider a metric space T consisting of exactly two points.
Prove that the functional given by F (H) = 0 for each H ⊂ T satisfies the
growth condition of Definition 2.3.3 for r = 8 and any c∗ > 0. Explain why
we cannot replace (2.59) by the inequality γ2(T, d) ≤ LrF (T )/c∗.

Let us first stress the following trivial fact which will be used many times.

Lemma 2.4.3. Consider an integer N . If we cannot cover T by < N balls
of radius a then there exists points (tℓ)ℓ≤N with d(tℓ, tℓ′) ≥ a for ℓ 6= ℓ′. In
particular if en(T ) > a we can find points (tℓ)ℓ≤Nn

with d(tℓ, tℓ′) ≥ a for
ℓ 6= ℓ′.

Proof. We pick the points tℓ recursively with d(tℓ, tℓ′) ≥ a for ℓ′ < ℓ. By
hypothesis the balls of radius a centered on the previously constructed points
do not cover the space if there are < N of them so that the construction
continues until we have constructed N points. ⊓⊔
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The admissible sequence of partitions witnessing (2.59) will be constructed
by recursive application of the following basic principle.

Lemma 2.4.4. Under the conditions of Theorem 2.4.1 consider B ⊂ T with
∆(B) ≤ 2r−j for a certain j ∈ Z and n ≥ 0. Let m = Nn. Then we can find
a partition (Aℓ)ℓ≤m into sets which have either of the following properties:

∆(Aℓ) ≤ 2r−j−1 , (2.60)

or else

t ∈ Aℓ ⇒ F (B ∩B(t, 2r−j−2)) ≤ F (B) − c∗2n/2r−j−1 . (2.61)

Proof. Consider the set

C = {t ∈ B ; F (B ∩B(t, 2r−j−2)) > F (B) − c∗2n/2r−j−1} .

We prove that we can cover C by < m balls of radius r−j−1, and thus by sets
(Aℓ)ℓ<m which satisfy (2.60). Indeed, otherwise, by Lemma 2.4.3, we may
find (tℓ)ℓ≤m in C with d(tℓ, tℓ′) ≥ r−j−1 for ℓ 6= ℓ′. This would contradict
(2.55) used for a = r−j−1 and for the sets Hℓ := B ∩B(tℓ, 2r

−j−2). We then
set Am = B \ C which satisfies (2.61). ⊓⊔

Before we start the proof of Theorem 2.4.1 we need the following technical
fact which will be used many times: the sum of a geometric series can basically
be bounded by either the first or the last term of the series.

Lemma 2.4.5. Consider numbers (an)n≥0, an ≥ 0, and assume supn an <
∞. Consider α > 1 and define

I =
{

k ≥ 0 ; ∀n ≥ 0 , n 6= k , an < akα
|k−n|} . (2.62)

Then
∑

n≥0

an ≤ 2α

α− 1

∑

k∈I

ak . (2.63)

Proof. Let us write n ≺ k when ak ≥ anα
|n−k|. This relation is a partial

order: if n ≺ k and k ≺ p then ap ≥ anα
|p−k|+|k−n| ≥ anα

|p−n|, so that
n ≺ p. Let us observe that the set I defined above is the set of elements
k of N that are maximal, i.e. k ≺ k′ ⇒ k = k′. Since we assume that the
sequence (an) is bounded, there cannot exist an increasing sequence for the
order ≺. Consequently, for each n in N there exists k ∈ I with n ≺ k. Then
an ≤ akα

−|n−k|, and therefore

∑

n≥0

an ≤
∑

k∈I

∑

n≥0

akα
−|k−n| ≤ 2

1 − α−1

∑

k∈I

ak . ⊓⊔



42 2. Gaussian Processes and the Generic Chaining

Proof of Theorem 2.4.1. We construct an admissible sequence of partitions
An, and for A ∈ An and integer jn(A) ∈ Z with

∆(A) ≤ 2r−jn(A) . (2.64)

We start with A0 = {T} and j0(T ) the largest integer j ∈ Z with ∆(T ) ≤
2r−j0 , so that r−j0 ≤ r∆(T ). Having constructed An we construct An+1 as
follows. For each B ∈ An, we use Lemma 2.4.4 with j = jn(B) to split B
into sets (Aℓ)ℓ≤Nn

. If Aℓ satisfies (2.60) we set jn+1(Aℓ) = jn(B) + 1 and
otherwise we set jn+1(Aℓ) = jn(Aℓ).

The sequence thus constructed is admissible, since each set B in An is
split in at most Nn sets and since N2

n ≤ Nn+1. We note also be construction
that if B ∈ An and A ⊂ B, A ∈ An+1 then

• either jn+1(A) = jn(B) + 1
• or else jn+1(A) = jn(B) and

t ∈ A⇒ F (B ∩B(t, 2r−jn+1(A)−2)) ≤ F (B) − c∗2n/2r−jn+1(A)−1 . (2.65)

Let us then fix t ∈ T . We want to prove that

∑

n≥0

2n/2∆(An(t)) ≤ Lr

c∗
F (T ) + Lr∆(T ) .

We set j(n) = jn(An(t)) and a(n) = 2n/2r−j(n). Thus j(n) ≤ j(n + 1) ≤
j(n) + 1. Since a(0) = r−j0 ≤ Lr∆(T ), and since ∆(An(t)) ≤ 2r−j(n), it
suffices to show that

∑

n≥1

a(n) ≤ Lr

c∗
F (T ) . (2.66)

We first prove that the sequence (a(n)) is bounded. Indeed if j(n−1) = j(n)−
1 we have a(n− 1) ≤ a(n) so it suffices to consider the case j(n− 1) = j(n)
and then a(n) ≤ KF (T ) by (2.65).

Consider then the set I as provided by Lemma 2.4.5 for α =
√

2, so that
it suffices to prove

∑

n∈I

a(n) ≤ Lr

c∗
F (T ) . (2.67)

Obviously I ⊂ J = {n ≥ 0, j(n+1) = j(n)+1} because if j(n+1) = j(n) then
a(n + 1) =

√
2a(n). Let us enumerate the elements8 of J as n1 < n2 < . . ..

Let us observe that j(n) = j(nk) + 1 for nk < n ≤ nk+1. Let us consider
nk ∈ J and n∗ = nk+1 + 1, so that

j(n∗) = j(nk+1 + 1) = j(nk+1) + 1 = j(nk + 1) + 1 = j(nk) + 2 .

8 We assume here that J is infinite, leaving the necessary simple modifications of
the argument when J is finite to the reader.
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Thus (2.64) implies ∆(An∗(t)) ≤ 2r−j(n∗) = 2r−j(nk)−2 and therefore if
n = nk − 1,

An∗(t) ⊂ B ∩B(t, 2r−jn+1(An+1(t))−2) . (2.68)

Consider now nk ∈ I, so that nk ≥ 1. Then j(nk − 1) = j(nk) for otherwise
a(nk) = (

√
2/r)a(nk − 1), contradicting the definition of I. We may then use

(2.65) for n = nk − 1, B = An(t), A = Ank
(t) to conclude by (2.68)

a(nk) ≤ Lr

c∗
(F (An(t)) − F (An∗(t))) . (2.69)

Let us set f(n) = F (An(t)), so that f(0) = F (T ) and f(n+ 1) ≤ f(n) since
An+1(t) ⊂ An(t). For k ≥ 2 and since n = nk − 1 ≥ nk−1 and n∗ ≤ nk+2 we
deduce from (5.47) that

a(nk) ≤ Lr

c∗
(f(n) − f(n∗)) ≤ Lr

c∗
(f(nk−1) − f(nk+2)) .

Summation of these inequalities over the values of k for which nk ∈ I together
with the fact that a(n1) ≤ Lrf(0)/c∗ concludes the proof of (2.67) and of
the theorem. ⊓⊔

Exercise 2.4.6. We say that a sequence (Fn)n≥0 of functionals on (T, d)
satisfies the growth condition with parameters r ≥ 4 and c∗ > 0 if

∀n ≥ 0 , Fn+1 ≤ Fn

and if for any integer n ≥ 0 and any a > 0 the following holds true, where
m = Nn. For each collection of subsets H1, . . . , Hm of T that are (a, r)-
separated it holds

Fn

(

⋃

ℓ≤m

Hℓ

)

≥ c∗a2n/2 + min
ℓ≤m

Fn+1(Hℓ) . (2.70)

Prove that then

γ2(T, d) ≤ Lr

c∗
F0(T ) + Lr∆(T ) . (2.71)

Hint: copy the previous arguments by replacing everywhere F (A) by Fn(A)
when A ∈ An.

Proposition 2.4.7. Consider a metric space (T, d), and for n ≥ 0, consider
subsets Tn of T with cardT0 = 1 and cardTn ≤ Nn for n ≥ 1. Consider a
number S and let

U =
{

t ∈ T ;
∑

n≥0

2n/2d(t, Tn) ≤ S
}

.

Then γ2(U, d) ≤ LS.
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Proof. For H ⊂ U we define F (H) = inf supt∈H

∑

n≥0 2n/2d(t, Vn) where
the infimum is taken over all choices of Vn ⊂ T with cardVn ≤ Nn. It is
important here not to assume that Vn ⊂ H to ensure that F is increasing.
We then prove that F satisfies the growth condition by an argument very
similar to that of Proposition 2.3.6. ⊓⊔

Exercise 2.4.8. A rather obvious consequence of the previous result is that
for any metric space (T, d) we have

γ2(T, d) ≤ L
∑

n≥0

2n/2en(T ) . (2.72)

Find a simple direct proof. Hint: you do have to construct the partitions.

Exercise 2.4.9. Use (2.45) and Exercise 2.2.15 (d) to prove that if T ⊂ R
m

then
∑

n≥0

2n/2en(T ) ≤ L log(m+ 1)γ2(T, d) . (2.73)

In words, Dudley’s bound is never off by more than a factor about log(m+
1) in R

m.

One reason to present the scheme of proof of Theorem 2.4.1 exactly in
the present form is that it may help the reader to follow the proof of the
Bednorz-Latala theorem, Theorem 5.2.5, which is one of the highlights of
this work.

A slightly different partitioning scheme has recently been discovered by R.
van Handel [150], and we describe a variant of it now. We consider a metric
space (T, d) and an integer r ≥ 8. We assume that for j ∈ Z we are given a
function sj(t) ≥ 0 on T . We make the following assumption.

For each subset A of T, each j ∈ Z with ∆(A) ≤ 2r−j and each

n ≥ 1, then either en(A) ≤ r−j−1 or else there exists t ∈ A

with sj(t) ≥ 2n/2r−j−1 . (2.74)

We will show later how to construct such functions sj(t) using a functional
which satisfies the growth condition. Other constructions are considered in
[150].

Theorem 2.4.10. Assume that (2.74) holds. Then

γ2(T, d) ≤ Lr
(

∆(T ) + sup
t∈T

∑

j∈Z

sj(t)
)

. (2.75)

The right-hand side is the supremum over t of a sum of terms. It need not
always be the same terms which will contribute the most for different values
of t.
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Proof of Theorem 2.4.10. Consider the largest j0 ∈ Z with ∆(T ) ≤ 2r−j0 ,
so that 2r−j0 ≤ r∆(T ). We construct by induction an increasing sequence of
partitions An with cardAn ≤ Nn, and for A ∈ An we construct an integer
jn(A) ∈ Z with ∆(A) ≤ 2r−jn(A). We start with A0 = A1 = {T} and
j0(T ) = j1(T ) = j0.

Once An has been constructed, we further split every element B ∈ An.
The idea is to first split B into sets which are basically level sets for the
function sj(t) in order to achieve the crucial relation (2.79) below, and then to
further split each of these sets according to its metric entropy. More precisely,
let S = supt∈T

∑

j∈Z
sj(t) and set j = jn(B). We define the sets Ak for

1 ≤ k ≤ n by setting for k < n

Ak = {t ∈ A ; 2−kS < sj(t) ≤ 2−k+1S} , (2.76)

and
An = {t ∈ A ; sj(t) ≤ 2−n+1S} . (2.77)

The purpose of this construction is to ensure the following:

k ≤ n ; t, t′ ∈ Ak ⇒ sj(t
′) ≤ 2(sj(t) + 2−nS) . (2.78)

This is obvious if one distinguishes the cases k < n and k = n. For each set
Ak, k ≤ n we use the following procedure.

• If en−1(Ak) ≤ r−j−1 we split Ak into Nn−1 pieces of diameter ≤ 2r−j−1.
We decide that each of these pieces A is an element of An+1, for which we
set jn+1(A) = j + 1.

• Otherwise we decide that Ak ∈ An+1 and we set jn+1(Ak) = j. From
(2.74) there exist t′ ∈ Ak for which sj(t

′) ≥ 2(n−1)/2r−j−1. Then by (2.78)
we have

∀t ∈ Ak ; 2(n−1)/2r−j−1 ≤ 2(sj(t) + 2−nS) . (2.79)

In summary, if B ∈ An and A ∈ An+1, A ⊂ B then

• either jn+1(A) = jn(B) + 1
• or else jn+1(A) = jn(B) and, from (2.79)

∀t ∈ A ; 2(n−1)/2r−jn+1(A)−1 ≤ 2(sjn(B)(t) + 2−nS) . (2.80)

This completes the construction. Since cardAn+1 ≤ Nn−1nNn ≤ Nn+1 the
sequence (An) is admissible. Next, we fix t ∈ T . We set jn = jn(An(t)), and
we observe that by construction that jn ≤ jn+1 ≤ jn + 1. We set a(n) =
2n/2r−jn(t) and we prove that

∑

n≥0

a(n) ≤ LrS . (2.81)

This completes the proof since ∆(An(t)) ≤ 2r−jn(An(t)). Consider then the
set I provided by Lemma 2.4.5, so that since r−j0 ≤ 2r∆(T ) it suffices to
prove that
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∑

n∈I\{0}
a(n) ≤ LrS . (2.82)

For n ∈ I \ {0}, it holds jn−1 = jn < jn+1 (for otherwise this contradicts the
definition of I). In particular the integers jn for n ∈ I are all different so that
∑

n≥0 sjn(t) ≤ S. Using (2.80) for n−1 instead of n and since j(n−1) = j(n)
we get

a(n) ≤ Lr(sjn(t) + 2−nS) ,

and summing these relations we have obtained the desired result. ⊓⊔
The following connects Theorems 2.4.1 and 2.4.10.

Proposition 2.4.11. Assume that the functional F satisfies the growth con-
dition with parameters r and c∗. Then the functions

sj(t) =
1

c∗
(

F (B(t, 2r−j+1) − F (B(t, 2r−j−2))
)

satisfy (2.74).

Proof. Consider a subset A of T , j ∈ Z with ∆(A) ≤ 2r−j and n ≥ 1. Let
m = Nn. If en(A) > r−j−1 then by Lemma 2.4.3 we may find (tℓ)ℓ≤m in A
with d(tℓ, tℓ′) ≥ r−j−1 for ℓ 6= ℓ′. Consider the set Hℓ = B(tℓ, 2r

−j−2) so that
by (2.55) used for a = r−j−1 it holds that

min
ℓ≤m

F (Hℓ) ≤ c∗r−j−12n/2 + F
(

⋃

ℓ≤m

Hℓ

)

.

Let us now consider ℓ′ ≤ m such that F (Hℓ′) achieves the minimum in
the left-hand side. Observe that Hℓ ⊂ B(tℓ′ , 2r

−j+1) for each ℓ, so that
F (

⋃

ℓ≤mHℓ) ≤ F (B(tℓ′ , 2r
−j+1)), and then sj(tℓ′) ≥ 2n/2r−j−1. ⊓⊔

Despite the fact that the proof of Theorem 2.4.10 is somewhat simpler
than the proof of Theorem 2.4.1, in the various generalizations of this prin-
ciple we will mostly follow the scheme of proof of Theorem 2.4.1 for a simple
reason: it should help the reader that these various generalizations follow
a common pattern, and it not clear at this point whether the method of
Theorem 2.4.10 can be adapted to the proof of Theorem 5.2.5.

The following simple observation allows us to construct a sequence which
is admissible from one which is slightly too large. It will be used a great many
times.

Lemma 2.4.12. Consider α > 0, an integer τ ≥ 0 and an increasing se-
quence of partitions (Bn)n≥0 with cardBn ≤ Nn+τ . Let

S := sup
t∈T

∑

n≥0

2n/α∆(Bn(t)) .
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Then we can find an admissible sequence (An)n≥0 such that

sup
t∈T

∑

n≥0

2n/α∆(An(t)) ≤ 2τ/α(S +K(α)∆(T )) . (2.83)

Of course (for the last time) here K(α) denotes a number depending on
α only (that need not be the same at each occurrence).

Proof. We set An = {T} if n < τ and An = Bn−τ if n ≥ τ so that cardAn ≤
Nn and

∑

n≥τ

2n/α∆(An(t)) = 2τ/α
∑

n≥0

2n/α∆(Bn(t)) .

Using the bound ∆(An(t)) ≤ ∆(T ), we obtain

∑

n≤τ

2n/α∆(An(t)) ≤ K(α)2τ/α∆(T ) . ⊓⊔

Exercise 2.4.13. Prove that (2.83) might fail if one replaces the right-hand
side by K(α, τ)S. Hint: S does not control ∆(T ).

2.5 Gaussian Processes: The Majorizing Measure

Theorem

Consider a Gaussian process (Xt)t∈T , that is, a jointly Gaussian family of
centered r.v.s indexed by T . We provide T with the canonical distance

d(s, t) =
(

E(Xs −Xt)
2
)1/2

. (2.84)

Recall the functional γ2 of Definition 2.2.20.

Theorem 2.5.1. (The Majorizing Measure Theorem.) For some universal
constant L it holds

1

L
γ2(T, d) ≤ E sup

t∈T
Xt ≤ Lγ2(T, d) . (2.85)

The reason for the name is explained in Section 4.1. We will meditate on
this statement in Section 2.7.

The right-hand side inequality in (2.85) follows from Theorem 2.2.23. To
prove the lower bound we will use Theorem 2.4.1 and the functional

F (H) = sup
H∗⊂H,H∗finite

E sup
t∈H∗

Xt .

For this we need to prove that this functional satisfies the growth condition
with c∗ a universal constant and to bound ∆(T ). We strive to give a proof
that relies on general principles, and lends itself to generalizations.
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Lemma 2.5.2. (Sudakov minoration) Assume that

∀p, q ≤ m, p 6= q ⇒ d(tp, tq) ≥ a .

Then we have
E sup

p≤m
Xtp ≥ a

L1

√

logm . (2.86)

Here and below L1, L2, . . . are specific universal constants. Their values re-
main the same, at least within the same section.

Exercise 2.5.3. Prove that Lemma 2.5.2 is equivalent to the following state-
ment. If (Xt)t∈T is a Gaussian process, and d is the canonical distance, then

en(T, d) ≤ L2−n/2
E sup

t∈T
Xt . (2.87)

Compare with Exercise 2.2.22.

A proof of Sudakov minoration may be found in [61], p. 83. The same proof
is actually given further in the present book, and the ambitious reader may
like to try to understand this now, using the following steps.

Exercise 2.5.4. Use Lemma 12.2.6 and Lemma 16.3.32 to prove that for a
Gaussian process (Xt)t∈T we have en(T, d) ≤ L2−n/2

E supt∈T |Xt|. Then use
Exercise 2.2.2 to deduce (2.87).

To understand the relevance of Sudakov minoration, let us consider the
case where EX2

tp ≤ 100a2 (say) for each p. Then (2.86) means that the bound
(2.14) is of the correct order in this situation.

Exercise 2.5.5. Prove (2.86) when the r.v.s Xtp are independent. Hint: use
Exercise 2.2.7 (b).

Exercise 2.5.6. A natural approach (“the second moment method”) to
prove that P(supp≤mXtp ≥ u) is at least 1/L for a certain value of u is
as follows. Consider the r.v. Y =

∑

p 1{Xtp≥u}, prove that EY 2 ≤ L(EY )2,

and then use the Paley-Zygmund inequality (5.10) below to prove that
supp≤mXtp ≥ a

√
logm/L1 with probability ≥ 1/L. Prove that this approach

works when the r.v.s Xtℓ are independent, but find examples showing that
this naive approach does not work in general to prove (2.86).

The following is a very important property of Gaussian processes, and
one of the keys to Theorem 2.5.1. It is a facet of the theory of concentration
of measure, a leading idea of modern probability theory. We refer the reader
to [60] to learn about this.

Lemma 2.5.7. Consider a Gaussian process (Xt)t∈U , where U is finite and
let σ = supt∈U (EX2

t )1/2. Then for u > 0 we have

P

(
∣

∣

∣
sup
t∈U

Xt − E sup
t∈U

Xt

∣

∣

∣
≥ u

)

≤ 2 exp
(

− u2

2σ2

)

. (2.88)
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In words, the size of the fluctuations of E supt∈U Xt is governed by the size of
the individual r.v.s Xt, rather than by the (typically much larger) quantity
E supt∈U Xt.

Exercise 2.5.8. Find an example of a Gaussian process for which

E sup
t∈T

Xt ≫ σ = sup
t∈T

(EX2
t )1/2 ,

whereas the fluctuations of supt∈T Xt are of order σ, e.g. the variance of
suptXt is about σ2. Hint: T = {(ti)i≤n;

∑

i≤n t
2
i ≤ 1} and Xt =

∑

i≤n tigi
where gi are independent standard Gaussian. Observe first that (suptXt)

2 =
∑

i≤n g
2
i is of order n and has fluctuations of order

√
n by the central limit

theorem. Conclude that supt∈T Xt has fluctuations of order 1 whatever the
value of n.

Proposition 2.5.9. Consider points (tℓ)ℓ≤m of T . Assume that d(tℓ, tℓ′) ≥ a
if ℓ 6= ℓ′. Consider σ > 0, and for ℓ ≤ m a finite set Hℓ ⊂ B(tℓ, σ). Then if
H =

⋃

ℓ≤mHℓ we have

E sup
t∈H

Xt ≥
a

L1

√

logm− L2σ
√

logm+ min
ℓ≤m

E sup
t∈Hℓ

Xt . (2.89)

When σ ≤ a/(2L1L2), (2.89) implies

E sup
t∈H

Xt ≥
a

2L1

√

logm+ min
ℓ≤m

E sup
t∈Hℓ

Xt , (2.90)

which can be seen as a generalization of (2.86).

Proof. We can and do assume m ≥ 2. For ℓ ≤ m, we consider the r.v.

Yℓ =
(

sup
t∈Hℓ

Xt

)

−Xtℓ = sup
t∈Hℓ

(Xt −Xtℓ) .

We set U = Hℓ and for t ∈ U we set Zt = Xt −Xtℓ . Since Hℓ ⊂ B(tℓ, σ) we
have EZ2

t = d(t, tℓ)
2 ≤ σ2 and, for u ≥ 0 equation (2.88) used for the process

(Zt)t∈U implies

P(|Yℓ − EYℓ| ≥ u) ≤ 2 exp
(

− u2

2σ2

)

.

Thus if V = maxℓ≤m |Yℓ − EYℓ| then

P(V ≥ u) ≤ 2m exp
(

− u2

2σ2

)

, (2.91)

and (2.12) implies EV ≤ L2σ
√

logm. Now, for each ℓ ≤ m,

Yℓ ≥ EYℓ − V ≥ min
ℓ≤m

EYℓ − V ,
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and thus
sup
t∈Hℓ

Xt = Yℓ +Xtℓ ≥ Xtℓ + min
ℓ≤m

EYℓ − V

so that
sup
t∈H

Xt ≥ max
ℓ≤m

Xtℓ + min
ℓ≤m

EYℓ − V .

We then take expectations and use (2.86). �

Exercise 2.5.10. Prove that (2.90) might fail if one allows σ = a. Hint: the
intersection of the balls B(tℓ, a) might contain a ball with positive radius.

Exercise 2.5.11. Prove that

E sup
t∈H

Xt ≤ La
√

logm+ max
ℓ≤m

E sup
t∈Hℓ

Xt . (2.92)

Try to find improvements on this bound. Hint: peek at (16.76) below.

Proof of Theorem 2.5.1. We fix r ≥ 2L1L2. To prove the growth condition
for the functional F we simply observe that (2.90) implies that (2.55) holds
for c∗ = 1/L. Using Theorem 2.4.1 it remains only to control the term ∆(T ).
But

Emax(Xt1 , Xt2) = Emax(Xt1 −Xt2 , 0) =
1√
2π
d(t1, t2) ,

so that ∆(T ) ≤
√

2πE supt∈T Xt. �

The proof of Theorem 2.5.1 displays an interesting feature. This theorem
aims at understanding E supt∈T Xt, and for this we use functionals that are
based on precisely this quantity. This is not a circular argument. The content
of Theorem 2.5.1 is that there is simply no other way to bound a Gaussian
process than to control the quantity γ2(T, d). However, to control this quan-
tity in a specific situation, we must in some way gain understanding of the
underlying geometry.

The following is a noteworthy consequence of Theorem 2.5.1.

Theorem 2.5.12. Consider two processes (Yt)t∈T and (Xt)t∈T indexed by
the same set. Assume that the process (Xt)t∈T is Gaussian and that the pro-
cess (Yt)t∈T satisfies the condition

∀u > 0 , ∀s, t ∈ T , P(|Ys − Yt| ≥ u) ≤ 2 exp

(

− u2

d(s, t)2

)

,

where d is the distance (2.84) associated to the process Xt. Then we have

E sup
s,t∈T

|Ys − Yt| ≤ LE sup
t∈T

Xt .

Proof. We combine (2.50) with the left-hand side of (2.85). �
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Let us now turn to a simple (and classical) example that illustrates well
the difference between Dudley’s bound (2.39) and the bound (2.33). Basically
this example reproduces, for a metric space associated to an actual Gaussian
process, the metric structure that was described in an abstract setting in Ex-
ercise 2.2.17. Consider an independent sequence (gi)i≥1 of standard Gaussian
r.v.s and for i ≥ 2 set

Xi =
gi√
log i

. (2.93)

Consider an integer s ≥ 3 and the process (Xi)2≤i≤Ns
so the index set is

T = {2, 3, . . . , Ns}. The distance d associated to the process satisfies for
p 6= q

1
√

log(min(p, q))
≤ d(p, q) ≤ 2

√

log(min(p, q))
. (2.94)

Consider 1 ≤ n ≤ s − 2 and Tn ⊂ T with cardTn = Nn. There exists
p ≤ Nn + 1 with p /∈ Tn, so that (2.94) implies d(p, Tn) ≥ 2−n/2/L (where
the distance from a point to a set is defined in (2.34)). This proves that
en(T ) ≥ 2−n/2/L. Therefore

∑

n

2n/2en(T ) ≥ s− 2

L
. (2.95)

On the other hand, for n ≤ s let us now consider Tn = {2, 3, . . . , Nn, Ns},
integers p ∈ T and m ≤ s− 1 such that Nm < p ≤ Nm+1. Then d(p, Tn) = 0
if n ≥ m+ 1, while, if n ≤ m,

d(p, Tn) ≤ d(p,Ns) ≤ L2−m/2

by (2.94) and since p ≥ Nm and Ns ≥ Nm. Hence we have

∑

n

2n/2d(p, Tn) ≤
∑

n≤m

L2n/22−m/2 ≤ L . (2.96)

Comparing (2.95) and (2.96) proves that the bound (2.39) is worse than
the bound (2.33) by a factor about s.

Exercise 2.5.13. Prove that when T is finite, the bound (2.39) cannot be
worse than (2.33) by a factor greater than about log log cardT . This shows
that the previous example is in a sense extremal. Hint: use 2n/2en(T ) ≤
Lγ2(T, d) and en(T ) = 0 if Nn ≥ cardT.

Exercise 2.5.14. Prove that the estimate (2.73) is essentially optimal. Hint:
if m ≥ exp(10s), one can produce the situation of Example 2.2.17 (b) inside
R

m.

It follows from (2.96) and (2.33) that E supi≥1Xi < ∞. A simpler proof
of this fact is given in Proposition 2.6.2 below.
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2.6 Gaussian Processes as Subsets of Hilbert Space

In this section we learn to think of a Gaussian process as a subset of Hilbert
space. This will reveal our lack of understanding of basic geometric questions.
Generalizing the idea of Exercise 2.2.16, we consider the Hilbert space ℓ2 =
ℓ2(N∗) of sequences (ti)i≥1 such that

∑

i≥1 t
2
i <∞, provided with the norm

‖t‖ = ‖t‖2 =
(

∑

i≥1

t2i

)1/2

. (2.97)

To each t in ℓ2 we associate a Gaussian r.v.

Xt =
∑

i≥1

tigi (2.98)

(the series converges in L2(Ω)). In this manner, for each subset T of ℓ2

we can consider the Gaussian process (Xt)t∈T . The distance induced on T
by the process coincides with the distance of ℓ2 since from (2.98) we have
EX2

t =
∑

i≥1 t
2
i .

The importance of this construction is that it is generic. All Gaussian
processes can be obtained in this way, at least when there is a countable
subset T ′ of T that is dense in the space (T, d), which is the only case of
importance for us. Indeed, it suffices to think of the r.v. Yt of a Gaussian
process as a point in L2(Ω), where Ω is the underlying probability space.
The linear span of the variables Yt in L2(Ω) is then separable and we may
identify it with ℓ2 by choosing an orthonormal basis.

A subset T of ℓ2 will always be provided with the distance induced by ℓ2,
so we may also write γ2(T ) rather than γ2(T, d). We denote by conv T the
convex hull of T .

Theorem 2.6.1. For a subset T of ℓ2, we have

γ2(conv T ) ≤ Lγ2(T ) . (2.99)

Proof. To prove (2.99) we observe that since Xa1t1+a2t2 = a1Xt1 + a2Xt2 we
have

sup
t∈conv T

Xt = sup
t∈T

Xt . (2.100)

We then use (2.85) to write

1

L
γ2(conv T ) ≤ E sup

conv T
Xt ≤ E sup

T
Xt ≤ Lγ2(T ) . ⊓⊔

A basic problem is that it is absolutely not obvious how to construct an
admissible sequence of partitions on conv T witnessing (2.100). We will focus
on a particularly striking instance of this problem. We recall the ℓ2 norm ‖ ·‖
of (2.97). Here is a simple fact.
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Proposition 2.6.2. Consider a set T = {tk ; k ≥ 1} where

∀ k ≥ 1 , ‖tk‖ ≤ 1/
√

log(k + 1) .

Then E supt∈T Xt ≤ L and thus E supt∈conv T Xt ≤ L by (2.100).

Proof. We have

P

(

sup
k≥1

|Xtk | ≥ u
)

≤
∑

k≥1

P(|Xtk | ≥ u) ≤
∑

k≥1

2 exp
(

−u
2

2
log(k + 1)

)

(2.101)

since Xtk is Gaussian with EX2
tk

≤ 1/ log(k + 1). Now for u ≥ 2, the right-
hand side of (2.101) is at most L exp(−u2/L). �

Exercise 2.6.3. Deduce Proposition 2.6.2 from (2.33). Hint: see Exercise 2.2.17
(a).

Exercise 2.6.4. Deduce from Proposition 2.6.2 that if T is a subset of the
unit ball of L2 then

γ2(conv T ) ≤ L
√

log cardT . (2.102)

The simple proof of (2.102) hides the fact that it is a near miraculous
result.

Research problem 2.6.5. Give a geometrical proof of (2.102).

The issue is that the structure of an admissible sequence which witnesses
that γ2(conv T ) ≤ L

√
log cardT must depend on the “geometry” of the set T .

A geometrical proof should not use Gaussian processes but only the geometry
of Hilbert space. A really satisfactory argument would give a proof that holds
in Banach spaces more general than Hilbert space, for example by providing
a positive answer to the following, where the concept of q-smooth Banach
space is explained in [65].

Research problem 2.6.6. Consider a 2-smooth Banach space, and the dis-
tance d induced by its norm. Is it true that for each subset T of its unit ball
γ2(conv T, d) ≤ K

√
log cardT? More generally, is it true that for each finite

subset T one has γ2(conv T, d) ≤ Kγ2(T, d)? (Here K may depend on the
Banach space, but not on T .)

Research problem 2.6.7. Still more generally, is it true that for a finite
subset T of a q-smooth Banach space, one has γq(conv T ) ≤ Kγq(T )?

Even when the Banach space is ℓp, I do not know the answer to these problems
(unless p = 2!). (The Banach space ℓp is 2-smooth for p ≥ 2 and q-smooth
for p < 2, where 1/p+ 1/q = 1.) One concrete case is when the set T consists
of the first N vectors of the unit basis of ℓp. It is possible to show in this
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case that γq(conv T ) ≤ K(p)(logN)1/q, where 1/p + 1/q = 1. We leave this
as a challenge to the reader. The proof for the general case is pretty much
the same as for the case p = q = 2 which was already proposed as a challenge
after Exercise 2.2.16.

The following shows that the situation of Proposition 2.6.2 is in a sense
generic.

Theorem 2.6.8. Consider a countable set T ⊂ ℓ2, with 0 ∈ T . Then we can
find a sequence (tk), such that each element tk is a multiple of the difference
of two elements of T , with

∀ k ≥ 1 , ‖tk‖
√

log(k + 1) ≤ LE sup
t∈T

Xt

and
T ⊂ conv({tk ; k ≥ 1}) .

Proof. By Theorem 2.5.1 we can find an admissible sequence (An) of T with

∀t ∈ T ,
∑

n≥0

2n/2∆(An(t)) ≤ LE sup
t∈T

Xt := S . (2.103)

We construct sets Tn ⊂ T , such that each A ∈ An contains exactly one
element of Tn. We ensure in the construction that T =

⋃

n≥0 Tn and that
T0 = {0}. (To do this, we simply enumerate the elements of T as (vn)n≥1

with v0 = 0 and we ensure that vn is in Tn.) For n ≥ 1 consider the set Un

that consists of all the points

2−n/2 t− v

‖t− v‖

where t ∈ Tn, v ∈ Tn−1 and t 6= v. Thus each element of Un has norm
2−n/2, and Un has at most NnNn−1 ≤ Nn+1 elements. Let U =

⋃

k≥1 Uk.

Then U contains at most Nn+2 elements of norm ≥ 2−n/2. We enumerate
U as {tk; k = 1, . . .} where the sequence (‖tk‖) is non-increasing. Then if
‖tk‖ ≥ 2−n/2 we have k ≤ Nn+2 and this implies that ‖tk‖ ≤ L/

√

log(k + 1).
Consider t ∈ T , so that t ∈ Tm for some m ≥ 0. Writing πn(t) for the

unique element of Tn ∩An(t), since π0(t) = 0 we have

t =
∑

1≤n≤m

πn(t) − πn−1(t) =
∑

1≤n≤m

an(t)un(t) , (2.104)

where

un(t) = 2−n/2 πn(t) − πn−1(t)

‖πn(t) − πn−1(t)‖ ∈ U ; an(t) = 2n/2‖πn(t) − πn−1(t)‖ .

Since
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∑

1≤n≤m

an(t) ≤
∑

n≥1

2n/2∆(An−1(t)) ≤ 2S

and since un(t) ∈ Un ⊂ U we see from (2.104) that

t ∈ 2S conv(U ∪ {0}) .

This concludes the proof. �

Exercise 2.6.9. What is the purpose of the condition 0 ∈ T?

Exercise 2.6.10. Prove that if T ⊂ ℓ2 and 0 ∈ T , then (even when T is
not countable) we can find a sequence (tk) in ℓ2, with ‖tk‖

√

log(k + 1) ≤
LE supt∈T Xt for all k and

T ⊂ conv{tk ; k ≥ 1} ,

where conv denotes the closed convex hull. (Hint: do the obvious thing, apply
Theorem 2.6.8 to a dense countable subset of T .) Denoting now conv∗(A) the
set of infinite sums

∑

i αiai where
∑

i |αi| = 1 and ai ∈ A, prove that one
can also achieve

T ⊂ conv∗{tk ; k ≥ 1} .

Exercise 2.6.11. Consider a set T ⊂ ℓ2 with 0 ∈ T ⊂ B(0, δ). Prove that
we can find a sequence (tk) in ℓ2, with the following properties:

∀ k ≥ 1 , ‖tk‖
√

log(k + 1) ≤ LE sup
t∈T

Xt , (2.105)

‖tk‖ ≤ Lδ , (2.106)

T ⊂ conv{tk ; k ≥ 1} , (2.107)

where conv denotes the closed convex hull. Hint: copy the proof of The-
orem 2.6.8, observing that since T ⊂ B(0, δ) one may chose An = {T}
and Tn = {0} for n ≤ n0, where n0 is the smallest integer for which
2n0/2 ≥ δ−1

E supt∈T Xt, and thus Un = ∅ for n ≤ n0.

The next exercise is inspired by the paper [9] of S Artstein. It is more
elaborate, and may be omitted at first reading. A Bernoulli r.v. ε is such that
P(ε = ±1) = 1/2.9

Exercise 2.6.12. Consider a subset T ⊂ R
N , where R

N is provided with
the Euclidean distance. We assume that for some δ > 0, we have

0 ∈ T ⊂ B(0, δ) .

Consider independent Bernoulli r.v.s (εi,p)i,p≥1 and for q ≤ N consider op-
erators Uq : RN → R

q given by

9 One must distinguish Bernoulli r.v.s εi from positive numbers ǫk!
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Uq(x) =
(

∑

i≤N

εi,pxi

)

p≤q
.

We want to prove that there exists a number L such that if

q ≥ δ−1
E sup

t∈T

∑

i≤N

giti , (2.108)

then with high probability

Uq(T ) ⊂ B(0, Lδ
√
q) . (2.109)

(a) Use the subgaussian inequality (5.1.1) to prove that if ‖x‖ = 1, then

E exp

(

1

4

(

∑

i≤N

εi,pxi

)2
)

≤ L . (2.110)

(b) Use (2.110) and independence to prove that for x ∈ R
n and v ≥ 1,

P(‖Uq(x)‖ ≥ Lv
√
q‖x‖) ≤ exp(−v2q) . (2.111)

(c) Use (2.111) to prove that with probability close to 1, for each of the
vectors tk of Exercise 2.6.11 one has ‖Uq(tk)‖ ≤ Lδ

√
q and conclude.

2.7 Dreams

We may reformulate the inequality (2.85)

1

L
γ2(T, d) ≤ E sup

t∈T
Xt ≤ Lγ2(T, d)

of Theorem 2.5.1 by the statement

Chaining suffices to explain the size of a Gaussian process. (2.112)

We simply mean that the “natural” chaining bound for the size of a Gaussian
process (i.e. the right-hand side inequality in (2.85)) is of correct order, pro-
vided one uses the best possible chaining. This is what the left-hand side of
(2.85) shows. We may dream of removing the word “Gaussian” in that state-
ment. The desire to achieve this lofty goal in as many situations as possible
motivates a lot of the rest of the book.

Besides the generic chaining, we have found in Theorem 2.6.8 another
optimal way to bound Gaussian processes: to put them into the convex hull
of a “small” process. Since we do not really understand the geometry of
going from a set to it convex hull it is better for the time being to consider
this method as somewhat distinct from the generic chaining. Let us try to



2.7 Dreams 57

formulate it in a way which is suitable for generalizations. Given a countable
set V of r.v.s let us define the (possibly infinite) quantity

S(V) = inf
{

S > 0 ;

∫ ∞

S

∑

V ∈V
P(|V | > u)du ≤ S

}

. (2.113)

Lemma 2.7.1. It holds that

E sup
V ∈convV

|V | ≤ 2S(V) . (2.114)

Proof. We combine (2.6) with the fact that for S > S(V) it holds

∫ ∞

0

P

(

sup
V ∈convV

|V | ≥ u
)

≤ S +

∫ ∞

S

∑

|V |∈V
P(V > u)du ≤ 2S . ⊓⊔

Thus (2.114) provides a method to bound stochastic processes. This method
may look childish, but for Gaussian processes, the following reformulation of
Theorem 2.6.8 shows that it is in fact optimal.

Theorem 2.7.2. Consider a countable set T . Consider a Gaussian process
(Xt)t∈T and assume that Xt0 = 0 for some t0 ∈ T . Then there exists a
countable set V of Gaussian r.v.s, each of which is a multiple of the difference
of two variables Xt with

∀t ∈ T ; Xt ∈ convV , (2.115)

S(V) ≤ LE sup
t∈T

Xt . (2.116)

The proof of Theorem 2.7.2 is nearly obvious by using (2.101) to bound
S(V) for the set V consisting of the variables Xtk for the sequence (tk) con-
structed in Theorem 2.6.8. We may dream of proving statements such as
Theorem 2.7.2 for many classes of processes.

Also worthy of detailing is another remarkable geometric consequence of
Theorem 2.6.8 in a somewhat different direction. Consider an integer N and
let us provide ℓ2N (= R

N provided with the Euclidean distance) with the
canonical Gaussian measure µ, i.e. the law of the i.i.d. Gaussian sequence
(gi)i≤N . Let us view an element t of ℓ2N as a function on ℓ2N by the canonical
duality, so t is a r.v. Yt on the probability space (ℓ2N , µ). The processes (Xt)
and (Yt) have the same law, hence they are really the same object viewed
in two different ways. Consider a subset T of ℓ2N , and assume that T ⊂
conv{tk; k ≥ 1}. Then for any v > 0 we have

{

sup
t∈T

t ≥ v
}

⊂
⋃

k≥1

{tk ≥ v} . (2.117)

The somewhat complicated set on the left-hand side is covered by a countable
union of much simpler sets: the sets {tk ≥ v} are half-spaces. Assume now
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that for k ≥ 1 and a certain S we have ‖tk‖
√

log(k + 1) ≤ S. Then (2.101)
implies that for u ≥ 2

∑

k≥1

µ({tk ≥ Su}) ≤ L exp(−u2/L) .

Theorem 2.6.8 implies that may take S ≤ LE suptXt. Therefore for v ≥
LE suptXt, the fact that the set in the left-hand side of (2.117) is small
(in the sense of probability) may be witnessed by the fact that this set can
be covered by a countable union of simple sets (half-spaces) the sum of the
probabilities of which is small.

We may dream that something similar occurs in many other settings.

2.8 A First Look at Ellipsoids

We have illustrated the gap between Dudley’s bound (2.39) and the sharper
bound (2.33), using the examples (2.43) and (2.93). These examples might
look artificial, but here we demonstrate that the gap between Dudley’s bound
(2.39) and the generic chaining bound (2.33) already exists for ellipsoids in
Hilbert space. Truly understanding ellipsoids will be fundamental in several
subsequent questions, such as the matching theorems of Chapter 3.

Given a sequence (ai)i≥1 , ai > 0, we consider the ellipsoid

E =

{

t ∈ ℓ2 ;
∑

i≥1

t2i
a2i

≤ 1

}

. (2.118)

Proposition 2.8.1. We have

1

L

(

∑

i≥1

a2i

)1/2

≤ E sup
t∈E

Xt ≤
(

∑

i≥1

a2i

)1/2

. (2.119)

Proof. The Cauchy-Schwarz inequality implies

Y := sup
t∈E

Xt = sup
t∈E

∑

i≥1

tigi ≤
(

∑

i≥1

a2i g
2
i

)1/2

. (2.120)

Taking ti = a2i gi/(
∑

j≥1 a
2
jg

2
j )1/2 yields that actually Y = (

∑

i≥1 a
2
i g

2
i )1/2

and thus EY 2 =
∑

i≥1 a
2
i . The right-hand side of (2.119) follows from the

Cauchy-Schwarz inequality:

EY ≤ (EY 2)1/2 =

(

∑

i≥1

a2i

)1/2

. (2.121)
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For the left-hand side, let σ = maxi≥1 |ai|. Since Y = supt∈E Xt ≥ |ai||gi| for
any i, we have σ ≤ LEY . Also,

EX2
t =

∑

i

t2i ≤ max
i
a2i

∑

j

t2j
a2j

≤ σ2 . (2.122)

Then (2.88) implies

E(Y − EY )2 ≤ Lσ2 ≤ L(EY )2 ,

so that
∑

i≥1 a
2
i = EY 2 = E(Y − EY )2 + (EY )2 ≤ L(EY )2. �

As a consequence of Theorem 2.5.1,

γ2(E) ≤ L

(

∑

i≥1

a2i

)1/2

. (2.123)

This statement is purely about the geometry of ellipsoids. The proof we
gave was rather indirect, since it involved Gaussian processes. Later on, in
Theorem 3.2.11, we shall give a “purely geometric” proof of this result that
will have many consequences.

Let us now assume that the sequence (ai)i≥1 is non-increasing. Since

2n ≤ i ≤ 2n+1 ⇒ a2n ≥ ai ≥ a2n+1

we get
∑

i≥1

a2i =
∑

n≥0

∑

2n≤i<2n+1

a2i ≤
∑

n≥0

2na22n

and
∑

i≥1

a2i ≥
∑

n≥0

2na22n+1 =
1

2

∑

n≥1

2na22n ,

and thus
∑

n≥0 2na22n ≤ 3
∑

i≥1 a
2
i . So we may rewrite (2.119) as

1

L

(

∑

n≥0

2na22n

)1/2

≤ E sup
t∈E

Xt ≤
(

∑

n≥0

2na22n

)1/2

. (2.124)

Proposition 2.8.1 describes the size of ellipsoids with respect to Gaus-
sian processes. Our next result describes their size with respect to Dudley’s
entropy bound (2.37).

Proposition 2.8.2. We have

1

L

∑

n≥0

2n/2a2n ≤
∑

n≥0

2n/2en(E) ≤ L
∑

n≥0

2n/2a2n . (2.125)
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The right-hand sides in (2.124) and (2.125) are distinctively different.
Dudley’s bound fails to describe the behavior of Gaussian processes on ellip-
soids. This is a simple occurrence of a general phenomenon. In some sense an
ellipsoid is smaller than what one would predict just by looking at its entropy
numbers en(E). This idea will be investigated further in Section 3.2.

Exercise 2.8.3. Prove that for an ellipsoid E of Rm one has

∑

n≥0

2n/2en(E) ≤ L
√

log(m+ 1)γ2(T, d) ,

and that this estimate is essentially optimal. Compare with (2.73).

The proof of (2.125) hinges on ideas which are at least 50 years old, and
which relate to the methods of Exercise 2.2.15. The left-hand side is the easier
part (it is also the most important for us). It follows from the next lemma,
the proof of which is basically a special case of (2.40).

Lemma 2.8.4. We have en(E) ≥ 1
2a2n .

Proof. Consider the following ellipsoid in R
2n :

En =

{

(ti)i≤2n ;
∑

i≤2n

t2i
a2i

≤ 1

}

.

Since En is the image of E by a contraction (namely the “projection on the
first 2n coordinates”) it holds that en(En) ≤ en(E).

Let us denote by B the centered unit Euclidean ball of R2n and by Vol
the volume in this space. Let us consider a subset T of En, with cardT ≤ 22

n

,
and ǫ > 0; then

Vol

(

⋃

t∈T

(ǫB + t)

)

≤
∑

t∈T

Vol(ǫB + t) ≤ 22
n

ǫ2
n

VolB = (2ǫ)2
n

VolB .

On the other hand, since ai ≥ a2n for i ≤ 2n, we have a2nB ⊂ En, so that
VolEn ≥ a2

n

2nVolB. Thus when 2ǫ < a2n , we cannot have En ⊂ ⋃

t∈T (ǫB + t).
Therefore en(En) ≥ ǫ. �

We now turn to the upper bound, which relies on a special case of (2.41).

Lemma 2.8.5. We have

en+3(E) ≤ 3 max
k≤n

(a2k2k−n) . (2.126)

Proof. We keep the notation of the proof of Lemma 2.8.4. First we show that

en+3(E) ≤ en+3(En) + a2n . (2.127)
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To see this, we observe that when t ∈ E , then

1 ≥
∑

i≥1

t2i
a2i

≥
∑

i>2n

t2i
a2i

≥ 1

a22n

∑

i>2n

t2i

so that (
∑

i>2n t
2
i )1/2 ≤ a2n and, viewing En as a subset of E , we have

d(t, En) ≤ a2n . Thus if we cover En by certain balls with radius ǫ, the balls
with the same centers but radius ǫ+ a2n cover E . This proves (2.127).

Consider now ǫ > 0, and a subset Z of En with the following properties:

any two points of Z are at mutual distance ≥ 2ǫ (2.128)

cardZ is as large as possible under (2.128). (2.129)

Then by (2.129) the balls centered at points of Z and with radius ≤ 2ǫ cover
En. Thus

cardZ ≤ Nn+3 ⇒ en+3(En) ≤ 2ǫ . (2.130)

The balls centered at the points of Z, with radius ǫ, have disjoint interiors,
so that

cardZ Vol(ǫB) ≤ Vol(En + ǫB) . (2.131)

Now for t = (ti)i≤2n ∈ En, we have
∑

i≤2n t
2
i /a

2
i ≤ 1, and for t′ in ǫB, we

have
∑

i≤2n t
′2
i /ǫ

2 ≤ 1. Let ci = 2 max(ǫ, ai). Since

(ti + t′i)
2

c2i
≤ 2t2i + 2t′2i

c2i
≤ 1

2

(

t2i
a2i

+
t′2i
ǫ2

)

,

we have

En + ǫB ⊂ E1 :=

{

t ;
∑

i≤2n

t2i
c2i

≤ 1

}

.

Therefore
Vol(En + ǫB) ≤ VolE1 = VolB

∏

i≤2n

ci

and comparing with (2.131) yields

cardZ ≤
∏

i≤2n

ci
ǫ

= 22
n
∏

i≤2n

max
(

1,
ai
ǫ

)

.

Assume now that for any k ≤ n we have a2k2k−n ≤ ǫ. Then ai ≤ a2k ≤ ǫ2n−k

for 2k < i ≤ 2k+1, so that

∏

i≤2n

max
(

1,
ai
ǫ

)

=
∏

k≤n−1

∏

2k<i≤2k+1

max
(

1,
ai
ǫ

)

≤
∏

k≤n−1

(

2n−k
)2k

= 2
∑

k≤n(n−k)2k ≤ 22
n+2
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since
∑

i≥0 i2
−i = 4.

To sum up, if ǫ = maxk≤n a2k2k−n, we have shown that

cardZ ≤ 22
n · 22

n+2 ≤ Nn+3 ,

so that en+3(En) ≤ 2ǫ. The conclusion follows from (2.127). �

Proof of Proposition 2.8.2. We have, using (2.126)

∑

n≥3

2n/2en(E) =
∑

n≥0

2(n+3)/2en+3(E) ≤ L
∑

n≥0

2n/2
(

∑

k≤n

2k−na2k

)

≤ L
∑

k≥0

2ka2k
∑

n≥k

2−n/2 ≤ L
∑

k≥0

2k/2a2k .

Since E is contained in the ball centered at the origin with radius a1, we have
en(E) ≤ a1 for each n. The result follows. �

2.9 Continuity of Gaussian Processes

By far the most important result concerning continuity of Gaussian processes
is Dudley’s bound (1.19). However since the finiteness of the right hand side
of (1.19) is not necessary for the Gaussian process to be continuous, there are
situations where this bound is not appropriate.10 In the present section we
show that a suitable form of the generic chaining allows to capture the exact
modulus of continuity of a Gaussian process with respect to its canonical dis-
tance in full generality. Not surprisingly, the modulus of continuity is closely
related to the rate at which the series

∑

n 2n/2∆(An(t)) converges uniformly
on T for a suitable admissible sequence (An). Our first result shows how to
obtain a modulus of continuity using the generic chaining.

Lemma 2.9.1. Consider a metric space (T, d) and a process (Xt)t∈T which
satisfies the increment condition (2.1):

∀u > 0 , P(|Xs −Xt| ≥ u) ≤ 2 exp

(

− u2

2d(s, t)2

)

. (2.1)

Assume that there exists a sequence (Tn) of subsets of T with cardTn ≤ Nn

such that for certain integer m, and a certain number B one has

sup
t∈T

∑

n≥m

2n/2d(t, Tn) ≤ B . (2.132)

10 In practice however, as of today the Gaussian processes for which continuity is
important can be handled through Dudley’s bound, while for those which cannot
be handled through this bound it is boundedness which matters. For this reason,
the considerations of the present section are of purely theoretical interest and
may be skipped at first reading.
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Consider δ > 0. Then, for any u ≥ 1, with probability ≥ 1 − exp(−u22m) we
have

∀ s, t ∈ T , d(s, t) ≤ δ ⇒ |Xs −Xt| ≤ Lu(2m/2δ +B) . (2.133)

Proof. We assume T finite for simplicity. For n ≥ m and t ∈ T denote by
πn(t) an element of Tn such that d(t, πn(t)) = d(t, Tn). Consider the event
Ω(u) defined by

∀n ≥ m+ 1 , ∀ t ∈ Tn , |Xπn−1(t) −Xπn(t)| ≤ Lu2n/2d(πn−1(t), πn(t)) ,

and
∀ s′, t′ ∈ Tm , |Xs′ −Xt′ | ≤ Lud(s′, t′)2m/2 . (2.134)

Then, as usual, we have P(Ω(u)) ≥ 1−exp(−u22m). Now, when Ω(u) occurs,
for any t ∈ T and any k ≥ 0, using chaining as usual and (2.132) we get

|Xt −Xπm(t)| ≤ LuB . (2.135)

Moreover, using (2.132) again,

d(t, πm(t)) ≤ d(t, Tm) ≤ B2−m/2 ,

so that, using (2.135),

d(s, t) ≤ δ ⇒ d(πm(s), πm(t)) ≤ δ + 2B2−m/2

⇒ |Xπm(s) −Xπm(t)| ≤ Lu(δ2m/2 +B) .

Combining with (2.135) proves that |Xs−Xt| ≤ Lu(δ2m/2+B) and completes
the proof. ⊓⊔

Exercise 2.9.2. Deduce Dudley’s bound (1.19) from Lemma 2.9.1.

We now turn to our main result, which exactly describes the modulus of
continuity of a Gaussian process in term of certain admissible sequences. It
implies in particular the remarkable fact (discovered by X. Fernique) that for
Gaussian processes the “local modulus of continuity” (as in (2.136)) is also
“global”.

Theorem 2.9.3. Consider a Gaussian process (Xt)t∈T , with canonical asso-
ciated distance d given by (0.1). Assume that S = E suptXt <∞. For k ≥ 1
consider δk > 0 and assume that

∀ t ∈ T ; E sup
{s∈T ;d(s,t)≤δk}

|Xs −Xt| ≤ 2−kS . (2.136)

Let n0 = 0 and for k ≥ 1 consider an integer nk for which
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L1S2−nk/2−k ≤ δk . (2.137)

Then we can find an admissible sequence (An) of partitions of T such that

∀ k ≥ 0 ; sup
t∈T

∑

n≥nk

2n/2∆(An(t)) ≤ LS2−k . (2.138)

Conversely, given integers nk and an admissible sequence (An) as in (2.138),
and defining now δ∗k = S2−nk/2−k, with probability ≥ 1 − exp(−u2) we have

sup
{s,t∈T ;d(s,t)≤δ∗

k
}
|Xs −Xt| ≤ Lu2−kS . (2.139)

The abstract formulation here might make it hard at first to grab the
power of the statement. The numbers δk describe the (uniform) modulus of
continuity of the process. The numbers nk describe the uniform convergence
(over t) of the series

∑

n≥0 2n/2∆(An(t)). They relate to each other by the

relation δk ∼ S2−nk/2−k. The first part of the theorem assumes only the
“local” modulus of continuity (2.136), while the converse provides a uniform
modulus of continuity (2.139).

Proof. Let us set L1 = 2L0 where L0 is the constant of (2.85). By induction
over k we construct an admissible sequence (An)n≤nk

such that

1 ≤ p ≤ k ⇒ sup
t∈T

∑

np−1<n≤np

2n/2∆(An(t)) ≤ 2L0S2−p . (2.140)

For k = 1 the existence of the sequence (An)n<n1 follows from the left-hand
side of (2.85), so we turn to the induction step from k to k+1. Using (2.140) for
p = k we deduce that for each t ∈ T , 2nk/2∆(Ank

(t)) ≤ 2L0S2−k = L1S2−k,
so that, using (2.137), ∆(Ank

(t)) ≤ L1S2−nk/2−k ≤ δk. Consequently, for
any element C of Ank

we have ∆(C) ≤ δk, so that considering any element
t of C we have

E sup
s∈C

Xs = E sup
s∈C

(Xs −Xt) ≤ E sup
{s∈T ;d(s,t)≤δk}

|Xs −Xt| ≤ S2−k .

Using again (2.85) we obtain for each C ∈ Ank
an admissible sequence

(AC,n)n≥0 for which

∀ t ∈ C ,
∑

n≥0

2n/2∆(AC,n(t)) ≤ L0S2−k . (2.141)

For nk < n ≤ nk+1 we simply define An as the collection of all sets in one of
the partitions AC,n−1 where C ∈ Ank

, so that cardAn ≤ Nn−1 cardAnk
≤

N2
n−1 ≤ Nn, and since An(t) ⊂ AC,n−1(t) it follows from (2.141) that

sup
t∈T

∑

nk<n≤nk+1

2n/2∆(An(t)) ≤
∑

n≥nk

2n/2∆(AC,n−1(t)) ≤ 2L0S2−k .
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This completes the induction and the construction of the sequence (An) since
(2.140) implies (2.138).

It remains to prove the “conversely” part. For this for each n ≥ 0 we
simply consider a subset Tn of T such that

∀A ∈ An , card(Tn ∩A) = 1 .

We then use Lemma 2.9.1 for m = nk and B = S2−k. ⊓⊔

2.10 Notes and Comments

I have heard people saying that the problem of characterizing continuity and
boundedness of Gaussian processes goes back (at least implicitly) to Kol-
mogorov. The understanding of Gaussian processes was long delayed by the
fact that in the most immediate examples the index set is a subset of R or
R

n and that the temptation to use the special structure of this index set is
nearly irresistible. Probably the single most important conceptual progress
about Gaussian processes is the realization, in the late sixties, that the bound-
edness of a (centered) Gaussian process is determined by the structure of the
metric space (T, d), where d is the usual distance d(s, t) = (E(Xs −Xt)

2)1/2.
It is difficult now to realize what a tremendous jump in understanding this
was, since this seems so obvious a posteriori.

In 1967, R. Dudley obtained the inequality (2.37). (Although, as he
pointed out, R. Dudley did not state (2.37), he performed all the essential
steps and (2.37) deserves to be called Dudley’s bound.) A few years later,
X. Fernique proved that in the “stationary case” Dudley’s inequality can be
reversed [35], i.e. he proved in that case the lower bound of Theorem 2.5.1.
This historically important result was central to the work of Marcus and
Pisier [69], [70] who build on it to solve all the classical problems on random
Fourier series. Some of their results will be presented in Section 0.2. Inter-
estingly, now that the right approach has been found, the proof of Fernique’s
result is not really easier than that of Theorem 2.5.1.

Another major contribution of Fernique (building on earlier ideas of C.
Preston) was an improvement of Dudley’s bound based on a new tool called
majorizing measures. Fernique conjectured that his bound was essentially
optimal. Gilles Pisier suggested in 1983 that I should work on this conjecture.
In my first attempt I proved fast that Fernique’s conjecture held in the case
where the metric space (T, d) is ultrametric. I learned that Fernique had
already done this, so I was discouraged for a while. In the second attempt,
I tried to decide whether a majorizing measure existed on ellipsoids. I had
the hope that some simple density with respect to the volume measure would
work. It was difficult to form any intuition, and I struggled in the dark for
months. At some point I tried a combination of suitable point masses, and
easily found a direct construction of the majorizing measure on ellipsoids.
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This made it believable that Fernique’s conjecture was true, but I still tried
to disprove it. Then I realized that I did not understand why a direct approach
using a partition scheme should fail, while this understanding should be useful
to construct a counter example. Once I tried this direct approach, it was a
matter of three days to prove Fernique’s conjecture. Gilles Pisier made two
comments about this discovery. The first one was “you are lucky”, by which
he meant that I was lucky that Fernique’s conjecture was true, since a counter
example would have been of limited interest. I am grateful to this day for his
second comment: “I wish I had proved this myself, but I am very glad you
did it.”

Fernique’s concept of majorizing measures is difficult to grasp, and was
dismissed by the main body of probabilists as a mere curiosity. (I myself
found it very difficult to understand.) However, in 2000, while discussing one
of the open problems of this book with K. Ball (be he blessed for his interest
in it!) I discovered that one could replace majorizing measures by the totally
natural variation on the usual chaining arguments that was presented here.
That this was not discovered much earlier is a striking illustration of the
inefficiency of my brain.

It is on purpose that I did not mention Slepian’s lemma. This lemma is
very specific to Gaussian processes, and focusing on it seems a good way
to guarantee that one will never move beyond these. One notable progress I
made was to discover (ages ago) the scheme of proof of Proposition 2.5.9 that
dispenses with Slepian’s lemma, and that we shall use in many situations.
Comparison results such as Slepian’s lemma are not at the root of results such
as the majorizing measure theorem, but rather are (at least qualitatively) a
consequence of them. Indeed, if two centered Gaussian processes (Xt)t∈T

and (Yt)t∈T satisfy E(Xs − Xt)
2 ≤ E(Ys − Yt)

2 whenever s, t ∈ T , then
(2.85) implies E supt∈T Xt ≤ LE supt∈T Yt. (Slepian’s lemma asserts that this
inequality holds with constant L = 1.)
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We remind the reader that, before attacking any chapter, she should find use-
ful to read the overview of this chapter, which is provided in the appropriate
subsection of Chapter 1. Here this overview should help to understand the
overall approach and especially the ultimate goal of the first section.

3.1 Partitioning Scheme, II

Consider parameters α, p ≥ 1.

Theorem 3.1.1. Consider a metric space (T, d) and a number r ≥ 4. As-
sume that for j ∈ Z we are given functions sj ≥ 0 on T with the following
property:

Whenever we consider a subset A of T, j ∈ Z with ∆(A) ≤ 2r−j then either

en(A) ≤ r−j−1
or else there exist t ∈ A with sj(t) ≥ (2n/αr−j−1)p .

Then we can find an admissible sequence (An) of partitions such that

∀t ∈ T ;
∑

n≥0

(2n/α∆(An(t)))p ≤ K(α, p, r) sup
t∈T

∑

j∈Z

sj(t) . (3.1)

The proof is identical to that of Theorem 2.4.10 which corresponds to the
case α = 2 and p = 1.

3.2 The Ellipsoid Theorem

As pointed out after Proposition 2.8.2, an ellipsoid E is in some sense quite
smaller than what one would predict by looking only at the numbers en(E).
We will trace the roots of this phenomenon to a simple geometric property,
namely that an ellipsoid is “sufficiently convex”, and we will formulate a
general version of this principle for sufficiently convex bodies. The case of
ellipsoids already suffices to provide tight upper bounds on certain matchings,
which is the main goal of the present chapter. The general case is at the root of
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certain very deep facts of Banach space theory, such as Bourgain’s celebrated
solution of the Λp-problem in Sections 16.3.1 and 16.3.2.

The ellipsoid E of (2.118):

E =

{

t ∈ ℓ2 ;
∑

i≥1

t2i
a2i

≤ 1

}

(2.118)

is the unit ball of the norm

‖x‖E :=

(

∑

i≥1

x2i
a2i

)1/2

. (3.2)

Lemma 3.2.1. We have

‖x‖E , ‖y‖E ≤ 1 ⇒
∥

∥

∥

x+ y

2

∥

∥

∥

E
≤ 1 − ‖x− y‖2E

8
. (3.3)

Proof. The parallelogram identity implies

‖x− y‖2E + ‖x+ y‖2E = 2‖x‖2E + 2‖y‖2E ≤ 4

so that
‖x+ y‖2E ≤ 4 − ‖x− y‖2E

and
∥

∥

∥

x+ y

2

∥

∥

∥

E
≤

(

1 − 1

4
‖x− y‖2E

)1/2

≤ 1 − 1

8
‖x− y‖2E . ⊓⊔

Since (3.3) is the only property of ellipsoids we will use, it clarifies matters
to state the following definition.

Definition 3.2.2. Consider a number p ≥ 2. A norm ‖·‖ in a Banach space
is called p-convex if for a certain number η > 0 we have

‖x‖ , ‖y‖ ≤ 1 ⇒
∥

∥

∥

x+ y

2

∥

∥

∥
≤ 1 − η‖x− y‖p . (3.4)

Thus (3.3) implies that the Banach space ℓ2 provided with the norm ‖·‖E
is 2-convex. For 1 < q < ∞ the classical Banach space Lq is p-convex where
p = max(2, q). The reader is referred to [65] for this result and any other
classical facts about Banach spaces. Let us observe that, taking y = −x we
must have

2pη ≤ 1 . (3.5)

In this section we shall study the metric space (T, d) where T is the unit
ball of a p-convex Banach space B, and where d is the distance induced on
B by another norm ‖ · ‖∼. This concerns in particular the case where T is
the ellipsoid (2.118) and ‖ · ‖∼ is the ℓ2 norm.

Given a metric space (T, d), we consider the functionals



3.2 The Ellipsoid Theorem 69

γα,β(T, d) =
(

inf sup
t∈T

∑

n≥0

(

2n/α∆(An(t), d)
)β
)1/β

, (3.6)

where α and β are positive numbers, and where the infimum is over all
admissible sequences (An). Thus, with the notation of Definition 2.2.20, we
have γα,1(T, d) = γα(T, d). For matchings, the important functionals are
γ2,2(T, d) and γ1,2(T, d) (but it requires no extra effort to consider the general
case). The importance of these functionals is that in certain conditions they
nicely relate to γ2(T, d) through Hölder’s inequality. We explain right now
how this is done, even though this spoils the surprise of how the terms

√
logN

occur in Section 3.5.

Lemma 3.2.3. Consider a finite metric space T , and assume that cardT ≤
Nm. Then

γ2(T, d) ≤ √
mγ2,2(T, d) . (3.7)

Proof. Since T is finite there exists an admissible sequence (An) of T for
which

∀t ∈ T ,
∑

n≥0

2n∆(An(t), d)2 ≤ γ2,2(T, d)2 . (3.8)

Since cardT ≤ Nm, we may assume that Am(t) = {t} for each t, so
that in (3.8) the sum is really over n ≤ m − 1. Since

∑

0≤n≤m−1 an ≤√
m(

∑

0≤n≤m a2n)1/2 by the Cauchy-Schwarz inequality, it follows that

∀t ∈ T ,
∑

n≥0

2n/2∆(An(t), d) ≤ √
mγ2,2(T, d) . ⊓⊔

How to relate the functionals γ1,2 and γ2 by a similar argument is shown in
Lemma 3.7.5 below.

We may wonder how it is possible, using something as simple as the
Cauchy-Schwarz inequality in Lemma 3.2.3 that we can ever get essentially
exact results. At a general level the answer is obvious: it is because we use
this inequality in the case of near equality. That this is indeed the case for the
ellipsoids of Corollary 3.2.7 below is a non-trivial fact about the geometry of
these ellipsoids.

Theorem 3.2.4. If T is the unit ball of a p-convex Banach space, if η is as
in (3.4) and if the distance d on T is induced by another norm, then

γα,p(T, d) ≤ K(α, p, η) sup
n≥0

2n/αen(T, d) . (3.9)

The following exercise stresses the point of this theorem.

Exercise 3.2.5. (a) Prove that for a general metric space (T, d), it is true
that
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γα,p(T, d) ≤ K(α)
(

∑

n≥0

(

2n/αen(T, d)
)p
)1/p

, (3.10)

and that
sup
n

2n/αen(T, d) ≤ K(α)γα,p(T, d) . (3.11)

(b) Prove that it is essentially impossible in general to improve on (3.10).

In words, the content of Theorem 3.2.4 is that the size of T , as measured
by the functional γα,p is smaller than what one would expect when knowing
only the numbers en(T, d).

Corollary 3.2.6. (The Ellipsoid Theorem.) Consider the ellipsoid E of
(2.118) and α ≥ 1. Then

γα,2(E) ≤ K(α) sup
ǫ>0

ǫ(card{i ; ai ≥ ǫ})1/α. (3.12)

Proof. Without loss of generality we may assume that the sequence (ai) is
non-increasing. We apply Theorem 3.2.4 to the case ‖ · ‖ = ‖ · ‖E , and where
d is the distance of ℓ2, and we get, using (2.126) in the last inequality,

γα,2(E) ≤ K(α) sup
n

2n/αen(E) ≤ K(α) sup
n

2n/αa2n .

Now, the choice ǫ = a2n implies

2n/αa2n ≤ sup
ǫ>0

ǫ(card{i ; ai ≥ ǫ})1/α. ⊓⊔

The restriction α ≥ 1 is inessential and can be removed by a suitable
modification of (2.126). The important cases are α = 1 and α = 2.

Corollary 3.2.7. Consider a countable set J , numbers (bi)i∈J and the el-
lipsoid

E =
{

x ∈ ℓ2(J) ;
∑

j∈J

b2jx
2
j ≤ 1

}

.

Then

γα,2(E) ≤ K(α) sup
u>0

1

u
(card{j ∈ J ; |bj | ≤ u})1/α .

Proof. Without loss of generality we can assume that J = N. We then set
ai = 1/bi, we apply Corollary 3.2.6, and we set ǫ = 1/u. ⊓⊔

We give right away a striking application of this result. This application
is at the root of the results of Section 3.7.

Proposition 3.2.8. Consider the set L of functions f : [0, 1] → R such that
f(0) = f(1) = 0, f is continuous on [0, 1], f is differentiable outside a finite
set and sup |f ′| ≤ 1. Then γ1,2(L, d2) ≤ L, where d2(f, g) = ‖f − g‖2 =
(∫

[0,1]
(f − g)2dλ

)1/2
.
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Proof. The very beautiful idea (due to Coffman and Shor [31]) is to use the
Fourier transform to represent L as a subset of an ellipsoid. The Fourier
coefficients are defined for p ∈ Z by

cp(f) =

∫ 1

0

exp(2πipx)f(x)dx .

The key fact is the Plancherel formula,

‖f‖2 =
(

∑

p∈Z

|cp(f)|2
)1/2

, (3.13)

which states that the Fourier transform is an isometry from L2([0, 1]) into
ℓ2
C

(Z). Thus, if
D = {(cp(f))p∈Z ; f ∈ L} ,

it suffices to prove that γ1,2(D, d) < ∞ where d is the distance induced
by ℓ2

C
(Z). By integration by parts, and since f(0) = f(1) = 0, cp(f ′) =

−2πipcp(f), so that, using (3.13) for f ′, we get
∑

p∈Z

p2|cp(f)|2 ≤
∑

p∈Z

|cp(f ′)|2 ≤ ‖f ′‖2 ,

and since |c0(f)| ≤ ‖f‖2 ≤ 1, for f ∈ L we have

|c0(f)|2 +
∑

p∈Z

p2|cp(f)|2 ≤ 2 ,

so that D is a subset of the complex ellipsoid E in ℓ2
C

(Z) defined by
∑

p∈Z

max(1, p2)|cp|2 ≤ 2 .

Viewing each complex number cp as a pair (xp, yp) of real numbers with
|cp|2 = x2p + y2p yields that E is (isometric to) the real ellipsoid defined by

∑

p∈Z

max(1, p2)(x2p + y2p) ≤ 2 ,

and the result follows from Corollary 3.2.7. ⊓⊔

Exercise 3.2.9. (a) For k ≥ 1 consider the space T = {0, 1}2k . Writing
t = (ti)i≤2k a point of T , consider on T the distance d(t, t′) = 2−j , where
j = min{i ≤ 2k; ti 6= t′j}. Consider the set L of 1-Lipschitz functions on

(T, d) which are zero at t = (0, . . . , 0). Prove that γ1,2(L, d∞) ≤ L
√
k, where

d∞ denotes the distance induced by the uniform norm. Hint: use (3.10) and
Lemma 3.5.13 below.
(b) Let µ denote the uniform probability µ on T and d2 the distance in-
duced by L2(µ). It can be shown that γ1,2(L, d2) ≥

√
k/L. (This could be

challenging.) Meditate upon the difference with Proposition 3.2.8.
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Proof of Theorem 3.2.4. We denote by ‖ · ‖ the norm of the p-convex Banach
space of which T is the unit ball. For t ∈ T and j ∈ Z we set

cj(t) = inf{‖v‖ ; v ∈ Bd(t, r−j) ∩ T} ,

where the index d emphasizes that the ball is for the distance d rather than
for the norm. Let us set

B = sup
n≥0

2n/αen(T, d) . (3.14)

The proof relies on Theorem 3.1.1 for the functions

sj(t) = KBp(cj+2(t) − cj−1(t)) ,

for a suitable value of K. It is clear that

∀t ∈ T ,
∑

j∈Z

sj(t) ≤ 3KBp ,

and the issue is to prove that (3.1) holds for W = KBp. Consider then a set
A ⊂ T with ∆(A) ≤ 2r−j and assume that en(A) ≥ a := r−j−1. Let m = Nn,
and consider points (tℓ)ℓ≤m in A, such that d(tℓ, tℓ′) ≥ a whenever ℓ 6= ℓ′.
Consider Hℓ = T ∩Bd(tℓ, a/r). Set

u = inf
{

‖v‖ ; v ∈ conv
⋃

ℓ≤m

Hℓ

}

, (3.15)

and consider u′ such that

2 > u′ > max
ℓ≤m

inf{‖v‖ ; v ∈ Hℓ} = max
ℓ≤m

cj+2(tℓ) . (3.16)

For ℓ ≤ m consider vℓ ∈ Hℓ with ‖vℓ‖ ≤ u′. It follows from (3.4) that for
ℓ, ℓ′ ≤ m,

∥

∥

∥

vℓ + vℓ′

2u′

∥

∥

∥
≤ 1 − η

∥

∥

∥

vℓ − vℓ′

u′

∥

∥

∥

p

. (3.17)

Moreover, since (vℓ + vℓ′)/2 ∈ conv
⋃

ℓ≤mHℓ, we have u ≤ ‖vℓ + v′ℓ‖/2, and
(3.17) implies

u

u′
≤ 1 − η

∥

∥

∥

vℓ − vℓ′

u′

∥

∥

∥

p

,

so that, using that u′ ≤ 2 in the second inequality,

‖vℓ − vℓ′‖ ≤ u′
(u′ − u

ηu′

)1/p

≤ R := 2
(u′ − u

η

)1/p

,

and hence the points wℓ := R−1(vℓ − v1) belong to T . Now, since Hℓ ⊂
Bd(tℓ, a/r) we have vℓ ∈ Bd(tℓ, a/r). Since r ≥ 4, we have d(vℓ, vℓ′) ≥ a/2
for ℓ 6= ℓ′, and, since the distance d arises from a norm, we have d(wℓ, wℓ′) ≥
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R−1a/2 for ℓ 6= ℓ′. Therefore en(T, d) ≥ R−1a/4, so that from (5.22) it holds
2n/αR−1a/4 ≤ B, and hence

(2n/αrj−1)p ≤ KBp(u′ − u) .

Since this holds for any u′ as in (3.16), there exists ℓ such that

(2n/αrj−1)p ≤ KBp(cj+2(tℓ) − u) . (3.18)

Since
⋃

ℓ≤m

Hℓ ⊂ B(tℓ, r
−j+1) ∩ T

it holds u ≥ cj−1(tℓ) and (5.40) proves the result. ⊓⊔

Exercise 3.2.10. Write the previous proof using a certain functional with
an appropriate growth condition.

The following generalization of Theorem 3.2.4 yields very precise results
when applied to ellipoids. It will not be used in the sequel, so we refer to
[145] for a proof.

Theorem 3.2.11. Consider β , β′ , p > 0 with

1

β
=

1

β′ +
1

p
. (3.19)

Then, under the conditions of Theorem 3.2.4 we have

γα,β(T, d) ≤ K(p, η, α)
(

∑

n

(2n/αen(T, d))β
′
)1/β′

.

Exercise 3.2.12. Use Theorem 3.2.11 to obtain a geometrical proof of
(2.123). Hint: Choose α = 2, β = 1, β′ = p = 2 and use (2.126).

3.3 Matchings

The rest of this chapter is devoted to the following problem. Consider N
r.v.s X1, . . . , XN independently uniformly distributed in the unit cube [0, 1]d,
where d ≥ 2. Consider a typical realization of these points. How evenly dis-
tributed in [0, 1]d are the points X1, . . . , XN? To measure this, we will match
the points (Xi)i≤N with non-random “evenly distributed” points (Yi)i≤N ,
that is, we will find a permutation π of {1, . . . , N} such that the points
Xi and Yπ(i) are “close”. There are different ways to measure “closeness”.
For example one may wish that the sum of the distances d(Xi, Yπ(i)) be as
small as possible (Section 3.5), that the maximum distance d(Xi, Yπ(i)) be as



74 3. Matching Theorems

small as possible (Section 3.7), or one can use more complicated measures of
“closeness” (Section 14.1). The case where d = 2 is very special, and is the
object of the present chapter. The case d ≥ 3 will be studied in Chapter 15.
The reader having never thought of the matter might think that the points
X1, . . . , XN are very evenly distributed. A moment thinking reveals this is
not quite the case, for example, with probability close to one, one is bound
to find a little square of area about N−1 logN that contains no point Xi.
This is a very local irregularity. In a somewhat informal manner one can say
that this irregularity occurs at scale

√
logN/

√
N . The specific feature of the

case d = 2 is that in some sense there are irregularities at all scales 2−j for
1 ≤ j ≤ L−1 logN , and that these are all of the same order. Such a statement
is by no means obvious at this stage. In the same direction, a rather deep
fact about matchings is that

obstacles to matchings at different scales may combine

in dimension 2 but not in dimension ≥ 3 . (3.20)

It is difficult to state a real theorem to this effect, but this is actually seen
with great clarity in the proofs. The crucial estimates involve controlling
sums (depending on a parameter), each term of which representing a different
scale. In dimension 2, many terms contribute to the final sum (which therefore
results in the contribution of many different scales), while in higher dimension
only a few terms contribute. (The case of higher dimension remains non-trivial
because which terms contribute depend on the value of the parameter.) Of
course these statements are very mysterious at this stage, but we expect that
a serious study of the methods involved will gradually bring the reader to
share this view.

What does it mean to say that the non-random points (Yi)i≤N are evenly
distributed? When N is a square, N = n2, everybody will agree that the
N points (k/n, ℓ/n), 1 ≤ k , ℓ ≤ n are evenly distributed. More generally
we will say that the non-random points (Yi)i≤N are evenly spread if one
can cover [0, 1]2 with N rectangles with disjoint interiors, such that each
rectangle R has an area 1/N , contains exactly one point Yi, and is such that
R ⊂ B(Yi, 10/

√
N). To construct such points one may proceed as follows.

Consider the largest integer k with k2 ≤ N , and observe that k(k + 3) ≥
(k + 1)2 ≥ N , so that there exists integers (ni)i≤k with k ≤ ni ≤ k + 3 and
∑

i≤k ni = N . Cut the unit square into k vertical strips, in a way that the
i-th strip has width ni/N and to this i-th strip attribute ni points placed at
even intervals 1/ni.

1

1 A more elegant approach that dispenses from this slightly awkward construction.
It is the concept of “transportation cost”. One attributes mass 1/N to each point
Xi, and one measures the “cost of transporting” the resulting probability mea-
sure to the uniform probability on [0, 1]2. (In the presentation one thus replaces
the evenly spread points Yi by a more canonical object, the uniform probability
on [0, 1]2.) This approach does not make the proofs any easier, so we shall not
use it despite its aesthetic appeal.



3.3 Matchings 75

The basic tool to construct matchings is the following classical fact. The
proof, based on the Hahn-Banach theorem, is given in Section A.1.

Proposition 3.3.1. Consider a matrix C = (cij)i,j≤N . Let

M(C) = inf
∑

i≤N

ciπ(i) ,

where the infimum is over all permutations π of {1, . . . , N}. Then

M(C) = sup
∑

i≤N

(wi + w′
i) , (3.21)

where the supremum is over all families (wi)i≤N , (w′
i)i≤N that satisfy

∀i, j ≤ N , wi + w′
j ≤ cij . (3.22)

Thus, if cij is the cost of matching i with j, M(C) is the minimal cost of a
matching, and is given by the “duality formula” (3.21).

The following is a well-known, and rather useful result of combinatorics.
We deduce it from Proposition 3.3.1 in Section A.1, but other proofs exist,
based on different ideas, see e.g. [10] § 2.

Corollary 3.3.2 (Hall’s Marriage Lemma). Assume that to each i ≤
N we associate a subset A(i) of {1, . . . , N} and that, for each subset I of
{1, . . . , N} we have

card
(

⋃

i∈I

A(i)
)

≥ card I . (3.23)

Then we can find a permutation π of {1, . . . , N} for which

∀i ≤ N , π(i) ∈ A(i) .

Another well-known application of Proposition 3.3.1 is the following “du-
ality formula”.

Proposition 3.3.3. Consider points (Xi)i≤N and (Yi)i≤N in a metric space
(T, d). Then

inf
π

∑

i≤N

d(Xi, Yπ(i)) = sup
f∈C

∑

i≤N

(f(Xi) − f(Yi)) , (3.24)

where C denotes the class of 1-Lipschitz functions on (T, d), i.e. functions f
for which |f(x) − f(y)| ≤ d(x, y).

Proof. Given any permutation π and any 1-Lipschitz function f we have

∑

i≤N

f(Xi) − f(Yi) =
∑

i≤N

(f(Xi) − f(Yπ(i))) ≤
∑

i≤N

d(Xi, Yπ(i)) .
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This proves the inequality ≥ in (3.24). To prove the converse, we use (3.21)
with cij = d(Xi, Yj), so that

inf
π

∑

i≤N

d(Xi, Yπ(i)) = sup
∑

i≤N

(wi + w′
i) , (3.25)

where the supremum is over all families (wi) and (w′
i) for which

∀i , j ≤ N , wi + w′
j ≤ d(Xi, Yj) . (3.26)

Given a family (w′
i)i≤N , consider the function

f(x) = min
j≤N

(−w′
j + d(x, Yj)) . (3.27)

It is 1-Lipschitz, since it is the minimum of functions which are themselves
1-Lipschitz. By definition we have f(Yj) ≤ −w′

j and by (3.26) for i ≤ N we
have wi ≤ f(Xi), so that

∑

i≤N

(wi + w′
i) ≤

∑

i≤N

(f(Xi) − f(Yi)) . ⊓⊔

3.4 Discrepancy Bounds

Generally speaking, the study of expressions of this type

sup
f∈F

∣

∣

∣

∑

i≤N

(f(Xi) −
∫

fdµ)
∣

∣

∣
(3.28)

for a class of functions F will be important in the present book, and in
particular in Chapter 11. A bound on such a quantity is called a discrepancy
bound because it bounds uniformly on F the “discrepancy” between the true
measure

∫

fdµ and the “empirical measure” N−1
∑

i≤N f(Xi). Finding such
a bound simply requires finding a bound for the supremum of the process
(|Zf |)f∈F , where the r.v.s Zf is given by2

Zf =
∑

i≤N

(f(Xi) −
∫

fdµ) , (3.29)

a topic at the very center of our attention.
A relation between discrepancy bounds and matching theorems can be

guessed from Proposition 3.3.3 and will be made explicit in the next section.
In this book every matching theorem will be proved through a discrepancy
bound.

2 Please remember this notation which is used throughout this chapter.
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3.5 The Ajtai-Komlós-Tusnády Matching Theorem

Theorem 3.5.1 ([5]). If the points (Yi)i≤N are evenly spread and the points
(Xi)i≤N are i.i.d. uniform on [0, 1]2, then (for N ≥ 2)

E inf
π

∑

i≤N

d(Xi, Yπ(i)) ≤ L
√

N logN , (3.30)

where the infimum is over all permutations of {1, . . . , N} and where d is the
Euclidean distance.

The term
√
N is just a scaling effect. There are N terms d(Xi, Yπ(i)) each

of which should be about 1/
√
N . The non-trivial part of the theorem is the

factor
√

logN . In Section 3.6 we shall show that (3.30) can be reversed, i.e.

E inf
π

∑

i≤N

d(Xi, Yπ(i)) ≥
1

L

√

N logN . (3.31)

Let us state the “discrepancy bound” at the root of Theorem 3.5.1. Consider
the class C of 1-Lipschitz functions on [0, 1]2, i.e. of functions f that satisfy

∀x, y ∈ [0, 1]2 , |f(x) − f(y)| ≤ d(x, y) ,

where d denotes the Euclidean distance. We denote by λ the uniform measure
on [0, 1]2.

Theorem 3.5.2. We have

E sup
f∈C

∣

∣

∣

∑

i≤N

(f(Xi) −
∫

fdλ)
∣

∣

∣
≤ L

√

N logN . (3.32)

Research problem 3.5.3. Prove that the following limit

lim
N→∞

1√
N logN

E sup
f∈C

∣

∣

∣

∑

i≤N

(f(Xi) −
∫

fdλ)
∣

∣

∣

exists.

At the present time there does not seem to exist the beginning of a general
approach for attacking a problem of this type, and certainly the methods of
the present book are not appropriate for this. Quite amazingly however, the
corresponding problem has been solved in the case where the transportation
cost is measured by the square of the distance, see [6]. The methods seem
rather specific to the case of the square of a distance.

Theorem 3.5.2 is obviously interesting in its own right, and proving it is
the goal of this section. Before we discuss it, let us put matchings behind us.

Proof of Theorem 3.5.1. We recall (3.24), i.e.
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inf
π

∑

i≤N

d(Xi, Yπ(i)) = sup
f∈C

∑

i≤N

(f(Xi) − f(Yi)) , (3.33)

and we simply write

∑

i≤N

(f(Xi)−f(Yi)) ≤
∣

∣

∣

∑

i≤N

(f(Xi)−
∫

fdλ)
∣

∣

∣
+
∣

∣

∣

∑

i≤N

(f(Yi)−
∫

fdλ)
∣

∣

∣
. (3.34)

Next, we claim that

∣

∣

∣

∑

i≤N

(f(Yi) −
∫

fdλ)
∣

∣

∣
≤ L

√
N . (3.35)

We recall that since (Yi)i≤N are evenly spread one can cover [0, 1]2 with N
rectangles Ri with disjoint interiors, such that each rectangle Ri has an area
1/N and is such that Yi ∈ Ri ⊂ B(Yi, 10/

√
N). Consequently

∣

∣

∣

∑

i≤N

(f(Yi) −
∫

fdλ)
∣

∣

∣
≤

∑

i≤N

∣

∣

∣
(f(Yi) −N

∫

Ri

fdλ)
∣

∣

∣
,

and since f is Lipschitz each term in the right-hand side is ≤ L/
√
N. This

proves the claim.
Now, using (3.33) and taking expectation

E inf
π

∑

i≤N

d(Xi, Yπ(i)) ≤ L
√
N + E sup

f∈C

∣

∣

∣

∑

i≤N

(f(Xi) −
∫

fdλ)
∣

∣

∣

≤ L
√

N logN

by (3.32). ⊓⊔
To prove Theorem 3.5.2 the overall strategy is clear. We think of the

left-hand side as E supf∈C |Zf |, where Zf is the random variable of (3.29).
We then find nice tail properties for these r.v.s, and we use the methods
of Chapter 2. In the end (and because we are dealing with a deep fact) we
shall have to prove some delicate “smallness” property of the class C. This
smallness property will ultimately be derived from the ellipsoid theorem. The
(very beautiful) strategy for the hard part of the estimates relies on a kind
of 2-dimensional version of Proposition 3.2.8 and is outlined on page 80.

Whereas the delicate part of the estimates is beautifully taken care by the
ellipsoid theorem, the proof is unfortunately marred by all kinds of accessory
complications which must be taken care of, but for which there is plenty
of room. In order to enjoy the beauty of the proof and to leave aside the
complications, let us define C∗ as the class of 1-Lipschitz functions on the
unit square which are 0 on the boundary of the square. Rather than proving
Theorem 3.5.2 itself, we will prove the following weaker result.3

3 If your life really depends on understanding Theorem 3.5.2 itself please see [145].
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Theorem 3.5.4. We have

E sup
f∈C∗

∣

∣

∣

∑

i≤N

(f(Xi) −
∫

fdλ)
∣

∣

∣
≤ L

√

N logN . (3.36)

The following fundamental classical result will allow us to control the tails
of the r.v. Zf of (3.29). It will be used many times.

Lemma 3.5.5 (Bernstein’s inequality). Let (Yi)i≥1 be independent r.v.s
with EYi = 0 and consider a number U with |Yi| ≤ U for each i. Then, for
v > 0,

P

(

∣

∣

∣

∑

i≥1

Yi

∣

∣

∣
≥ v

)

≤ 2 exp

(

−min

(

v2

4
∑

i≥1 EY
2
i

,
v

2U

))

. (3.37)

Proof. For |x| ≤ 1, we have

|ex − 1 − x| ≤ x2
∑

k≥2

1

k!
= x2(e− 2) ≤ x2

and thus, since EYi = 0, for U |λ| ≤ 1, we have

|E expλYi − 1| ≤ λ2EY 2
i .

Therefore E expλYi ≤ 1 + λ2EY 2
i ≤ expλ2EY 2

i , and thus

E expλ
∑

i≥1

Yi =
∏

i≥1

E expλYi ≤ expλ2
∑

i≥1

EY 2
i .

Now, for 0 ≤ λ ≤ 1/U we have

P

(

∑

i≥1

Yi ≥ v

)

≤ exp(−λv)E expλ
∑

i≥1

Yi

≤ exp

(

λ2
∑

i≥1

EY 2
i − λv

)

.

If Uv ≤ 2
∑

i≥1 EY
2
i , we take λ = v/(2

∑

i≥1 EY
2
i ), obtaining a bound

exp(−v2/(4∑i≥1 EY
2
i )). If Uv > 2

∑

i≥1 EY
2
i , we take λ = 1/U , and we

note that
1

U2

∑

i≥1

EY 2
i − v

U
≤ Uv

2U2
− v

U
≤ − v

2U
,

so that P(
∑

i≥1 Yi ≥ v) ≤ exp(−min(v2/4
∑

i≥1 EY
2
i , v/2U)). Changing Yi

into −Yi we obtain the same bound for P (
∑

i≥1 Yi ≤ −v). ⊓⊔
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Corollary 3.5.6. For each v > 0 we have

P(|Zf | ≥ v) ≤ 2 exp

(

−min

(

v2

4N‖f‖22
,

v

4‖f‖∞

))

, (3.38)

where ‖f‖p denotes the norm of f in Lp(λ).

Proof. We use Bernstein’s inequality with Yi = f(Xi) −
∫

fdλ if i ≤ N and
Yi = 0 if i > N . We then observe that EY 2

i ≤ Ef2 = ‖f‖22 and |Yi| ≤
2 sup |f | = 2‖f‖∞. ⊓⊔

Let us then pretend for a while that in (3.38) the bound was instead
2 exp(−v2/(4N‖f‖22)). Thus we would be back to the problem we consider
first, bounding the supremum of a stochastic process under the increment
condition (2.1), where the distance on C is given by the d(f1, f2) =

√
2N‖f1−

f2‖2. The first thing to point out is that Theorem 3.5.2 is a prime example of
a natural situation where using covering numbers does not yield the correct
result, where we recall that for a metric space (T, d), the covering number
N(T, d, ǫ) denotes the smallest number of balls of radius ǫ that are needed to
cover T . This is closely related to the fact that, as explained in Section 2.8,
covering numbers do not describe well the size of ellipsoids. It is hard to
formulate a theorem to the effect that covering numbers do not suffice, but
root of the problem is described in the next exercise, and a more precise
version can be found later in Exercise 3.5.15.

Exercise 3.5.7. (a) Prove that for each 0 < ǫ ≤ 1

logN(C∗, d2, ǫ) ≥
1

Lǫ2
. (3.39)

Hint: Consider an integer n ≥ 0, and divide [0, 1]2 into 22n equal squares of
area 2−2n. For every such square C consider a number εC = ±1. Consider
then the function f ∈ C such that f(x) = εCd(x,B) for x ∈ C, where B
denotes the boundary of C. Prove that by appropriate choices of the signs εC
one may find at least exp(22n/L) such functions which are at mutual distance
≥ 2−n/L.
(b) Prove that γ2(C∗, d2) = ∞. This might be challenging. Hint: try to use
the previous construction on different parts of the square at different scales.

Since covering numbers do not suffice, we must then appeal to Theo-
rem 2.2.19. It follows from Exercise 3.5.7 above that γ2(C∗, d2) = ∞, but we
will replace C∗ by a sufficiently large finite subset F , for which we shall need
the crucial estimate γ2(F , d2) ≤ L

√
logN . As in Proposition 3.2.8, one may

then parametrize C∗ as a subset of a certain ellipsoid using the Fourier trans-
form, and then Corollary 3.2.7 yields γ2,2(C∗, d2) ≤ L. Finally the simple use
of Cauchy-Schwarz inequality in (3.7) yields γ2(F , d2) ≤ L

√
log log cardF ,

which is the desired estimate.
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The main ingredient in controlling the ℓ2 distance is the following 2-
dimensional version of Proposition 3.2.8, where we use the functional γ2,2 of
(3.6), and where the underlying distance is the distance induced by L2([0, 1]2).

Proposition 3.5.8. We have γ2,2(C∗, d2) <∞.

Proof. We represent C∗ as a subset of an ellipsoid using the Fourier transform.
The Fourier transform associates to each function f on L2([0, 1]2) the complex
numbers cp,q(f) given by

cp,q(f) =

∫ ∫

[0,1]2
f(x1, x2) exp 2iπ(px1 + qx2)dx1dx2 . (3.40)

The Plancherel formula

‖f‖2 =
(

∑

p,q∈Z

|cp,q(f)|2
)1/2

(3.41)

asserts that Fourier transform is an isometry, so that if

D = {(cp,q(f))p,q∈Z ; f ∈ C∗)} ,

it suffices to show that γ2,2(D, d) <∞ where d is the distance in the complex
Hilbert space ℓ2

C
(Z× Z). Using (3.40) and integration by parts we get

−2iπpcp,q(f) = cp,q

(∂f

∂x

)

.

Using (3.41) for ∂f/∂x, and since ‖∂f/∂x‖2 ≤ 1 we get
∑

p,q∈Z
p2|cp,q(f)|2

≤ 1/4π2. Proceeding similarly for ∂f/∂y, we get

D ⊂ E =
{

(cp,q) ∈ ℓ2C(Z× Z) ; |c0,0| ≤ 1 ,
∑

p,q∈Z

(p2 + q2)|cp,q|2 ≤ 1
}

.

We view each complex number cp,q as a pair (xp,q, yp,q) of real numbers, and
|cp,q|2 = x2p,q + y2p,q, so that

E =
{(

(xp,q), (yp,q)
)

∈ ℓ2(Z× Z) × ℓ2(Z× Z) ;

x20,0 + y20,0 ≤ 1 ,
∑

p,q∈Z

(p2 + q2)(x2p,q + y2p,q) ≤ 1
}

. (3.42)

For u ≥ 1, we have

card
{

(p, q) ∈ Z× Z ; p2 + q2 ≤ u2
}

≤ (2u+ 1)2 ≤ Lu2 .

We then deduce from Corollary 3.2.7 that γ2,2(E , d) <∞. ⊓⊔
Let us now came back to Earth and deal with the actual bound (3.38).

For this we develop an appropriate version of Theorem 2.2.19. It will be used
many times. The ease with which one deals with two distances is remarkable.
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Theorem 3.5.9. Consider a set T provided with two distances d1 and d2.
Consider a centered process (Xt)t∈T which satisfies

∀s, t ∈ T , ∀u > 0 ,

P(|Xs −Xt| ≥ u) ≤ 2 exp

(

−min

(

u2

d2(s, t)2
,

u

d1(s, t)

))

. (3.43)

Then
E sup

s,t∈T
|Xs −Xt| ≤ L(γ1(T, d1) + γ2(T, d2)) . (3.44)

This theorem will be applied when d1 is the ℓ∞ distance, but it sounds
funny, when considering two distances, to call them d2 and d∞.

Proof. We denote by ∆j(A) the diameter of the set A for dj . We consider an
admissible sequence (Bn)n≥0 such that

∀t ∈ T ,
∑

n≥0

2n∆1(Bn(t)) ≤ 2γ1(T, d1) (3.45)

and an admissible sequence (Cn)n≥0 such that

∀t ∈ T ,
∑

n≥0

2n/2∆2(Cn(t)) ≤ 2γ2(T, d2) . (3.46)

Here Bn(t) is the unique element of Bn that contains t (etc.). We define
partitions An of T as follows. We set A0 = {T}, and, for n ≥ 1, we define An

as the partition generated by Bn−1 and Cn−1, i.e. the partition that consists
of the sets B ∩ C for B ∈ Bn−1 and C ∈ Cn−1. Thus

cardAn ≤ N2
n−1 ≤ Nn ,

and the sequence (An) is admissible.4 For each n ≥ 0 let us consider a set
Tn that intersects each element of An in exactly one point, and for t ∈ T let
us denote by πn(t) the element of Tn that belongs to An(t). To use (3.43) we
observe that for v > 0 it implies

P(|Xs −Xt| ≥ vd1(s, t) +
√
vd2(s, t)) ≤ 2 exp(−v) ,

and thus, given u ≥ 1, we have, since u ≥ √
u,

P

(

|Xπn(t) −Xπn−1(t)| ≥ u
(

2nd1(πn(t), πn−1(t)) + 2n/2d2(πn(t), πn−1(t))
)

)

≤ 2 exp(−u2n) , (3.47)

so that, proceeding as in (2.31), with probability ≥ 1 − L exp(−u) we have

4 Observe how the inequality N2
n ≤ Nn+1 makes it convenient to work with the

sequence Nn.
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∀n , ∀t , |Xπn(t) −Xπn−1(t)| ≤ u
(

2nd1(πn(t), πn−1(t))

+ 2n/2d2(πn(t), πn−1(t))
)

. (3.48)

Now, under (3.48) we get

sup
t∈T

|Xt −Xt0 | ≤ u sup
t∈T

∑

n≥1

(

2nd1(πn(t), πn−1(t)) + 2n/2d2(πn(t), πn−1(t))
)

.

When n ≥ 2 we have πn(t), πn−1(t) ∈ An−1(t) ⊂ Bn−2(t), so that

d1(πn(t), πn−1(t)) ≤ ∆1(Bn−2(t)) .

Hence, since d1(π1(t), π0(t)) ≤ ∆1(B0(t)) = ∆1(T ), using (3.45) in the last
inequality,

∑

n≥1

2nd1(πn(t), πn−1(t)) ≤ L
∑

n≥0

2n∆1(Bn(t)) ≤ 2Lγ1(T, d) .

Proceeding similarly for d2 shows that under (3.48) we obtain

sup
s,t∈T

|Xt −Xt0 | ≤ Lu(γ1(T, d1) + γ2(T, d2)) ,

and therefore using (2.47),

P

(

sup
s,t∈T

|Xs −Xt| ≥ Lu(γ1(T, d1) + γ2(T, d2))
)

≤ L exp(−u) , (3.49)

which using (2.6) implies the result. ⊓⊔
Exercise 3.5.10. Consider a space T equipped with two different distances
d1 and d2. Prove that

γ2(T, d1 + d2) ≤ L(γ2(T, d1) + γ2(T, d2)) . (3.50)

Hint: given an admissible sequence of partitions An (resp. Bn) which behaves
well for d1 (resp. d2) consider as in the beginning of the proof of Theorem 3.5.9
the partitions generated by An and Bn.

Exercise 3.5.11. (R. Lata la, S. Mendelson) Consider a process (Xt)t∈T and
for a subset A of T and n ≥ 0 let

∆n(A) = sup
s,t∈A

(E|Xs −Xt|2
n

)2
−n

.

Consider an admissible sequence of partitions (An)n≥0.
(a) Prove that

E sup
s,t∈T

|Xs −Xt| ≤ sup
t∈T

∑

n≥0

∆n(An(t)) .

Hint: Use chaining and (1.13) for ϕ(x) = |x|2n .
(b) Explain why this result implies Theorem 3.5.9.
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We can now state a general bound, from which we will deduce Theo-
rem 3.5.2.

Theorem 3.5.12. Consider a class F of functions on [0, 1]2 and assume
that 0 ∈ F . Then

E sup
f∈F

∣

∣

∣

∑

i≤N

(f(Xi) −
∫

fdλ)
∣

∣

∣
≤ L

(
√
Nγ2(F , d2) + γ1(F , d∞)

)

, (3.51)

where d2 and d∞ are the distances induced on F by the norms of L2 and L∞

respectively.

Proof. Combining Corollary 3.5.6 with Theorem 3.5.9 we get, since 0 ∈ F ,

E sup
f∈F

|Zf | ≤ E sup
f,f ′∈F

|Zf − Zf ′ | ≤ L
(

γ2(F , 2
√
Nd2) + γ1(F , 4d∞)

)

. (3.52)

Finally, γ2(F , 2
√
Nd2) = 2

√
Nγ2(F , d2) and γ1(F , 4d∞) = 4γ1(F , d∞). ⊓⊔

There is plenty of room to control γ1(F , d∞), our next task. We first state
a general principle, which was already known to Kolmogorov.

Lemma 3.5.13. Consider a metric space (U, d) and assume that for certain
numbers B and α ≥ 1 and each 0 < ǫ < B we have

N(U, d, ǫ) ≤
(B

ǫ

)α

. (3.53)

Consider the set B of 1-Lipschitz functions f on U with ‖f‖∞ ≤ B. Then
for each ǫ > 0 we have

logN(B, d∞, ǫ) ≤ K
(B

ǫ

)α

, (3.54)

where K depends only on α. In particular,

en(B, d∞) ≤ KB2−n/α . (3.55)

Proof. By homogeneity we may and do assume that B = 1. For each n ≥ 0
consider a set Vn ⊂ U with cardVn ≤ 2nα such that any point of U is
within distance 2−n of a point of Vn. We define on B the distance dn by
dn(f, g) = maxx∈Vn

|f(x) − g(x)|. We prove first that

d(f, g) ≤ 2−n+1 + dn(f, g) . (3.56)

Indeed, for any x ∈ U we can find y ∈ Vn with d(x, y) ≤ 2−n and then
|f(x)− g(x)| ≤ 2−n+1 + |f(y)− g(y)| ≤ 2−n+1 + dn(f, g). Next we prove that

N(B, dn, 2−n) ≤ LcardVnN(B, dn−1, 2
−n+1) . (3.57)
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For this we fix n. Considering g ∈ B, if f ∈ B satisfies dn−1(f, g) ≤ 2−n+1

then by using (3.56) for n− 1 rather than n we obtain to for each x ∈ vn we
have |f(x)− g(x)| ≤ 2−n+3. The usual volume argument shows that the ball
of radius 2−n+1 for dn−1 can be covered by LcardVn balls of radius 2−n and
this proves (3.57). Since cardVn = 2αn, iteration of the relation (3.57) proves
that logN(B, dn, 2−n) ≤ K2αn. Finally (3.56) implies that

logN(B, d, 2−n+2) ≤ logN(B, dn−1, 2
−n−1) ≤ K2αn

and concludes the proof. ⊓⊔

We apply the previous lemma to U = [0, 1]2 which obviously satisfies
(3.53) for α = 2, so that (3.55) implies that for n ≥ 0,

en(C∗, d∞) ≤ L2−n/2 . (3.58)

Proposition 3.5.14. We have

E sup
f∈C∗

∣

∣

∣

∑

i≤N

f(Xi) −
∫

fdλ
∣

∣

∣
≤ L

√

N logN . (3.59)

Proof. Consider the largest integer m with 2−m ≥ 1/N . By (3.58) we may
find a subset T of C∗ with cardT ≤ Nm and

∀f ∈ C∗ , d∞(f, T ) ≤ L2−m/2 ≤ L/
√
N .

Thus
E sup

f∈C∗

|Zf | ≤ E sup
f∈T

|Zf | + L
√
N . (3.60)

To prove (3.59) it suffices to show that

E sup
f∈T

|Zf | ≤ L
√

N logN . (3.61)

Proposition 3.5.8 and Lemma 3.2.3 imply γ2(T, d2) ≤ L
√
m ≤ L

√
logN .

Now, as in (2.72) we have

γ1(T, d∞) ≤ L
∑

n≥0

2nen(T, d∞) .

Since en(T, d∞) = 0 for n ≥ m, (3.58) yields γ1(T, d∞) ≤ L2m/2 ≤ L
√
N .

Thus (3.61) follows from Theorem 3.5.12 and this completes the proof. ⊓⊔

Exercise 3.5.15. Use Exercise 3.5.7 to convince yourself that covering num-
bers cannot yield better than the estimate γ2(T, d2) ≤ L logN .
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Exercise 3.5.16. Consider the space T = {0, 1}N provided with the distance
d(t, t′) = 2−j/2, where j = min{i ≥ 1; ti 6= t′i} for t = (ti)i≥1. This space
somewhat resembles the unit square, in the sense that N(T, d, ǫ) ≤ Lǫ−2

for ǫ ≤ 1. Prove that if (Xi)i≤N are i.i.d. uniformly distributed in T and
(Yi)i≤N are uniformly spread (in a manner which is left to the reader to
define precisely) then

1

L

√
N logN ≤ E inf

π

∑

i≤N

d(Xi, Yπ(i)) ≤ L
√
N logN , (3.62)

where the infimum is over all the permutations of {1, . . . , N}. Hint: for the
upper bound, covering numbers suffice, e.g. in the form of (3.54). You may
find the lower bound a real challenge.

3.6 Lower Bound for the Ajtai-Komlós-Tusnády

Theorem

Recalling that C denotes the class of functions that are 1-Lipschitz on the
unit square, and that C∗ denotes the class of these functions that are 0 on
the boundary of the square we shall prove the following, where (Xi)i≤N are
i.i.d. in [0, 1]2.

Theorem 3.6.1. We have

E sup
f∈C∗

∣

∣

∣

∑

i≤N

(

f(Xi) −
∫

fdλ
)∣

∣

∣
≥ 1

L

√

N logN . (3.63)

In particular it follows from (3.35) that if the points Yi are evenly spread
then (provided N ≥ L),

E sup
f∈C

∣

∣

∣

∑

i≤N

(f(Xi) − f(Yi))
∣

∣

∣
≥ 1

L

√

N logN ,

so (3.24) implies that the expected cost of matching the points Xi and the
points Yi is at least

√
N logN/L.

We may assume N large and we consider a number r ∈ N with r ≃
logN/100. The idea of the proof is to recursively construct with high proba-
bility for k ≤ r the functions fk such that

∑

i≤N

(

fk(Xi) −
∫

fkdλ
)

≥
√
N

L
√
r
, (3.64)

and for any q ≤ r,
∑

k≤q

fk is 1-Lipschitz . (3.65)



3.6 Lower Bound for the Ajtai-Komlós-Tusnády Theorem 87

The function g =
∑

k≤r fk is then 1-Lipschitz and satisfies

∑

i≤N

(

g(Xi) −
∫

gdλ
)

≥
√
Nr

L

and this completes the proof.
For 1 ≤ k ≤ r and 1 ≤ ℓ ≤ 2k we consider the function5 f ′k,ℓ on [0, 1]

defined as follows:

f ′k,ℓ(x) =











0 unless x ∈ [(ℓ− 1)2−k, ℓ2−k[
1

2
√
r

for x ∈ [(ℓ− 1)2−k, (ℓ− 1/2)2−k[

− 1
2
√
r

for x ∈ [(ℓ− 1/2)2−k, ℓ2−k[ .

(3.66)

We define

fk,ℓ(x) =

∫ x

0

f ′k,ℓ(y)dy . (3.67)

We now list a few useful properties of these functions. In these formulas
‖.‖2 denotes the norm in L2([0, 1]), etc. The proofs of these assertions are
completely straightforward and better left to the reader.

Lemma 3.6.2. The following holds true:

f ′k,ℓ(x) = 0 unless x ∈ [(ℓ− 1)2−k, ℓ2−k[ . (3.68)

The family (f ′k,ℓ) is orthogonal in L2([0, 1]) . (3.69)

‖f ′k,ℓ‖22 =
1

4r
2−k . (3.70)

‖f ′k,ℓ‖1 =
1

2
√
r

2−k . (3.71)

‖fk,ℓ‖1 =
1

8
√
r

2−2k . (3.72)

‖f ′k,ℓ‖∞ =
1

2
√
r

; ‖fk,ℓ‖∞ =
1

4
√
r

2−k . (3.73)

‖fk,ℓ‖22 =
1

48r
2−3k . (3.74)

Given numbers zk,ℓ,ℓ′ ∈ {0, 1,−1} we consider the function

fk =

√
r

16
2k

∑

ℓ,ℓ′≤2k

zk,ℓ,ℓ′fk,ℓ ⊗ fk,ℓ′ , (3.75)

5 These functions, together with the constant function equal to one, form the so-
called Haar basis.
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where fk,ℓ ⊗ fk,ℓ′(x, y) = fk,ℓ(x)fk,ℓ′(y). Since fk,ℓ ⊗ fk,ℓ′ is zero outside
the little square [(ℓ− 1)2−k, ℓ2−k[×[(ℓ′ − 1)2−k, ℓ′2−k[, and since these little
squares are disjoint as ℓ and ℓ′ vary, the function fk is easy to visualize.

One obstacle is that a function of the type
∑

k≤q fk as in (3.65) need not
be always 1-Lipschitz. It shall require some care to ensure that we properly
choose the coefficients zk,ℓ,ℓ′ to ensure this condition. The next two lemmas
prepare for this.

Lemma 3.6.3. A function f =
∑

k≤q fk satisfies

∥

∥

∥

∂f

∂x

∥

∥

∥

2
≤ 2−7 . (3.76)

Proof. First we write

∂f

∂x
(x, y) =

√
r

16

∑

k≤r

2k
∑

ℓ,ℓ′≤2k

zk,ℓ,ℓ′f
′
k,ℓ(x)fk,ℓ′(y) .

Using (3.69) and (3.70) we obtain, since z2k,ℓ,ℓ′ ≤ 1,

∫

(∂f

∂x

)2

dx =
r

(16)2

∑

k≤q

22k
∑

ℓ,ℓ′≤2k

z2k,ℓ,ℓ′‖f ′k,ℓ‖22fk,ℓ′(y)2

≤ 1

210

∑

k≤q

2k
∑

ℓ,ℓ′≤2k

fk,ℓ′(y)2 .

Integrating in y and using (3.74) yields

∥

∥

∥

∂f

∂x

∥

∥

∥

2

2
≤ 1

210

∑

k≤r

1

48r
≤ 2−14 . ⊓⊔

Lemma 3.6.4. Consider a function of the type f =
∑

k≤q fk, where fk is
given by (3.64) and where zk,ℓ,ℓ′ ∈ {0, 1,−1}. Then

∣

∣

∣

∂2f

∂x∂y

∣

∣

∣
≤ 2q

25
√
r
. (3.77)

Proof. We note that

∂2f

∂x∂y
=

√
r

16

∑

k≤q

2k
∑

ℓ,ℓ′≤2k

zk,ℓ,ℓ′f
′
k,ℓ ⊗ f ′k,ℓ′ ,

and we note from the second part of (3.73) that since the functions (f ′k,ℓ)ℓ≤2k

have disjoint supports, that second sum is ≤ 1/(4r) at every point. Also,
∑

k≤q 2k ≤ 2q+1. ⊓⊔
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Having constructed f1, . . . , fq, to construct fq+1 we need to construct the
coefficients zq+1,ℓ,ℓ′ . Let g :=

∑

k≤q fk, to obtain (3.65) we need to ensure
that g′ := g + fq+1 is Lipschitz. For this let us consider the little squares of
the type

[(ℓ− 1)2−(q+1), ℓ2−(q+1)[×[(ℓ′ − 1)2−(q+1), ℓ′2−(q+1)[ (3.78)

for 1 ≤ ℓ, ℓ′ ≤ 2q+1, so that there are 22(q+1) such squares. To ensure that g′

is 1-Lipschitz, it suffices to ensure that it is 1-Lipschitz on each square (3.78).
Let us say that the square (3.78) is dangerous if it contains a point for which
either |∂g/∂x| ≥ 1/2 or |∂g/∂y| ≥ 1/2. (The danger is that on this square
g′ = g+ fq+1 might not be 1-Lipschitz.) We observe from the definition that
all functions f ′k,ℓ for k ≤ q are constant on the squares (3.78). So on such a
square the quantity ∂fq/∂x does not depend on x. Moreover it follows from
(3.77) that if (x, y) and (x, y′) belong to the same square (3.78) then

∣

∣

∣

∂g

∂x
(x, y) − ∂g

∂x
(x, y′)

∣

∣

∣
≤ |y − y′|2

q−5

√
r

≤ 2−6

√
r
.

In particular if a square (3.78) contains a point at which |∂g/∂x| ≥ 1/2,
then at each point of this square we have |∂g/∂x| ≥ 1/4. Consequently (3.76)
implies, with room to spare, that at most 1/2 of the squares (3.78) are dan-
gerous. For these squares, we choose zq+1,ℓ,ℓ′ = 0, so that on these squares
g′ will be 1-Lipschitz. Let us say that a square (3.78) is safe if it is not dan-
gerous, so that at each point of a safe square we have |∂g/∂x| ≤ 1/2 and
|∂g/∂y| ≤ 1/2. Now (3.73) implies

∣

∣

∣

∂g′

∂x
− ∂g

∂x

∣

∣

∣
=

∣

∣

∣

√
r

16
2q+1

∑

ℓ,ℓ′≤2q+1

zq+1,ℓ,ℓ′f
′
q+1,ℓ ⊗ fq+1,ℓ′

∣

∣

∣
≤ 1

27
√
r

and

∣

∣

∣

∂g′

∂y
− ∂g

∂y

∣

∣

∣
=

∣

∣

∣

√
r

16
2q+1

∑

ℓ,ℓ′≤2q+1

zq+1,ℓ,ℓ′fq+1,ℓ ⊗ f ′q+1,ℓ′

∣

∣

∣
≤ 1

27
√
r
,

so we are certain than on a safe square we have |∂g′/∂x| ≤ 1/
√

2 and
|∂g′/∂y| ≤ 1/

√
2, and hence that g′ is 1-Lipschitz.

At least half of the squares are safe. For a safe square, we chose zq+1,ℓ,ℓ′ =
±1 such that

zq+1,ℓ,ℓ′Dℓ,ℓ′ = |Dℓ,ℓ′ |
where

Dℓ,ℓ′ =
∑

i≤N

(

fq+1,ℓ ⊗ fq+1,ℓ′(Xi) −
∫

fq+1,ℓ ⊗ fq+1,ℓ′dλ
)

. (3.79)

It is straightforward to show that
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ED2
ℓ,ℓ′ ≥

2−6qN

Lr2
. (3.80)

Let us then pretend for a moment that the r.v.s Dℓ,ℓ′ are Gaussian and
independent as ℓ, ℓ′ vary. Then with overwhelming probability at least 3/4 of
them will be such that |Dℓ,ℓ′ | ≥ 2−3q

√
N/Lr. Thus this inequality will hold

for at least 1/2 of the safe squares, and (3.64) holds for k = q+ 1 as desired.
It is not exactly true that the r.v.s Dℓ,ℓ′ are independent and Gaus-

sian. Standard techniques exist to take care of this, namely Poissoniza-
tion and normal approximation. There is all the room in the world because
r ≤ √

logN/100. As these considerations are not related to the rest of the
material of this work they are better omitted.6

3.7 The Leighton-Shor Grid Matching Theorem

Theorem 3.7.1 ([63]). If the points (Yi)i≤N are evenly spread and if
(Xi)i≤N are i.i.d. uniform over [0, 1]2, then (for N ≥ 2), with probability
at least 1 − L exp(−(logN)3/2/L) we have

inf
π

sup
i≤N

d(Xi, Yπ(i)) ≤ L
(logN)3/4√

N
, (3.81)

and thus

E inf
π

sup
i≤N

d(Xi, Yπ(i)) ≤ L
(logN)3/4√

N
. (3.82)

To deduce (3.82) from (3.81) one simply uses any matching in the (rare)
event that (3.81) fails. We shall prove in Section 3.8 that the inequality (3.82)
can be reversed.

A first simple idea is that to prove Theorem 3.7.1 we do not care about
what happens at a scale smaller than (logN)3/4/

√
N . Consider the largest

integer ℓ1 with 2−ℓ1 ≥ (logN)3/4/
√
N (so that in particular 2ℓ1 ≤

√
N).

We divide [0, 1] into little squares of side 2−ℓ1 . For each such square, we are
interested in how many points (Xi) it contains, but we do not care where
these points are located in the square. We shall (as is the case for each
matching theorem) deduce Theorem 3.7.1 from a discrepancy theorem for a
certain class of functions. What we really have in mind is the class of functions
which are indicators of a union A of little squares of side 2−ℓ1 , and such that
the boundary of A has a given length. It turns out that we shall have to
parametrize the boundaries of these sets by curves, so it is convenient to turn
things around and to consider the class of sets A that are the interiors of
curves of given length.

6 The beautiful argument presented here goes back to [5]. If you find it too infor-
mal, other approach may be found in [145].
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To make things precise, let us define the grid G of [0, 1]2 of mesh width
2−ℓ1 by

G =
{

(x1, x2) ∈ [0, 1]2 ; 2ℓ1x1 ∈ N or 2ℓ1x2 ∈ N
}

.

A vertex of the grid is a point (x1, x2) ∈ [0, 1]2 with 2ℓ1x1 ∈ N and
2ℓ1x2 ∈ N. An edge of the grid is the segment between two vertices that are
at distance 2−ℓ1 of each other. A square of the grid is a square of side 2−ℓ1

whose edges are edges of the grid. Thus, an edge of the grid is a subset of the
grid, but a square of the grid is not a subset of the grid.

A curve is the image of a continuous map ϕ : [0, 1] → R
2. We say that

the curve is a simple curve if it is one-to-one on [0, 1[. We say that the curve
is traced on G if ϕ([0, 1]) ⊂ G, and that it is closed if ϕ(0) = ϕ(1). If C is
a closed simple curve in R

2, the set R
2 \ C has two connected components.

One of these is bounded. It is called the interior of C and is denoted by
o

C.
The proof of Theorem 3.7.1 has probabilistic part and a deterministic

part. The probabilistic part is as follows.

Theorem 3.7.2. With probability at least 1−L exp(−(logN)3/2/L), the fol-
lowing occurs. Given any closed simple curve C traced on G, we have

∣

∣

∣

∑

i≤N

(

1 o

C
(Xi) − λ(

o

C)
)

∣

∣

∣
≤ Lℓ(C)

√
N(logN)3/4 , (3.83)

where λ(
o

C) is the area of
o

C and ℓ(C) is the length of C.

It will be easier to discuss the following result, which concerns curves of a
given length going through a given vertex.

Proposition 3.7.3. Consider a vertex τ of G and k ∈ Z. Define C(τ, k) as
the set of closed simple curves traced on G that contain τ and have length
≤ 2k. Then, if k ≤ ℓ1 + 2, with probability at least 1−L exp(−(logN)3/2/L),
for each C ∈ C(τ, k) we have

∣

∣

∣

∑

i≤N

(

1 o

C
(Xi) − λ(

o

C)
)

∣

∣

∣
≤ L2k

√
N(logN)3/4 . (3.84)

It would be easy to control the left-hand side if one considered only curves
with a simple pattern, such as boundaries of rectangles. The point however
is that the curves we consider can be very complicated, and the longer we
allow them to be, the more so. Before we discuss Proposition 3.7.3 further,
we show that it implies Theorem 3.7.2.

Proof of Theorem 3.7.2. Since there are at most (2ℓ1 + 1)2 ≤ LN choices for
τ , we can assume with probability at least

1 − L(2ℓ1 + 1)2(2ℓ1 + 4) exp(−(logN)3/2/L) ≥ 1 − L′ exp
(

−(logN)3/2/L′)

that (3.84) occurs for all choices of C ∈ C(τ, k), for any τ and any k with
−ℓ1 ≤ k ≤ ℓ1 + 2.
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Consider a simple curve C traced on G. Then, bounding the length of C
by the total length of the edges of G, we have

2−ℓ1 ≤ ℓ(C) ≤ 2(2ℓ1 + 1) ≤ 2ℓ1+2 ,

so if k is the smallest integer for which ℓ(C) ≤ 2k, then −ℓ1 ≤ k ≤ ℓ1 + 2, so
that we can use (3.84) and since 2k ≤ 2ℓ(C) the proof is finished. ⊓⊔

Let us go back to the analysis of Proposition 3.7.3. We denote by F(= Fk)
the class of functions of the type 1 o

C
, where C ∈ C(τ, k). Then the left-hand

side of (3.84) is

sup
F

∣

∣

∣

∑

i≤N

(f(Xi) −
∫

fdλ)
∣

∣

∣
.

The key point again is the control on the size of F for the distance of L2(λ).
The difficult part of this control is the following.

Proposition 3.7.4. We have

γ2(F , d2) ≤ L2k(logN)3/4 . (3.85)

Probably our most urgent duty is to reveal how the exponent 3/4 occurs. It
is through the following general principle.

Lemma 3.7.5. Consider a finite metric space (T, d) with cardT ≤ Nm.
Then

γ2(T,
√
d) ≤ m3/4γ1,2(T, d)1/2 . (3.86)

Proof. Since T is finite there exists an admissible sequence (An) of T such
that

∀t ∈ T ,
∑

n≥0

(2n∆(An(t), d))2 ≤ γ1,2(T, d)2 . (3.87)

Without loss of generality we can assume that Am(t) = {t} for each t, so
that in (3.87) the sum is over n ≤ m− 1. Now

∆(A,
√
d) ≤ ∆(A, d)1/2

so that, using Hölder’s inequality,

∑

0≤n≤m−1

2n/2∆(An(t),
√
d) ≤

∑

0≤n≤m−1

(2n∆(An(t), d))1/2

≤ m3/4
(

∑

n≥0

(

2n∆(An(t), d)
)2
)1/4

≤ m3/4γ1,2(T, d)1/2 ,

which concludes the proof. ⊓⊔
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Lemma 3.7.6. We have card C(τ, k) ≤ 22
k+ℓ1+1

= Nk+ℓ1+1.

Proof. A curve C ∈ C(τ, k) consists of at most 2k+ℓ1 edges of G. If we move
through C, at each vertex of G we have at most 4 choices for the next edge,

so card C(τ, k) ≤ 42
k+ℓ1

= Nk+ℓ1+1. ⊓⊔
Corollary 3.7.7. We have

γ1(F , d∞) ≤ L2k+ℓ1 ≤ L2k
√
N . (3.88)

Proof. Generally speaking, a set T of cardinality ≤ Nm and diameter ∆
satisfies γ1(T, d) ≤ L∆m, as is shown by taking An = {T} for n ≤ m and
Am(t) = {t}. ⊓⊔
On the set of closed simple curves traced on G, we define the distance d1 by

d1(C,C ′) = λ(
o

C ∆
o

C ′). We will deduce Proposition 3.7.4 from the following.

Proposition 3.7.8. We have

γ1,2(C(τ, k), d1) ≤ L22k . (3.89)

Proof of Proposition 3.7.4. On the set of simple curves traced on G we con-
sider the distance

d2(C1, C2) =
∥

∥

∥
1 o

C1

− 1 o

C2

∥

∥

∥

2
= (λ(

o

C ∆
o

C
′))1/2 =

(

d1(C1, C2)
)1/2

, (3.90)

so that
γ2(F , d2) = γ2(C(τ, k), d2) = γ2(C(τ, k),

√

d1) .

When k ≤ ℓ1 + 2 we have m := k + ℓ1 + 1 ≤ L logN , so that combining
Proposition 3.7.8 with Lemma 3.7.6 yields the desired result. ⊓⊔

Proposition 3.7.8 is basically obvious because the metric space (C(τ, k), d1)
is a Lipschitz image of a subset of the set L of Proposition 3.2.8. The ele-
mentary proof of the following may be found in Section A.2.

Lemma 3.7.9. There exists a map W from a subset T of L onto C(τ, k)
which for any f1, f2 ∈ T satisfies

d1(W (f0),W (f1)) ≤ L22k‖f0 − f1‖2 . (3.91)

Finally we check the obvious fact that the functionals γα,β behave as
expected under Lipschitz maps.

Lemma 3.7.10. Consider two metric spaces (T, d) and (U, d′). If f : (T, d) →
(U, d′) is onto and satisfies

∀x, y ∈ T , d′(f(x), f(y)) ≤ Ad(x, y)

for a certain constant A, then

γα,β(U, d′) ≤ K(α, β)Aγα,β(T, d) .
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Proof. This is really obvious when f is one to one. We reduce to that case by
considering a map ϕ : U → T with f(ϕ(x)) = x and replacing T by ϕ(U). ⊓⊔

Proof of Proposition 3.7.8. Combine Proposition 3.2.8 with Lemmas 3.7.10
and 3.7.9. ⊓⊔

Using Proposition 3.7.8, Corollary 3.7.7 and Theorem 3.5.12 we have
proved that

E sup
C∈C(τ,k)

∣

∣

∣

∑

i≤N

(

1 o

C
(Xi) − λ(

o

C)
)

∣

∣

∣
≤ L2k

√
N(logN)3/4 . (3.92)

Only one difficulty remains: the control in probability required by Propo-
sition 3.7.3. Either one tries to do it by hand7 or one brings out some big
guns. The “by hand approach” is messy and one does not learn much from
it, so we go for the guns, here in the form of concentration of measure. The
function

f(x1, . . . , xn) = sup
C∈C(τ,k)

∣

∣

∣

∑

i≤N

(

1 o

C
(xi) − λ(

o

C)
)

∣

∣

∣

of points x1, . . . , xn ∈ [0, 1]2 has the property that changing the value of a
given variable xi can change the value of f by at most one. One of the earliest
“concentration of measure” results (for which we refer to [60]) asserts that for
such a function the r.v. W = f(X1, . . . , Xn) satisfies a deviation inequality
of the form

P(|W − EW | ≥ u) ≤ exp
(

− u2

2N

)

and combining this with (3.92) proves the desired result.

It remains to deduce Theorem 3.7.1 from Theorem 3.7.2. The argument
is purely deterministic and unrelated to any other material in the present
book. The basic idea is very simple, and to keep it simple we describe it in
slightly imprecise terms. Consider a union A of little squares of side 2−ℓ1 and
the union A′ of all the little squares that touch A. We want to prove that
A′ contains as many points Yi as A contains points Xi, so that by Hall’s
Marriage Lemma each point Xi can be matched to a point Yi in the same
little square, or in a neighbor of it. Since the points Yi are evenly spread
the number of such points in A′ is very nearly Nλ(A′). There may be more
than Nλ(A) points Xi in A, but (3.83) tells us that the excess number of
points cannot be more than a proportion of the length ℓ of the boundary of
A. The marvelous fact is that we may also expect that λ(A′) − λ(A) is also
proportional to ℓ, so that we may hope that the excess number of points Xi in
A should not exceed N(λ(A′)−λ(A)), proving the result. The proportionality
constant is not quite right to make the argument work, but this difficulty is
bypassed simply by applying the same argument to a slightly coarser grid.

7 This is done in [145].
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When one tries to describe precisely what is meant by the previous ar-
gument, one has to check a number of details. This elementary task which
requires patience is performed in Section A.3.

3.8 Lower Bound for the Leighton-Shor Theorem

Theorem 3.8.1. If the points (Xi)i≤N are i.i.d. uniform over [0, 1]2 and the
points (Yi)i≤N are evenly spread, then

E inf
π

max
i≤N

d(Xi, Yπ(i)) ≥
(logN)3/4

L
√
N

. (3.93)

We denote by C the class of functions f : [0, 1] → [0, 1] such that f(0) =

f(1) = 0,
∫ 1

0
f ′2dλ ≤ 1, and by S the class of their subgraphs

S(f) = {(x, y) ∈ [0, 1]2 ; y ≤ f(x)} .

We will show that with high probability we may find f ∈ C with

card{i ≤ N ; Xi ∈ S(f)} ≥ λ(S(f)) +
1

L

√
N(logN)3/4 . (3.94)

Lemma 3.8.2. The set of points within distance ǫ of the graph of f has an
area ≤ Lǫ.

Proof. The graph of f ∈ C has length
∫ 1

0

√

1 + f ′2dλ ≤ 2. One can find a
subset of the graph of f of cardinality ≤ L/ǫ such that each point of the
graph is within distance ǫ of this set. A point within distance ǫ of the graph
then belongs to one of L/ǫ balls of radius 2ǫ.

Proof of Theorem 3.8.1. Let us denote by S(f)ǫ the ǫ-neighborhood of S(f)
in [0, 1]2. We first observe that for any f ∈ C we have

card{i ≤ N ; Yi ∈ S(f)ǫ} ≤ Nλ(S(h)) + Lǫ+ L
√
N . (3.95)

This is because by definition of an evenly spread family, each point Yi be-
longs to a small rectangle Ri of area 1/N and of diameter ≤ 10/

√
N , and

a pessimistic bound for the left-hand side above is the number of such rect-
angles that meet S(f)ǫ. These rectangles are entirely contained in the set of
points within distance L/

√
N of S(f)ǫ, and by lemma 3.8.2 this set has area

≤ S(h) + Lǫ+ L
√
N , hence the bound (3.95).

Consequently (3.94) implies that for ǫ = (logN)3/4/(L
√
N) it holds

card{i ≤ N ; Yi ∈ Sǫ(f)} < card{i ≤ N ; Xi ∈ S(f)} ,

and therefore any matching must pair at least one point Xi ∈ S(f) with a
point Yj 6∈ Sǫ(f), so that maxi≤N d(Xi, Yπ(i)) ≥ ǫ. ⊓⊔
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Recalling the functions fk,ℓ of (3.67), we consider now an integer c ≥ 2

which will be determined later (c = 2 works) and we set f̃k,ℓ = fck,ℓ/8 ≥ 0,
so that

∫

f̃k,ℓdλ =
2−2c−6

√
r

.

Consider the functions of the type

fk =
∑

1≤ℓ≤2ck

xk,ℓf̃k,ℓ , (3.96)

where xk,ℓ ∈ {0, 1}. Then f(0) = f(1) = 0.

Lemma 3.8.3. A function f of the type (3.96) satisfies

∫ 1

0

f ′(x)2dx ≤ 2−8 . (3.97)

Proof. Using (3.67) and (3.69) we obtain

∫ 1

0

f ′(x)2dx ≤ 1

32

∑

k≤r

∑

ℓ≤2ck

x2k,ℓ
1

4r
2−ck ≤ 2−8 . ⊓⊔

Consequently each function of the type (3.96) belongs to C.

Almost correct proof of (3.94).8 Given N large we choose r as the largest
integer for which 2cr ≤ N1/100, so that r ≥ logN/L. We construct inductively
with high probability the functions fk ≥ 0 of the type (3.96) such that, setting
g =

∑

k≤q fk

card{i ≤ N ; Xi ∈ S(g+fq+1)\S(g)} ≥
√
N

Lr1/4
+λ(S(g+fq+1)\S(g)). (3.98)

Summation of these inequalities over q < r then proves (3.94).
The basic principle is that given a subset A of the square, with 1/N ≪

λ(A) ≤ 1/2, the number of points Xi which belong to A has typical fluctu-
ations of order

√

Nλ(A). The area between the graph of g and the graph

of g + f̃q+1,ℓ is 2−2c(q+1)−6/
√
r, so with probability ≥ 1/4 it will con-

tain an excess of points Xi (compared to its expected value) of at least
2−c(q+1)

√
N/Lr1/4. In that case we set xq+1,ℓ = 1 and otherwise we set

xq+1,ℓ = 0. With high probability there will be at least a fixed proportion of
the 2cq possible values of ℓ for which xq+1,ℓ = 1, and that will achieve (3.98).

The argument however contains a fatal flaw, because the decision we make
at a step of the argument is based on some assumption about the number of
points in a certain region, and this influences what happens at later stages

8 The proof we give is in the spirit of the original proof of [63]. It is perfectly
correct. If you find it too informal, a more formal approch is presented in [145].
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of the construction. Specifically when xq+1,ℓ = 0 we know that the region
S(g + fq+1) \ S(g) has is a sense a deficit of points, and at later stages
we perform constructions inside this region. We will sketch how to correct
this problem. Assume that the points Xi are determined by a Poisson point
process of intensity N so that what happens in non-overlapping regions is
independent, and for ℓ ≤ 2ck we define

f̂k,ℓ =
∑

s>k

f̃s,ℓ′ , (3.99)

where for each s the sum is over the values of ℓ′ such that [ℓ′2−cs, (ℓ′ +
1)2−cs] ⊂ [ℓ2−ck, (ℓ+ 1)2−ck]. Thus

‖f̂k,ℓ‖1 ≤ 1√
r

∑

s>k

2c(s−k)2−2cs−6 ≤ 21−c‖f̃k,ℓ‖1 .

Consequently, the region

S(g + f̃q+1,ℓ) \ S(g + f̂q+1,ℓ)

has an area at least 2−2c(q+1)−7/
√
r and we select xq+1,ℓ = 1 when this

region has an excess of points Xi. These points will not be involved in making
decisions at further stages of the construction. A new obstacle arises: there
could a deficit of points in the region

S(g + f̂q+1,ℓ) \ S(g) .

However the union of all such regions in the construction is determined by a
procedure which does not look at the points Xi in it, so it will contain the
right number of points within only fluctuations of order

√
N .

3.9 Notes and Comments

The original proof of the Leighton-Shor theorem amount basically to perform
by hand a kind generic chaining in this highly non-trivial case, an incredi-
ble tour de force. A first attempt was made in [98] to relate (an important
consequence of) the Leighton-Shor theorem to general methods for bounding
stochastic processes, but runs into technical complications. Then Coffman
and Shor [31] introduced the use of Fourier transforms and brought to light
the role of ellipsoids, after which it became clear that the structure of these
ellipsoids plays a central part in these matching results, a point of view sys-
tematically expounded in [127].

Chapter 14 is a continuation of the present chapter. The more difficult
material it contains is presented later for fear of scaring readers at this early
stage. A notable feature of the result presented there is that ellipsoids do not
suffice, a considerable source of complication.
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One could wonder for which kind of probability distributions on the unit
square Theorem 3.5.1 remains true. The intuition that the uniform distri-
bution considered in Theorem 3.5.1 is the “worst possible” is correct as is
proved in [123]. The proof is overall similar to that of Theorem 3.5.1 but one
has to find an appropriate substitute for Fourier transforms. The situation
is different for Theorem 3.7.1, as is shown by the trivial example of a dis-
tribution concentrated at exactly two points at distance d (where the best
matching typically requires moving some of the random points for a distance
d).

The original results of [5] are proved using an interesting technique called
the transportation method. A version of this method, which avoids many of
the technical difficulties of the original approach is presented in [146]. With
the notation of Theorem 3.5.1, it is proved in [146] (a stronger version of the
fact) that with probability ≥ 9/10 one has

inf
π

1

N

∑

i≤N

exp
(Nd(Xi, Yπ(i))

2

K logN

)

≤ 2 . (3.100)

Since expx ≥ x, (3.100) implies that
∑

i≤N d(Xi, Yπi
)2 ≤ logN and hence

using the Cauchy-Schwarz inequality

∑

i≤N

d(Xi, Yπ(i)) ≤ L
√

N logN . (3.101)

Moreover it implies also

max
i≤N

d(Xi, Yπ(i)) ≤ L logN/
√
N . (3.102)

It does not seem known whether one can achieve simultaneously (3.101) and
maxi≤N d(Xi, Yπ(i)) ≤ L(logN)3/4/

√
N . In this circle of idea, see the ulti-

mate matching conjecture on page 369.
For results about matching for unbounded distributions, see the work of

J. Yukich [158].
Methods similar to those of this chapter may be used to obtain non-trivial

discrepancy theorems for various classes of functions, as investigated in [127].
Let us mention one such result. We denote by λ the uniform probability on
the unit cube [0, 1]3, and by (Xi)i≤N independent uniformly distributed r.v.s
valued in this unit cube.

Theorem 3.9.1. Consider the class C of convex sets in R
3. Then

E sup
C∈C

| card{i ≤ N ; Xi ∈ C} −Nλ(C)| ≤ L
√
N(logN)3/4 .
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The concept of tree presented in Section 4.1 is historically important: the
author discovered many of the results he presents while thinking in terms of
trees. We know now how to present these results and their proofs without
ever mentioning trees, arguably in a more elegant fashion, so that trees are
not used explicitly elsewhere in this book. However it might be too early to
dismiss this concept, at least as an instrument of discovery.

4.1 Trees

We shall describe different ways to measure the size of a metric space and
show that they are all equivalent to the functional γ2(T, d).1

In a nutshell, a tree is a certain structure that requires a “lot of space” to
be constructed, so that a metric space that contains large trees needs itself
to be large. At the simplest level, it already takes some space to construct in
a set A sets B1, . . . , Bn which are appropriately separated from each other.
This is even more so if the sets B1, . . . , Bn are themselves large (for example
because they themselves contain many sets far from each other). Trees are a
proper formulation of the iteration of this idea. The basic use of trees is to
measure the size of a metric space by the size of the largest tree (of a certain
type) which it contains. Different types of trees yield different measures of
size.

A tree T of a metric space (T, d) is a finite collection of subsets of T with
the following two properties.

Given A,B in T , if A ∩B 6= ∅ , then either A ⊂ B or else B ⊂ A . (4.1)

T has a largest element . (4.2)

The important condition here is (4.1), and (4.2) is just for convenience.
If A,B ∈ T and B ⊂ A, B 6= A, we say that B is a child of A if

C ∈ T , B ⊂ C ⊂ A⇒ C = B or C = A . (4.3)

1 It is possible to consider more general notions corresponding to other functionals
considered in the book, but for simplicity we consider only the case of γ2.
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We denote by c(A) the number of children of A. Since our trees are finite,
some of their sets will have no children. It is convenient to “shrink these sets
to a single point”, so we will consider only trees with the following property

If A ∈ T and c(A) = 0 , then A contains exactly one point . (4.4)

A fundamental property of trees is as follows. Consider trees T1, . . . , Tm and
for 1 ≤ ℓ ≤ m let Aℓ be the largest element of Tℓ. Assume that the sets Aℓ

are disjoint, and consider a set A ⊃ ⋃

ℓ≤mAℓ. Then the collection of subsets
of T consisting of A and of

⋃

ℓ≤m Tℓ is a tree. The proof is straightforward.
This fact allows one to construct iteratively more and more complicated (and
larger) trees.

An important structure in a tree is a branch. A sequence A0, A1, . . . , Ak

is a branch if Aℓ+1 is a child of Aℓ, and if moreover A0 is the largest element
of T while Ak has no child. Then by (4.4) the set Ak is reduced to a single
point t, and A0, . . . , Ak are exactly those elements of T which contain t. So
in order to describe the branches of T it is convenient to introduce the set

ST = {t ∈ T ; {t} ∈ T } , (4.5)

which we call the support of T . Thus by considering all the sets {A ∈ T ; t ∈ A}
as t varies in ST we obtain all the branches of T .

We now quantify our desired property that the children of a given set
should be far from each other in an appropriate sense. A separated tree is
a tree T such that to each A in T with c(A) ≥ 1 is associated an integer
s(A) ∈ Z with the following properties. First,

If B1 and B2 are distinct children of A, then d(B1, B2) ≥ 4−s(A) . (4.6)

Here d(B1, B2) = inf{d(x1, x2);x1 ∈ B1, x2 ∈ B2}. We observe that in (4.6)
we make no restriction on the diameter of the children of A. (Such restrictions
will however occur in the other notion of tree that we consider later.) Second,
we will also make the following purely technical assumption:

If B is a child of A , then s(B) > s(A) . (4.7)

Although this is not obvious now, the meaning of this condition is that T
contains no sets which are obviously irrelevant for the measure of its size.

To measure the size of a separated tree T we introduce its depth, i.e.

d(T ) := inf
t∈ST

∑

t∈A∈T
4−s(A)

√

log c(A) . (4.8)

Here and below we make the convention that the summation does not include
the term A = {t} (for which c(A) = 0). We observe that in (4.8) we have the
infimum over t ∈ ST . In words a tree is large if it is large along every branch.
We can then measure the size of T by
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sup{d(T ) ; T separated tree ⊂ T} . (4.9)

The notion of separated tree we just considered is but one of many possible
notions of trees. As it turns out, this notion of separated tree does not seem
fundamental. Rather, the quantity (4.9) is used as a convenient intermediate
technical step to prove the equivalence of several more important quantities.
Let us now consider now another notion of trees, which is more restrictive
(and apparently much more important). An organized tree is a tree T such
that to each A ∈ T with c(A) ≥ 1 are associated an integer j = j(A) ∈ Z,
and points t1, . . . , tc(A) with the properties that

1 ≤ ℓ < ℓ′ ≤ c(A) ⇒ 4−j−1 ≤ d(tℓ, tℓ′) ≤ 4−j+2

and that each ball B(tℓ, 4
−j−2) contains exactly one child of A. Please note

that it may happen that 4−j is much smaller than ∆(A).
If B1 and B2 are distinct children of A in an organized tree, then

d(B1, B2) ≥ 4−j(A)−2 , (4.10)

so that an organized tree is also a separated tree, with s(A) = j(A) + 2,
but the notion of organized tree is more restrictive. (For example we have no
control over the diameter of the children of A in a separated tree.)

We define the depth d′(T ) of an organized tree by

d′(T ) = inf
t∈ST

∑

t∈A∈T
4−j(A)

√

log c(A) .

Another way to measure the size of T is then

sup{d′(T ) ; T organized tree ⊂ T} . (4.11)

If we simply view an organized tree T as a separated tree using (4.10),
then d(T ) = d′(T )/16 (where d(T ) is the depth of T as a separated tree).
Thus we have shown the following.

Proposition 4.1.1. We have

sup{d′(T ) ; T organized tree} ≤ 16 sup{d(T ) ; T separated tree} . (4.12)

The next result provides the fundamental connection between trees and the
functional γ2.

Proposition 4.1.2. We have

γ2(T, d) ≤ L sup{d′(T ) ; T organized tree} . (4.13)
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Proof. We consider the functional

F (A) = sup{d′(T ) ; T ⊂ A , T organized tree} ,

where we write T ⊂ A as a shorthand for “∀B ∈ T , B ⊂ A”.
Next we prove that this functional satisfies the growth condition (2.55)

for r = 16 whenever a is of the type 16−j , for c∗ = 1/L. For this consider
n ≥ 1 and m = Nn. Consider j ∈ Z , t ∈ T and t1, · · · , tm with

1 ≤ ℓ < ℓ′ ≤ m⇒ 16−j ≤ d(tℓ , tℓ′) ≤ 2 · 16−j+1 . (4.14)

Consider sets Hℓ ⊂ B(tℓ, 2 ·16−j−1) and c < minℓ≤m F (Hℓ). Consider, for
ℓ ≤ m a tree Tℓ ⊂ Hℓ with d′(Tℓ) > c and denote by Aℓ its largest element.
Then it should be obvious that the tree T consisting of C =

⋃

ℓ≤mHℓ (its
largest element) and the union of the trees Tℓ , ℓ ≤ m, is organized (with
j(C) = 2j − 1, and A1, . . . , Am as children of C, and since 4−j(C)−1 = 16−j

and 2 · 16−j+1 ≤ 4−j(C)+2). Moreover ST =
⋃

ℓ≤m STℓ
.

Consider t ∈ ST , and let ℓ with t ∈ STℓ
. Then

∑

t∈A∈T
4−j(A)

√

log c(A) = 4 · 16−j
√

logm+
∑

t∈A∈Tℓ

4−j(A)
√

log c(A)

≥ 4 · 16−j
√

logm+ d′(Tℓ) ≥
1

L
16−j2n/2 + c .

This completes the proof of the growth condition (2.55).
It should be obvious that Theorem 2.4.1 requires only the growth condi-

tion (2.55) to hold true when a is of the type r−j , and we have just proved
that this is the case (for r = 16), so that from (2.59) we have proved that
γ1(T, d) ≤ L(F (T ) + ∆(T )). It remains only to prove that ∆(T ) ≤ LF (T ).
For this we simply note that if s, t ∈ T , and j is the largest integer with
4−j ≥ d(s, t), then the tree T consisting of T, {t}, {s}, is organized with
j = j(T ) and c(T ) = 2, so d′(T ) ≥ 4−j

√
log 2 and 4−j ≤ F (T ). �

For a probability measure µ on a metric space (T, d), with countable
support, we define for each t ∈ T the quantity

Iµ(t) :=

∫ ∞

0

√

log
1

µ(B(t, ǫ))
dǫ =

∫ ∆(T )

0

√

log
1

µ(B(t, ǫ))
dǫ .

The equality follows from the fact that µ(B(t, ǫ)) = 1 when B(t, ǫ) = T , so
that then the integrand is 0.

Proposition 4.1.3. Given a metric space (T, d) we can find on T a proba-
bility measure µ, supported by a countable subset of T , and such that

sup
t∈T

Iµ(t) = sup
t∈T

∫ ∞

0

√

log
1

µ(B(t, ǫ))
dǫ ≤ Lγ2(T, d) . (4.15)
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A probability measure µ on (T, d) is called a majorizing measure.2 The reason
for this somewhat unsatisfactory name is that X. Fernique proved that for a
Gaussian process and probability measure µ on T one has

E sup
t∈T

Xt ≤ L sup
t∈T

Iµ(t) , (4.16)

so that µ can be used to “majorize” the process (Xt)t∈T . This was a major
advance over Dudley’s bound. The (in)famous theory of majorizing measures
used the quantity

inf
µ

sup
t∈T

Iµ(t) (4.17)

as a measure of the size of the metric space (T, d), where the infimum is over
all choices of the probability measure µ. This method is technically quite
challenging. It has been replaced by the generic chaining. A related idea
which is still very useful is explained in Section 4.2.

Proof. Consider an admissible sequence (An) with

∀t ∈ T ,
∑

n≥0

2n/2∆(An(t)) ≤ 2γ2(T, d) .

Let us now pick a point tn,A in each set A ∈ An, for each n ≥ 0. Since
card An ≤ Nn, there is a probability measure µ on T , supported by a count-
able set, and satisfying µ({tn,A}) ≥ 1/(2nNn) for each n ≥ 0 and each
A ∈ An. Then,

∀n ≥ 1 , ∀A ∈ An , µ(A) ≥ µ({tn,A}) ≥ 1

2nNn
≥ 1

N2
n

so that given t ∈ T and n ≥ 1,

ǫ > ∆(An(t)) ⇒ µ(B(t, ǫ)) ≥ 1

N2
n

⇒
√

log
1

µ(B(t, ǫ))
≤ 2n/2+1 . (4.18)

Now, since µ is a probability, µ(B(t, ǫ)) = 1 for ǫ > ∆(T ), and then
log(1/µ(B(t, ǫ))) = 0. Thus

Iµ(t) =

∫ ∞

0

√

log
1

µ(B(t, ǫ))
dǫ =

∑

n≥1

∫ ∆(An−1(t))

∆(An(t))

√

log
1

µ(B(t, ǫ))
dǫ

≤
∑

n≥1

2n/2+1∆(An−1(t)) ≤ Lγ2(T, d)

using (4.18). �

2 One typically uses the name only when such the left-hand side of (4.15) is usefully
small
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Proposition 4.1.4. If µ is a probability measure on T (supported by a
countable set) and T is a separated tree on T , then

d(T ) ≤ L sup
t∈T

Iµ(t) .

This completes the proof that the four “measures of the size of T” con-
sidered in this section, namely (4.9), (4.11), (4.17) and γ2(T, d) are indeed
equivalent.

Proof. The basic observation is as follows. The sets

B(C, 4−s(A)−1) = {x ∈ T ; d(x,C) < 4−s(A)−1}

are disjoint as C varies over the children of A (as follows from (4.6)), so that
one of them has measure ≤ c(A)−1.

We then proceed in the following manner, constructing recursively an
appropriate branch of the tree. This is a typical and fundamental way to
proceed when working with trees. We start with the largest element A0 of T .
We then select a child A1 of A0 with µ(B(A1, 4

−s(A0)−1)) ≤ 1/c(A0), and a
child A2 of A1 with µ(B(A2, 4

−s(A1)−1)) ≤ 1/c(A1), etc., and continue this
construction as long as we can. It ends only when we reach a set of T that
has no child, and hence by (4.4) is reduced to a single point t which we now
fix. For any set A with t ∈ A ∈ T , by construction we have

µ(B(t, 4−s(A)−1)) ≤ 1

c(A)

so that

4−s(A)−2
√

log c(A) ≤
∫ 4−s(A)−1

4−s(A)−2

√

1

logµ(B(t, ǫ))
dǫ . (4.19)

By (4.7) the intervals ]4−s(A)−2 , 4−s(A)−1[ are disjoint for different sets A
with t ∈ A ∈ T , so summation of the inequalities (4.19) yields

1

16
d(T ) ≤

∑

t∈A∈T
4−s(A)−2

√

log c(A) ≤
∫ ∞

0

√

1

logµ(B(t, ǫ))
dǫ = Iµ(t) . ⊓⊔

In the rest of this chapter, we will implicitly use the previous method of
“selecting recursively the branch of the tree we follow” to prove lower bounds
without mentioning trees.

4.2 Witnessing Measures

We start by a simple useful fact.
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Proposition 4.2.1. Consider a probability measure µ on a metric space
(T, d). Then

∫

Iµ(t)dµ(t) ≤ Lγ2(T, d) . (4.20)

Proof. Consider an admissible sequence An of partitions with

∀t ∈ T ;
∑

n≥0

2n/2∆(An(t)) ≤ 2γ2(T, d) . (4.21)

Then µ(B(t, ǫ)) ≥ µ(An(t)) for ǫ ≥ ∆(An(t)), so that

Iµ(t) ≤
∑

n≥1

∆(An−1(t))

√

log
1

µ(An(t))
.

For n ≥ 1 and A ∈ An let us denote by A′ the unique element of An−1 which
contains A. By integrating the previous inequality we get

∫

Iµ(t)dµ(t) ≤
∑

n≥1

∑

A∈An

∆(A′)µ(A)

√

log
1

µ(A)

≤ L
∑

n≥1

∑

A∈An

∆(A′)µ(A)2n/2 + L∆(T ) . (4.22)

To obtain the second inequality we group in the first term the contribu-
tions for which µ(A) ≥ N−1

n+1 and in the second term the other contri-
butions, remembering that cardAn ≤ Nn and observing that the function
x 7→ x

√

log(1/x) increases for small x. Finally integrating with respect to
µ the inequality (4.21) provides the desired control of the first term in the
right-hand side of (4.22). ⊓⊔

Proposition 4.2.2. [[75]] For a metric space (T, d), define

δ2(T, d) = sup
µ

inf
t∈T

Iµ(t) ,

where the supremum is taken over all probability measures µ on T .3 Then

1

L
γ2(T, d) ≤ δ2(T, d) ≤ Lγ2(T, d) .

A probability measure on T will be called a witnessing measure, and its
“size” is the quantity inft∈T Iµ(t).4 The important part of Proposition 4.2.2

3 Please observe that the infimum and the supremum are not as in (4.17).
4 Thus a probability measure µ on T is both a majorizing and a witnessing mea-
sure. It bounds above γ2(T, d) by C supt∈T Iµ(t) and it bounds from below
γ2(T, d) by inft∈T Iµ(t)/C. Furthermore one may find µ such that these two
bounds are of the same order.
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is that we can find a witnessing measure of size about γ2(T, d). As the name
should indicate, a witnessing measure witnesses that T is large. The magic
is simply that witnessing measures are convenient to organize counting argu-
ments.

Proof. The right-hand side inequality follows from Proposition 4.2.1 and the
trivial fact that inft∈T Iµ(t) ≤

∫

Iµ(t)dµ(t). The reader should review the
material of the previous section to follow the proof of the converse. Given an
organized tree T we define a measure µ on T by µ(A) = 0 if A ∩ S(T ) = ∅
and by

t ∈ S(T ) ⇒ µ({t}) =
1

∏

t∈A∈T c(A)
.

The intuition is that the mass carried by A ∈ T is equally divided between the
children of A. Then Iµ(t) = ∞ if t 6∈ S(T ). Consider t ∈ A ∈ T and j = j(A).
Then B(t, 4−j−2) meets only one child of A so that µ(B(t, 4−j−2)) ≤ 1/c(A).
This readily implies that LIµ(t) ≥ ∑

t∈A∈T 4−j(A)
√

log c(A) from which the
result follows by (4.13). ⊓⊔

Exercise 4.2.3. For a metric space (T, d) define

χ2(T, d) = sup
µ

inf

∫

∑

n≥0

2n/2∆(An(t))dµ(t) ,

where the infimum is taken over all admissible sequences and the supremum
over all probability measures. Prove that this measure of size is equivalent to
γ2(T, d). It is obvious that χ2(T, d) ≤ γ2(T, d), but the converse is far from
trivial. Hint: The same measure µ as in the proof of Proposition 4.2.2 works,
but you may find proving this quite challenging.


