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0. Introduction

This book had a previous edition [171]. The changes between the two editions
are not only cosmetic or pedagogical, and the degree of improvement in the
mathematics themselves is almost embarrassing at times. Besides significant
simplifications in the arguments, several of the main conjectures of [171] have
been solved and a new direction came to fruition. It would have been more
appropriate to publish this text as a brand new book, but the improvements
occurred gradually and the bureaucratic constraints of the editor did not
allow a change at a late stage without further delay and uncertainty.

We first explain in broad terms the contents of this book, and then we
detail some of the changes from [171].

What is the maximum level a certain river is likely to reach over the
next 25 years? What is the likely magnitude of the strongest earthquake to
occur during the life of a planned nuclear plant? These fundamental practical
questions have motivated (arguably also fundamental) mathematics, some of
which are the object of this book. The value X; of the quantity of interest
at time t is modeled by a random variable. What can be said about the
maximum value of X; over a certain range of ¢t? How can we guarantee that,
with probability close to one, this maximum will not exceed a given threshold?

A collection of random variables (X;):er, where t belongs to a certain
index set T, is called a stochastic process, and the topic of this book is the
study of the suprema of certain stochastic processes, and more precisely the
search for upper and lower bounds for these suprema. The key word of the
book is

INEQUALITIES.

The “classical theory of processes” deals mostly with the case where T is
a subset of the real line or of R™. We do not focus on that case, and the
book does not really expand on the most basic and robust results which
are important in this situation. Our most important index sets are “high-
dimensional”: the large sets of data which are currently the focus of so much
attention consist of data which usually depend on many parameters. Our
specific goal is to demonstrate the impact and the range of modern abstract
methods, in particular through their treatment of several classical questions
which are not accessible to “classical methods”.
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Andrey Kolmogorov invented the most important idea to bound stochas-
tic processes: chaining. This wonderfully efficient method answers with little
effort a number of basic questions, but fails to provide a complete under-
standing, even in natural situations. This is best discussed in the case of
Gaussian processes, where the family (X;)ter consists of centered jointly
Gaussian random variables (r.v.s). These are arguably the most important
of all. A Gaussian process defines in a canonical manner a distance d on its
index set T" by the formula

d(s,t) = (E(X, — X)2)V2. (0.1)

Probably the single most important conceptual progress about Gaussian pro-
cesses was the gradual realization that the metric space (T, d) is the key ob-
ject to understand them, even if T" happens to be an interval of the real line.
This led Richard Dudley to develop in 1967 an abstract version of Kolm-
gorov’s chaining argument adapted to this situation. The resulting very effi-
cient bound for Gaussian processes is unfortunately not always tight. Roughly
speaking, “there sometimes remains a parasitic logarithmic factor in the es-
timates”.

The discovery around 1985 (by Xavier Fernique and the author) of a pre-
cise (and in a sense, eract) relationship between the “size” of a Gaussian
process and the “size” of this metric space provided the missing understand-
ing in the case of these processes. Attempts to extend this result to other
processes spanned a body of work which forms the core of this book.

A significant part of the book is devoted to situations where skill is re-
quired to “remove the last parasitic logarithm in the estimates”. These situ-
ations occur with unexpected frequency in all kinds of problems. A particu-
larly striking example is as follows. Consider n? independent uniform random
points (X;);<n2 which are uniformly distributed in the unit square [0,1]%.
How far is a typical sample from being very uniformly spread on the unit
square? To measure this we construct a one-to-one map 7 from {1,...,n%}
to the vertices vy, ..., v,2 of a uniform n x n grid in the unit square. If we try
to minimize the average distance between X; and v.(;) we can do as well as
about v/logn/n but no better. If we try to minimize the mazimum distance
between X; and v, (;), we can do as well as about (log n)3/*/n but no better.
The factor 1/n is just due to scaling, but the fractional powers of log n require
a surprising amount of work.

The book is largely self-contained, but it mostly deals with rather subtle
questions such as the previous one. It also devotes considerable energy to
the problem of finding lower bounds for certain processes, a topic far more
difficult and less developed than the search for upper bounds. Even though
some of the main ideas of at least Chapter 2 could (and should!) be taught
at an elementary level, this is an advanced text.

This book is in a sense a continuation of the monograph [75], or at least
of part of it. I made no attempt to cover again all the relevant material of
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[75], but familiarity with [75] is certainly not a prerequisite, and maybe not
even helpful. The way certain results are presented there is arguably obsolete,
and, more importantly, many of the problems considered in [75] (in particular,
limit theorems) are no longer the focus of much interest.

One of my main goals is to communicate as much as possible of my expe-
rience from working on stochastic processes, and I have covered most of my
results in this area. A number of these results were proved many years ago. I
still like them, but some seem to be waiting for their first reader. The odds
of these results meeting this first reader while staying buried in the original
papers seemed nil, but they might increase in the present book form. In order
to present a somewhat coherent body of work, I have also included rather
recent results by others in the same general direction.? T find these results
deep and very beautiful. They are sometimes difficult to access for the non-
specialist. Explaining them here in a unified and often simplified presentation
could serve a useful purpose. Still, the choice of topics is highly personal and
does not represent a systematic effort to cover all the important directions.
I can only hope that the book contains enough state-of-art knowledge about
sufficiently many fundamental questions to be useful.

Let me now try to outline the progress since the previous edition.? While
attempting to explain better my results to others, I ended up understanding
them much better myself. The material of the previous edition was reduced
by about 100 pages due to better proofs.?> More importantly, reexamination
of the material resulted in new methods, and a new direction came to fruition,
that of

DECOMPOSITION THEOREMS.

The basic idea is that there are two fundamentally different way to control
the size of a sum ),y X;. One may take advantage of cancellations between
terms, or one may bound the sum by the sum of the absolute values. One may
also interpolate between the two methods, which in that case means writing
a decomposition X; = X[+ X/ and controlling the size of the sum >,y X/
by taking advantage of the cancellations between terms, but controlling the
sum Y. X/ by the sum of the absolute values. The same schoolboy idea,
in the setting of stochastic processes, is that a process can be bounded on
the one hand using chaining, and on the other hand can often be bounded
by cruder methods, involving replacing certain sums by the sums of the ab-
solute values. The amazing fact is that many processes can by controlled by
interpolating between these two methods, that is can be decomposed into
the sum two pieces, each of which can be controlled by one of these methods.

L With one single exception I did not include results by others proved after the
first edition of this book.

2 A precise comparison between the two editions may be found in Appendix G.

3 A limited quantity of material of secondary importance was also removed. The
current edition is not shorter than the previous one because many details have
been added, as well as an entire chapter on the new results, and a sketch of proof
for many exercises.
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Such is the nature of the landmark result of Bednorz and Latata [23], the
proof of the Bernoulli conjecture, which is the towering result of this book.
Several conjectures of [171] in the same general directions have been solved?
concerning in particular empirical processes and random series of functions.

Despite the considerable progress represented by the solution of these
conjectures, a number of seemingly important questions remain open, and one
of my main goals is to popularize these. Opinions differ as to what constitutes
a really important problem, but I like those I explain here because they deal
with fundamental structures. These problems might be challenging. At least,
I tried my best to make progress on them, but they have seen little progress
and received little attention.

I would like to express my infinite gratitude to Shahar Mendelson. While
he was donating his time to help another of my projects, it became clear
through our interactions that, while T had produced great efforts towards
the quality of the mathematics contained in my books, I certainly had not
put enough efforts in the exposition of this material. I concluded that there
should be real room for improvement in the text of [171], and this is why I
started to revise it, and this led to the major advances presented here.

While preparing the current text I have been helped by a number of
people. T would like to thank some of them here (and to appologize to all
those whom I do not mention). Ramon van Handel suggested a few almost
embarrassing simplifications. Hengrui Luo and Zhenyuan Zhang suggested
literately hundreds of improvements, and Rafat Meller’'s comments had a
great impact too. Further luck had it that, almost at the last minute, my text
attracted the attention of Kevin Tanguy whose efforts resulted in a higher
level of detail and a gentler pace of exposition. In particular his and Zhang’s
efforts gave me the energy to make a fresh attempt at explaining and detailing
the proof of the Bernoulli conjecture obtained by Bednorz and Latala in [23].
This proof is the most stupendously beautiful piece of mathematics I have
met in my entire life. I wish the power of this result and the beauty of this
proof become better understood.

I dedicate this work to the memory of Xavier Fernique. Fernique was a
deeply original thinker. His groundbreaking contributions to the theory of
Gaussian processes were viewed as exotic by mainstream probabilists, and he
never got the recognition he deserved. I owe a great debt to Fernique: it is
his work on Gaussian processes which made my own work possible, first on
Gaussian processes, and then on all the situations beyond this case. This work
occupied many of my most fruitful years. A large part of it is presented in the
present volume. It would not have existed without Fernique’s breakthroughs.

* After another crucial contribution of Bednorz and Martynek [25].



1. What is this Book About?

This short chapter describes the philosophy underlying this book, and some
of its highlights. This description, often using words rather than formulas, is
necessarily imprecise, and is only intended to provide some insight into our
point of view.

1.1 Philosophy

The practitioner of stochastic processes is likely to be struggling at any given
time with his favorite model of the moment, a model which typically involves
a rich and complicated structure. There is a near infinite supply of such
models. The importance with which we view any one of them is likely to vary
over time.

The first advice I received from my advisor Gustave Choquet was as
follows: always consider a problem under the minimum structure in which it
makes sense. This advice has literally shaped my mathematical life. It will
probably be as fruitful in the future as it has been in the past. By following
it, one is naturally led to study problems with a kind of minimal and intrinsic
structure. Not so many structures are really basic, and one may hope that
these will remain of interest for a very long time. This book is devoted to the
study of such structures which arise when one tries to estimate the suprema
of stochastic processes.

The feeling, real or imaginary, that one is studying objects of intrinsic im-
portance is enjoyable, but the success of the approach of studying “minimal
structures” has ultimately to be judged by its results. As we shall demon-
strate, the tools arising from this approach provide the final words on a
number of classical problems.

1.2 What is Chaining?

A stochastic process is a collection of random variables (r.v.s) (Xi)ier in-
dexed by a set T'. To study it, Kolmogorov invented chaining, the main tool
of this book. The fundamental idea of chaining is to replace the index set T'
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by a sequence of finite approximations 7T;,, and to study the r.v.s X; through
successive approximations X () where 7, (t) € T;,. The first approximation
consists of a single point tg so Ty = {to}. The fundamental relation is then

X — Xto = Z(Xﬂ'n(t) - X7Tn_1(t)) . (11)

n>1

When T is finite, the only case we really need, the sum on the right is finite.
This relation gives its name to the method: the chain of approximations m, (t)
links ¢y and ¢. To control the differences X; — X, it suffices then to control
all the differences | X ) — Xr,_ ()]

1.3 The Kolmogorov Conditions

Kolmogorov stated the “Kolmogorov conditions”, which robustly ensure the
good behavior of a stochastic process indexed by a subset of R™. These con-
ditions are studied in any advanced probability course. If you have taken such
a course, this section will refresh your memory about these conditions, and
the next few sections will present the natural generalization of the chaining
method in an abstract metric space, as it was understood in, say, 1970. Learn-
ing in detail about these historical developments now makes sense only if you
have already heard of them, because the modern chaining method, which is
presented in Chapter 2 is in a sense far simpler than the classical method.
For this reason, the material up to Section 1.4 included is directed towards a
reader who is already fluent in probability theory. If, on the other hand, you
have never heard of these things, and if you find this material too difficult,
you should start directly with Chapter 2, which is written at a far greater
level of detail and assumes minimal familiarity with even basic probability
theory.

We say that a process (X;)ier, where T = [0,1]™, satisfies the Kol-
mogorov conditions if

Vs,te[0,1]™, EjXs — X, [P < d(s,t)* . (1.2)

where d(s,t) denotes the Euclidean distance and p > 0,a > m. Here E
denotes mathematical expectation. In our notation the operator E applies to
whatever expression is placed behind it, so that E|Y|? stands for E(]Y'|?) and
not for (E|Y|)P. This convention is in force throughout the book.

Let us apply the idea of chaining to processes satisfying the Kolmogorov
conditions. The most obvious candidate for the approximating set 7;, is the
set Gy, of points x in [0,1[™ such that the coordinates of 2"z are pos-
itive integers.! Thus card G, = 2"™. It is completely natural to choose

! There is no other reason for using the points « in [0, 1[™ such that the coordi-
nates of 2"z are positive integers rather than the points x in [0,1]™ with the
same property than the fact that there are 2"™ such points rather than the
typographically unpleasant number (2" 4+ 1)™.
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mo(u) € G, as close to u as possible, so that d(u,m,(u)) < y/m2~", and
d(mp (), Tp—1(uw)) < d(m,(u),u) + d(u, m—1(w)) < 3y/m27™.
For n > 1 let us then define

U,={(s,t); s€ Gy, t€ Gy, d(s,t) <3y/m27"}. (1.3)

Given s = (s1,...,8m) € Gy, the number of points t = (t1,...,ty) € G, with
d(s,t) < 3y/m27™ is bounded independently of s and n because |t; — s;| <
d(s,t) for each i < m, so that we have the crucial property

cardU, < K(m)2"™ | (1.4)

where K (m) denotes a number depending only on m, which need not be the
same on each occurrence. Consider then the r.v.

Y, = max{|X; — Xy|; (s,1) € Un}, (1.5)
so that (and since G,,_1 C G,,) for each w,
|X7Tn(u) - Xwn_l(u)| <Y,. (16)

To avoid having to explain what is “a version of the process”, and since we
care only about inequalities, we will consider only the r.v.s X; for t € G =:
U0 Gn- We first claim that

sup |Xs — Xy <3 Z Y. (1.7)
8,t€Q ; d(s,t)<2—F n>k

To prove this consider n > k such that s,t € G,,, so that s = 7, (s) and
t = T, (t). Assuming d(s,t) < 27%, we have

d(m(s), me(t)) < d(s, me(s)) + d(s,t) + d(t, 7 (t)) < 3v/m27F
so that (m(s), m,(t)) € Uy and thus
|X7Tk(s) - Xﬂk(t)| <Y;.

Next, for u € {s,t},

Xy = Xopw) = Xrp(u) — Xop(u) = Z Xrpir(w) = Xrg(u) >

k<t<n

and since [ Xy, () — Xr,u)| < Yeyr1 we obtain [ Xy, — X ] < Zezk Yoiq.
To obtain (1.7) we then use the previous inequalities and the identity

X = Xo = Xs = Xoy(s) T X (s) = Xy + oy — X

Let us now draw some consequences of (1.7). For a finite family of numbers
V; > 0, we have
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(max V;)? < yvr, (1.8)

and thus
EYP<E Y |X,— X < K(m,a)2"(m=)
(s,t)€UR
since E|X; — X;|P < K(m, )27 for (s,t) € U, by (1.2) and using (1.4).
To proceed one needs to distinguish whether or not p > 1. For speci-
ficity we assume p > 1. Since, as we just proved, ||Y,||, := (E|Y,|?)Y/? <
K(m,p,a)2™m=)/P_the triangle inequality in LP yields?

||ZY || < K(m, p,a)2?Mm=)/P < K (m, p,o)28m=a)/p (1.9)
n>k n>k

Combining with (1.7) we then obtain

swp X, = Xl | < K(m,poa)2i e (110)
s,teG;d(s,t)<2—F P

a sharp inequality from which it is then simple to prove (with some loss of
sharpness) results such as the fact that for 0 < 8 < o — m one has

|Xs — X3P
Esup —— <. 1.11
steq d(s,1)P ( )

Exercise 1.3.1. Prove (1.11). Hint: prove that

E sup 2k81 X, — Xy < o0 . (1.12)
k>0 s,t€G;d(s,t)<2—k

Thus, chaining not only proves that the process (X;);er has a continuous
version, it also provides the very good estimate (1.10). One reason for which
everything is so easy in this case is that the size of the terms X . () —X7, ()
decreases like a geometric series.

Let us then pause for a moment and reflect on what we have been doing.

e The Euclidean metric structure of T is not really intrinsic to the problem.
Far more intrinsic is the (quasi) distance on T given by 6(s, t) = || Xs—X¢|/p-
The condition (1.2), which we may now write as §(s,t) < d(s,t)®/? simply
enforces a kind of “smallness condition” on the metric space (T, 9).

e The use of the bound (1.6) is rather pessimistic, as it bounds each of
the increments along the chain by the worst possible case among each
increment.

2 There of course the two occurrences of the constant K (m, p, a) are not the same.
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These two remarks contain in germ much of the future progress we will
make. Following the first remark, we will learn, starting with the next section,
to look at problems in a more intrinsic manner. And our sharp chaining
methods will avoid the crude bound of each increment by the worst possible
case.

There are many variations on the previous ideas. The next two exercises
explore one.

Exercise 1.3.2. Consider a convex function ¢ > 0 with ¢(0) = 0. Prove
that for r.v.s V; > 0 one has

Em?XVZ- <! (Z Ego(Vi)) . (1.13)

Exercise 1.3.3. Consider the function ¢ as above, and consider positive
numbers ¢, d,. Assume that the process (X;):er satisfies

X, — X
V>0, ¥s.teTl, d(s,t) <3/m2 ™" = Egp('s'p—“) <d,. (1.14)
‘n
Prove that
E s [X- X <33 e l(K(m2rmd) . (L15)
s,t€G,d(s,t)<2—k n>k

The series in (1.15) has no reason to converge like a geometric series, so we
already are being more sophisticated than in the case of the Kolmogorov
conditions.?

1.4 Chaining in a Metric Space: Dudley’s Bound

Suppose now that we want to study the uniform convergence on [0, 1] of a
random Fourier series X; = >, - argy cos(2mikt) where aj, are numbers and
(gx) are independent standard Gaussian r.v.s. The Euclidean structure of
[0, 1] is not intrinsic to the problem. Far more relevant is the distance d given
by

d(s,1)? = E(Xs — X¢)* =) ai(cos(2imks) — cos(2imkt))? . (1.16)
k

This simple idea took a very long time to emerge. Once one thinks about the
distance d, then in turn the fact that the index set T is [0, 1] is no longer very

3 In the left-hand side of (1.15) we would like to do better than controlling the
expectation, but one really needs some regularity of the function ¢ for this.
It suffices here to say that when ¢(z) = |z|? for p > 1 we may replace the
expectation by the norm of LP, proceeding exactly as we did in the case of the
Kolmogorov conditions.
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relevant because this particular structure does not connect very well with
the distance d. One is then led to consider Gaussian processes indexed by an
abstract set 7.* We say that (X;)er is a Gaussian process when the family
(X)ier is jointly Gaussian centered.® Then, just as in (1.16), the process
induces a canonical distance d on T' given by d(s,t) = (E(Xs — X;)?)'/2. We
will express that Gaussian r.v.s have small tails by the inequality

—'Xs_Xt|) <1,

e (1.17)

Vs, teT, E<p(

where p(x) = exp(z?/4) — 1. This inequality holds because if g is a standard
Gaussian 1.v. then Eexp(g?/4) < 2.5

To perform chaining for such a process, in the absence of further structure
on our metric space (1,d), how do we choose the approximating sets 71},?
Thinking back to the Kolmogorov conditions it is very natural to introduce
the following definition.

Definition 1.4.1. For ¢ > 0 the covering number N(T,d,€) of a metric
space (T,d) is the smallest integer N such that T can be covered by N balls
of radius €.”

Equivalently, N(T,d, €) is the smallest number N such that there exists a set
V C T with cardV < N and such that each point of T is within distance e
of V.

Let us denote by A(T) = sup, ;o7 d(s,t) the diameter of T', and observe
that N(T,d, A(T)) = 1. We construct our approximating sets 7}, as follows.
Consider the largest integer ng with A(7) < 27", For n > ng consider a
set T, C T with card T, = N(T,d,27™) such that each point of T is within
distance 27" of a point of T},.% In particular Tj consists of a single point.

We then perform the chaining as in the case of the Kolmogorov conditions,
using for m,(t) a point in T;, with d(¢, m,(¢)) < 27™. Consider

U, ={(s,t); s,t €T}, , d(s,t) <3-27"},

so that
card U, < (cardT,,)* = N(T,d,27™)? .

4 Let us stress the point. Even though the index set is a subset of R™ we have no
chance to really understand the process unless we forget this irrelevant structure.

® Centered means that EX; = 0 for each t.

6 Starting with the next chapter we will control the r.v.s | Xs — X;| through their
tail properties, and (1.17) is just another way to present the same situation.

7 Here our balls are closed balls. One could also use open balls in this definition.
There seems to be no universal agreement about this. For our purpose it makes
no difference whatsoever.

8 We do not require that T}, C Ty,+1. In Section 1.3 it does happen that G, C Gpni1
but this was not really used in the arguments.
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This crude bound is hard to improve in general and should be compared
o (1.4). We now apply (1.13) to the rv.s V; = | X, — Xy|/(3-27") for
i = (s,t) € Up. Since Ep(V;) <1 we obtain that the r.v.

Y, = max{|X, — X,|; (s,t) € U,}
satisfies
EYn < 3- 2_n§0_1(N(T7d72_n)2) )
and exactly as in the case of the Kolmogorov conditions we obtain

E sup [Xo- X[ <L) 27" '(N(T.d,27")%),
d(Sﬂt)§27k nZk

where L is a number (which may change between occurrences). We delay the
exercise of writing this inequality in integral form as

)
E sup |XS—Xt|§L/ o YN(T,d, e)*)de . (1.18)
d(s,t)<8 0

In the case of the function ¢(z) = exp(2z?/4) — 1, so that ¢~1(z) =
2¢/log(1 + ), inequality (1.18) is easily shown to be equivalent to the fol-
lowing more elegant formulation:

Theorem 1.4.2 (Dudley’s bound). If (X;)ter is a Gaussian process with
natural distance d then

5
E sup |X;— Xy < L/ log N(T,d, €)de . (1.19)
d(s,t)<8 0

This very general inequality is by far the most useful result on continuity of
Gaussian processes.

Exercise 1.4.3. Prove that the previous bound gives the correct uniform
modulus of continuity for Brownian motion on [0, 1]: for § <1,

E sup |Bs— Bi| < L+/dlog(2/9) .

ls—t|<é

The message of Chapter 2 is simple:

e However useful, Dudley’s bound is not optimal in a number of fundamen-
tally important situations.

e It requires no more work to obtain a better bound which is optimal in
every situation.
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1.5 Overall Plan of the Book

A specific feature of the index set 7' = [0, 1]™ (provided with the Euclidean
distance) occurring in the Kolmogorov conditions is that it is really “m-
dimensional” and “the same around each point”. This is not the case for
index sets which occur in a great many natural situations. If one had to
summarize in one sentence the content of the upper bounds presented in this
book, it would be that they develop methods which are optimal even when
this feature does not occur.

The main tools are built in Parts I and II. Part I is devoted to the most
important situation we consider in the book, the study of Gaussian processes,
and we learn the basic concepts on how to measure the “size” of a metric
space. The effectiveness of the corresponding tools is then demonstrated by
proving classical results on matchings.

The goal of Part II is to extend the results of the Gaussian case to other
more general processes. This program of building the proper tools to go be-
yond the Gaussian case was started by the author soon after he obtained
his results on Gaussian processes (which are presented in Chapter 2). It is
a significant endeavor which requires a number of new concepts. The most
important of these is the idea of families of distances. We can no longer en-
tirely describe the situation using a single distance on the index set (as is the
case for Gaussian processes). In some sense this program has been completed.
Most of the results which were dreamed by the author? between 1985 and
1990 are now proved in Chapter 11.

Part III explores situations which belong to the same circle of ideas but
in diverse directions.

1.6 Does this Book Contain any Ideas?

At this stage it is not really possible to precisely describe any of the new ideas
which will be presented, but if the following statements are not crystal-clear
to you, you may have something to learn from this book.

Idea 1. It is possible to organize chaining optimally using increasing se-
quences of partitions.

Idea 2. There is an automatic device to construct such sequences of parti-
tions, using “functionals”, quantities which measure the size of the subsets
of the index set. This yields a complete understanding of boundedness of
Gaussian processes.

Idea 3. Ellipsoids are much smaller than one would think, because they
(and more generally, sufficiently convex bodies) are thin around the edges.

9 Including some which sounded like crazily optimistic conjectures!
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This explains the funny fractional powers of logarithms in certain matching
theorems.

Idea 4. One may witness that a metric space is large by the fact that it
contains large trees, or equivalently that it supports an extremely scattered
probability measure.

Idea 5. Consider a set T on which you are given a distance d and a random
distance d,, such that, given s,t € T, it is rare that the distance d(s,t) is
much smaller that d(s,t). Then if in the appropriate sense (7, d) is large, it
must be the case that (7', d,) is typically large. This principle enormously
constrains the structure of many bounded processes built on random series.

Idea 6. There are different ways a random series might converge. It might
converge because chaining witnesses that there is cancellation between terms,
or it might converge because the sum of the absolute values of its terms
already converges. Many processes built on random series can be split in two
parts, each one converging according to one of the previous phenomena.

The book contains many more ideas, but you will have to read more to
discover them.

1.7 Overview by Chapters

1.7.1 Gaussian Processes and the Generic Chaining

This subsection gives an overview of Chapter 2. More generally, Subsec-
tion 1.7.n gives the overview for Chapter n + 1.

The most important question considered in this book is the boundedness
of Gaussian processes. The key object is the metric space (T, d) where T is the
index set and d the intrinsic distance (0.1). As investigated in Section 2.11 this
metric space is far from being arbitrary: it is isometric to a subset of a Hilbert
space. It is, however, a deadly trap to try to use this specific property of the
metric space (T, d). The proper approach is to just think of it as a general
metric space.

After reviewing some elementary facts, in Section 2.4 we explain the basic
idea of the “generic chaining”, one of the key ideas of this work. Chaining
is a succession of steps that provide successive approximations of the index
space (T,d). In the Kolmogorov chaining, for each n the difference between
the n-th and the (n + 1)-th approximation of the process, which we call here
“the variation of the process during the n-th chaining step”, is “controlled
uniformly over all possible chains”. Generic chaining allows that the variation
of the process during the n-th chaining step “may depend on which chain we
follow”. Once the argument is properly organized, it is not any more compli-
cated than the classical argument. It is in fact exactly the same. Yet, while
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Fig. 1.1. Dependence chart between chapters. Very marginal dependence is not
indicated.

Dudley’s classical bound is not always sharp, the bound obtained through the
generic chaining is optimal. Entropy numbers are reviewed in Section 2.5.

It is technically convenient to formulate the generic chaining bound using
special sequences of partitions of the metric space (7', d), that we shall call
admissible sequences throughout the book. The key to make the generic chain-
ing bound useful is then to be able to construct admissible sequences. These
admissible sequences measure an aspect of the “size” of the metric space and
are introduced in Section 2.7. In Section 2.8 we introduce another method
to measure the “size” of the metric space, through the behavior of certain
“functionals”, which are simply numbers attached to each subset of the entire
space. The fundamental fact is that the two measures of the size of the metric
space one obtains through either admissible sequences or through functionals
are equivalent in full generality. This is proved in Section 2.8 for the easy part
(that the admissible sequence approach provides a larger measure of size than
the functional approach) and in Section 2.9 for the converse. This converse is,
in effect, an algorithm to construct sequences of partitions in a metric space
given a functional. Functionals are of considerable use throughout the book.



1.7 Overview by Chapters 15

In Section 2.10 we prove that the generic bound can be reversed for
Gaussian processes, therefore providing a characterization of their sample-
boundedness. Generic chaining entirely explains the size of Gaussian pro-
cesses, and the dream of Section 2.12 is that a similar situation will occur for
many processes.

In Section 2.11 we explain why a Gaussian process in a sense is nothing
but a subset of Hilbert space. Remarkably, a number of basic questions remain
unanswered, such as how to relate through geometry the size of a subset of
Hilbert space seen as a Gaussian process with the corresponding size of its
convex hull.

Dudley’s bound fails to explain the size of the Gaussian processes indexed
by ellipsoids in Hilbert space. This is investigated in Section 2.13. Ellipsoids
will play a basic role in Chapter 4.

1.7.2 Trees and Other Measures of Size

We describe different notions of trees, and show how one can measure the
“size” of a metric space by the size of the largest trees it contains, in a way
which is equivalent to the measures of size introduced in Chapter 2. This idea
played an important part in the history of Gaussian processes. Its appeal is
mostly that trees are easy to visualize. Building a large tree in a metric space
is an efficient method to bound its size from below. We then learn a method
of Fernique to measure the size of a metric space through certain properties
of the probability measures on it. It will be amenable to vast generalizations.

1.7.3 Matching Theorems

Chapter 4 makes the point that the generic chaining (or some equivalent form
of it) is already required to really understand the irregularities occurring in
the distribution of N points (X;);<n independently and uniformly distributed
in the unit square. These irregularities are measured by the “cost” of pairing
(=matching) these points with N fixed points that are very uniformly spread,
for various notions of cost.

These optimal results involve mysterious powers of log N. We are able
to trace them back to the geometry of ellipsoids in Hilbert space, so we
start the chapter with an investigation of these ellipsoids in Section 4.1. The
philosophy of the main result, the Ellipsoid Theorem, is that an ellipsoid
is in some sense somewhat smaller than it appears at first. This is due to
convexity: an ellipsoid gets “thinner” when one gets away from its center.
The Ellipsoid Theorem is a special case of a more general result (with the
same proof) about the structure of sufficiently convex bodies, one that will
have important applications in Chapter 19.

In Section 4.3 we provide general background on matchings. In Sec-
tion 4.5 we investigate the case where the cost of a matching is measured
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by the average distance between paired points. We prove the result of Ajtai,
Komlés, Tusnady, that the expected cost of an optimal matching is at most
L\Iog N/vV/N where L is a number. The factor 1/v/N is simply a scaling
factor, but the fractional power of log is optimal as shown in Section 4.6. In
Section 4.7 we investigate the case where the cost of a matching is measured
instead by the maximal distance between paired points. We prove the the-
orem of Leighton and Shor that the expected cost of a matching is at most
L(log N)3/*//N, and the power of log is shown to be optimal in Section 4.8.

With the exception of Section 4.1, the results of Chapter 4 are not con-
nected to any subsequent material before Chapter 17.

1.7.4 Warming up With p-stable Processes

With this chapter we start the program of vastly extending the results of
Chapter 2 concerning Gaussian processes. We outline several of the fruitful
methods on the class of p-stable processes, based on their property of being
conditionally Gaussian.

1.7.5 Bernoulli Processes

Random signs are obviously important r.v.s, and occur frequently in con-
nection with “symmetrization procedures”, a very useful tool. In a Bernoulli
process the individual random variables X; are linear combinations of inde-
pendent random signs. Fach Bernoulli process is associated with a Gaussian
process in a canonical manner, when one replaces the random signs by inde-
pendent standard Gaussian r.v.s. The Bernoulli process has better tails than
the corresponding Gaussian process (it is “subgaussian”) and is bounded
whenever the corresponding Gaussian process is bounded. There is, however,
a completely different reason for which a Bernoulli process might be bounded,;
namely, that the sum of the absolute values of the coefficients of the random
signs remain bounded independently of the index t. A natural question is then
to decide whether these two extreme situations are the only fundamental rea-
sons why a Bernoulli process can be bounded, in the sense that a suitable
“mixture” of them occurs in every bounded Bernoulli process. This was the
“Bernoulli Conjecture” (to be stated formally on page 167), which has been
so brilliantly solved by W. Bednorz and R. Latala.

It is a long road to the solution of the Bernoulli conjecture, and we start
to build the main tools bearing on Bernoulli processes. A linear combination
of independent random signs looks like a Gaussian r.v. when the coefficients
of the random signs are small. We can expect that a Bernoulli process will
look like a Gaussian process when these coefficients are suitably small. This is
a fundamental idea: the key to understanding Bernoulli processes is to reduce
to situations where these coefficients are small.
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The Bernoulli conjecture, on which the author worked so many years,
greatly influenced the way he looked at various processes. In the case of
empirical processes, this is explained in Section 6.8.

1.7.6 Random Fourier Series and Trigonometric Sums

The basic example of a random Fourier series is

Xy =Y &exp(2nikt) (1.20)
k>1
where i2 = —1, where t € [0,1] and the r.v.s &, are independent symmetric.

In this chapter we provide a final answer to the question of the convergence
of such series.

The fundamental case where £ = apgx for numbers aj, and independent
Gaussian r.v.s (gx) is of great historical importance. There is, however, an-
other motivation for the study of such series. The generic chaining and related
methods are well adapted to the case of a “non-homogeneous index space”.
The study of certain of the processes we will consider in the next chapters
is already subtle even in the absence of the extra difficulty due to this lack
of homogeneity. The setting of random Fourier series allows us to put aside
the issue of lack of homogeneity and to concentrate on the other difficulties,
and played a great part in the development of the theory. It provides an ideal
setting to understand a basic fact: many processes can be exactly controlled,
not by using one or two distances, but by using an entire family of distances.
This concept of “family of distances” will play a major role later. It is also
while analyzing the lower bounds discovered in the setting of random Fourier
series that the author discovered the method which allows to extend these
bounds to general random series as explained in Chapter 11. In this chapter
we also meet our first “decomposition theorem”: there are two distinct rea-
sons which explain the size of a random trigonometric sum. First, there can
be a lot of cancellation between the terms. Second, it may happen that the
sum of the absolute values of the terms is already small. We show that every
random trigonometric sum is the sum of two such pieces, one of each type.

1.7.7 Partition Scheme for Families of Distances

Once one has survived the initial surprise of the new idea that many processes
are naturally associated to an entire family of distances, it is very pleasant
to realize that the tools of Section 2.9 can be extended to this setting with
essentially the same proof. This is the purpose of Section 8.1.

In Section 8.3 we apply these tools to the situation of “canonical pro-
cesses” where the r.v.s X; are linear combinations of independent copies of
symmetric r.v.s with density proportional to exp(—|z|%) where v > 1 (and
to considerably more general situations as discovered by R. Latala). In these
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situations, the size of the process can be completely described from the ge-
ometry of the index space, a far reaching extension of the Gaussian case.

1.7.8 Peaky parts of Functions

We learn how to measure the size of sets of functions on a measured space
using an appropriate family of distances. We show that when we control this
size, for each function of the set we can distinguish its “peaky part” in a
coherent way over the whole set of functions which then has in a sense a
simple structure, as it is built from simpler pieces.

1.7.9 Proof of the Bernoulli Conjecture

Having learned how to manipulate “families of distances” we are now bet-
ter prepared to prove the Bernoulli conjecture. This is the (overwhelmingly
important) Latala-Bednorz theorem. The challenging proof occupies most of
Chapter 10.10 In the last section we investigate how to get lower bounds on
Bernoulli processes using “witnessing measures”.

1.7.10 Random Series of Functions

For a large class of random series of functions, we prove in full generality that
chaining explains all the part of the boundedness of these processes created
by cancellations, in the spirit of the Bernoulli conjecture. This covers both
the cases of empirical processes and of the closely related class of selector
processes. Our main tool is to reduce to processes which are conditionally
Bernoulli processes and to use the Latata-Bednorz theorem and its conse-
quences.

1.7.11 Infinitely Divisible Processes

The infinitely divisible processes we study are indexed by a general set, and
are to Lévy processes what a general Gaussian process (index by an arbitrary
index set) is to Brownian motion (a Gaussian process indexed by R with
stationary increments). We extend to these processes our results on random
series of functions: chaining explains all the part of the boundedness of these
processes which is due to cancellations. The results are described in complete
detail with all definitions in Section 12.3.

10 1t is a good research program to discover a more intuitive approach to this result.
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1.7.12 Unfulfilled Dreams

Having proved in several general settings that “chaining explains all the part
of the boundedness which is due to cancellation”, we concentrate on the
problem of describing the “part of the boundedness which owes nothing to
cancellation”. We propose sweeping conjectures. The underlying hope behind
these conjectures is that, ultimately, a bound for a selector process always
arises from the use of the ‘union bound’ P(U,A,) < >°, P(4,) in a sim-
ple situation, the use of basic principles such as linearity and positivity, or
combinations of these.

1.7.13 Empirical Processes

We focus on a special yet fundamental topic: the control of the supremum of
the empirical process over a class of functions.

We demonstrate again the power of the chaining scheme of Section 9.4
by providing a sharper version of Ossiander’s bracketing theorem with a very
simple proof. We then illustrate various techniques by presenting proofs of
two deep recent results.

1.7.14 Gaussian Chaos

Our satisfactory understanding of the properties of Gaussian processes should
bring information about processes that are, in various senses, related to Gaus-
sian processes. Such is the case of an order two Gaussian chaos (which is
essentially a family of second degree polynomials of Gaussian random vari-
ables). It seems at present a hopelessly difficult task to give lower and upper
bounds of the same order for these processes, but in Section 15.1 we obtain
a number of results in this direction. Chaos processes are very instructive
because there exist other methods than chaining to control their size (a sit-
uation which we do not expect to occur for processes defined as sums of a
random series).

In Section 15.2 we study the tails of a single multiple-order Gaussian
chaos, and present (yet another) deep result of R. Latala which provides a
rather complete description of the size of these tails.

1.7.15 Convergence of Orthogonal Series; Majorizing Measures

The old problem of characterizing the sequences (a,,) such that for each or-
thonormal sequence (¢, ) the series >, -, am@m converges a.s. was solved by
A. Paszkiewicz. Using a more abstract point of view, we present a very much
simplified proof of his results (due essentially to W. Bednorz). This leads us
to the question of discussing when a certain condition on the “increments” of
a process implies its boundedness. When the increment condition is of “poly-
nomial type”, this is more difficult than in the case of Gaussian processes,
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and requires the notion of “majorizing measure”. We present several elegant
results of this theory, in their seemingly final forms recently obtained by W.
Bednorz.

1.7.16 Shor’s Matching Theorem

This chapter continues Chapter 4. We prove a deep improvement of the Ajtai,
Komlés, Tusnady theorem due to P. Shor. Unfortunately, due mostly to our
lack of geometrical understanding, the best conceivable matching theorem,
which would encompass this result as well as those of Chapter 4, and much
more, remains as a challenging problem, “the ultimate matching conjecture”
(a conjecture which is solved in the next chapter in dimension > 3).

1.7.17 The Ultimate Matching Theorem in Dimension Three

In this case, which is easier than the case of dimension two (but still ap-
parently rather non-trivial), we are able to obtain the seemingly final result
about matchings, a strong version of “the ultimate matching conjecture”.
There are no more fractional powers of log N here, but in a random sample
of N points uniformly distributed in [0, 1]3, local irregularities occur at all
scales between N~1/3 and (log N)/3N~=1/3 and our result can be seen as a
precise global description of these irregularities.

1.7.18 Applications to Banach Space Theory

Chapter 19 gives applications to Banach space theory. As interest in this
theory has decreased in recent years, we have not reproduced many of the
results of [171], and we urge the interested reader to consult this earlier edi-
tion. We have kept only the results which make direct use of results presented
elsewhere in the book (rather than including results based on the methods of
the book). In Section 19.1.2, we study the cotype of operators from ¢3? into
a Banach space. In Section 19.1.3, we prove a comparison principle between
Rademacher (=Bernoulli) and Gaussian averages of vectors in a finite dimen-
sional Banach space, and we use it to compute the Rademacher cotype-2 of a
finite dimensional space using only a few vectors. In Section 19.2.1 we discover
how to classify the elements of the unit ball of L' “according to the size of
the level sets”. In Section 19.2.3 we explain, given a 1-unconditional sequence
(e;)i<n in a Banach space E how to “compute” the quantity E|| Y. gse;|| when
g; are independent Gaussian r.v.s, a further variation on the fundamental
theme of the interplay between the L', L? and L* norms. In Section 19.3.1
we study the norm of the restriction of an operator from ¢% to the subspace
generated by a randomly chosen small proportion of the coordinate vectors,
and in Section 19.3.2 we use these results to deduce the celebrated results of
J. Bourgain on the A, problem. Recent results of Gilles Pisier on Sidon sets
conclude this chapter in Section 19.4.



Part I

The Generic Chaining






2. Gaussian Processes and the Generic
Chaining

2.1 Overview

The overview of this chapter is given in Chapter 1, Subsection 1.7.1. More
generally, Subsection 1.7.n is the overview of Chapter n + 1.

2.2 Measuring the Size of the Supremum

In this section we consider a metric space (T, d) and a process (X;)¢er. Unless
explicitly specified otherwise (and even when we forget to repeat it) we will
always assume that the process is centered, i.e.

VteT, EX,=0. (2.1)

We will measure the “size of the process (X;)ier” by the quantity
Esup;c X¢. Why this quantity is a good measure of the “size of the pro-
cess”, is explained in Lemma 2.2.1 below.

When T' is uncountable it is not obvious what the quantity Esup,c+ X;
means.! We define it by the following formula:

Esup X; = sup{Esup Xy FCT, F ﬁnite} , (2.2)
teT telr

where the right-hand side makes sense as soon as each r.v. X; is integrable.
This will be the case in almost all the situations considered in this book.

Let us say that a process (Xi)ier is symmetric if it has the same law as
the process (—X;) 7. Almost all the processes we shall consider are sym-
metric (although this hypothesis is not necessary for some of our results).
The following lemma justifies using the quantity Esup, X; to measure “the
size of a symmetric process”.

Lemma 2.2.1. If the process (Xi)ier is symmetric then

E sup | X, — Xi| =2Esup X, .
s,;teT teT

! Such questions are treated in detail e.g. in [75] pages 42-43.
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Proof. We note that

sup |Xs — X¢| = sup (X — X;) = sup X +sup(—Xy),
s,teT s,te’T seT teT

and we take expectations.? O

Exercise 2.2.2. Consider a symmetric process (X;)ier. Given any to in T
prove that
Esup | X;| < 2Esup X; + E| Xy, | < 3Esup | Xy . (2.3)
teT teT teT

The previous exercise is easy, but this need not be always the case. The
author has never taught this material in a classroom, and cannot really eval-
uate the level of difficulty of the exercises for a beginner. So please do not feel
discouraged if most of the exercises feel like research problems.? A sketch of a
solution is provided for almost every exercise. For the exercises which are too
difficult, understanding this very concise sketch is in itself a good exercise.
Just try to peck at the solution one line at a time.

In this book, we often state inequalities about the supremum of a symmet-
ric process using the quantity E sup,c X; simply because this quantity looks
typographically more elegant than the equivalent* quantity E SUpP; e | Xs —
X.|. It is good to remember that when X,;, = 0 for some ¢y, € T, (2.3) shows
that there is not so much difference between Esup,cp X; and Esup,cp | X¢|.

We actually often need to control the tails of the r.v. sup, ;o7 | X5 — X¢|,
not only its first moment. Emphasis is given to the first moment because this
is the difficult part, and once this is achieved, control of higher moments is
often provided by the same arguments.

2.3 The Union Bound and Other Basic Facts

From now on we assume that the process (X;);cp satisfies the increment
condition:

2

u
Yu >0, P(|X3*Xt‘ 2U>§29Xp(*2d(s—t)2) s (24)

2 To be really rigorous, we should first consider the case where 1" is finite and then
appeal to (2.2), but it is better to skip this kind of tedious detail.
I had feedback from talented readers who felt that way. Consequently, I did not
shy away to state as “exercises” rather non-trivial material complementing the
text while being fully aware that one has to have achieved a rather complete
understanding of the concepts as well as a mastery of the techniques to solve
them.
Equivalent does not mean equal, we have been dropping a factor 2 here. Gener-
ally speaking the methods of this book are not appropriate to find sharp numer-
ical constants and all the crucial inequalities are “sharp within a multiplicative
constant”.

w
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where d is a distance on T. In particular this is the case when (X;)er is a

Gaussian process and d(s,t)? = E(X — X;)?. Our goal is to find bounds on

Esup,cr X depending on the structure of the metric space (T, d). We will

assume that 7" is finite, which, as shown by (2.2), does not decrease generality.
Given any to in T, the centering hypothesis (2.1) implies

Esup X; = Esup(X; — Xy,) - (2.5)
teT teT

The latter form has the advantage that we now seek estimates for the expec-
tation of the non-negative r.v. ¥ = sup,c(X; — Xy, ). For such a variable we
have the formula

EY = /OO PY >u)du. (2.6)
0

Let us note that since the function u — P(Y > w) is non-increasing, for any
u > 0 we have the following

EY > uP(Y >u) . (2.7)

In particular P(Y > u) < EY/u, a very important fact known as Markov’s
inequality. Arguments such as the following one will be of constant use.

Exercise 2.3.1. Consider ar.v.Y > 0 and a > 0. Prove that P(Y < «EY) >
1-1/a.

Let us stress the content of this result. It will be used when Y is a kind a
random error, of very small expectation, EY = b2 where b is small. Then
most of time Y is small: P(Y <b) > 1 —b.

According to (2.6) it is natural to look for bounds of

P<f£(Xt - X)) > u) . (2.8)

The first bound that comes to mind is the “union bound”

P(sup(Xt ~Xy) > u) <3 P(Xi - Xy 2 u) . (2.9)
teT teT

It seems worthwhile to immediately draw some consequences from this bound,
and to discuss at leisure a number of other simple, yet fundamental facts. This
will take a bit over three pages, after which we will come back to the main
story of bounding Y. Throughout this work, A(T") denotes the diameter of
T,

A(T) = sup d(t1,t2) . (2.10)

t1,t2€T

When we need to make clear which distance we use in the definition of the
diameter, we will write A(T,d) rather than A(T). Consequently (2.4) and
(2.9) imply
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2

P(sup(Xt —Xi,) > u) < 2cardTeXp(—2Alz—T)2> . (2.11)

teT

Let us now record a simple yet important computation, that will allow us to
use the information (2.11).

Lemma 2.3.2. Consider a r.v. Y > 0 which satisfies

2
Yu>0,PY >u) < Aexp(—%) (2.12)

for certain numbers A > 2 and B > 0. Then

EY < LBy/log A . (2.13)

Here, as in the entire book, L denotes a universal constant.” We make the
convention that this constant is not necessarily the same on each occurrence
(even in the same equation). This should be remembered at all times. One
of the benefits of the convention (as opposed to writing explicit constants) is
to make clear that one is not interested in getting sharp constants. Getting
sharp constants might be useful for certain applications, but it is a different
game.% The convention is very convenient, but one needs to get used to it.
Now is the time for this, so we urge the reader to pay the greatest attention
to the next exercise.

Exercise 2.3.3. (a) Prove that for 2,57 € Rt we have zy — La® < Ly3/2.
(Please understand this statement as: given a number L1, there exists a num-
ber Ly such that for all 2,y € R we have zy — Liz'/3 < Loy3/2.)

(b) Consider a function p(u) <1 for u > 0. Assume that for u > L we have
p(u) < Lexp(—u?/L). Prove that for all u > 0 we have p(Lu) < 2exp(—u?).
(Of course, this has to be understood as follows: assume that for a certain
number L, for u > L; we have p(u) < Ly exp(—u?/L;). Prove that there
exists a number Lo such that for all u > 0 we have p(Lou) < exp(—u?).)

(c¢) Consider an integer N > 1. Prove that

N%exp(—(log N)*2/L) < Lexp(—(log N)*?/L) .

Proof of Lemma 2.3.2. We use (2.6) and we observe that since P(Y > u) <1,
for any number ug we have

5 When meeting an unknown notation such as this previous L, the reader might
try to look at the indez, where some of the most common notation is recorded.
5 Our methods here are not appropriate for this.
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[eS) uo o
EY = / P(Y > u)du = / P(Y > u)du +/ P 2 u)du
0 0 u

(0]

< wug —I—/OOAeXp(—é)du

0

< g+ —/ uAexp( —Q)du

( ) (2.14)

The choice of ug = B+/log A gives the bound

B
By/loc A+ —— < LB+/log A
R Wiy

since A > 2. 0

Next, recalling that the process (Xi)icr is assumed to satisfy (2.4)
throughout the section, we claim that

Esup X; < LA(T)+/logcard T . (2.15)
teT
Indeed, this is obvious if card T' = 1. If card T" > 2 it follows from (2.11) that
(2.12) holds for ¥ = sup,c(X; — Xy,) with A = 2cardT and B = A(T),
and the result follows from (2.13) since log(2 card T') < 2log card T and EY =
Esup;er X;.
The following special case is fundamental.

Lemma 2.3.4. If (gx)k>1 are standard Gaussian r.v.s then
E sup g < Ly/logN . (2.16)
k<N

Exercise 2.3.5. (a) Prove that (2.16) holds for any r.v.s gy which satisfy

Plgr 2 u) < ZeXp(—lg) (2.17)

for u > 0.

(b) For N > 2 construct N centered r.v.s (gi)x<n satisfying (2.17), and
taking only the values 0,4+/log N and for which Esup, gx > Iog N/L.
(You are not yet asked to make these r.v.s independent.)

(c) After learning (2.18) below, solve (b) with the further requirement that
the r.v.s gi are independent. If this is too hard, look at Exercise 2.3.7, (b)
below.

This is taking us a bit ahead, but an equally fundamental fact is that when the
r.v.s (gr) are jointly Gaussian, and “significantly different from each other”
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ie. E(gr — g¢)? > a® > 0 for k # £, the bound (2.16) can be reversed, i.e.
Esups<n gk > av/Iog N /L, a fact known as Sudakov’s minoration. Sudakov’s
minoration is a non-trivial fact, and to understand it, it should be really useful
to solve Exercise 2.3.7 below. However, before that let us point out a simple
fact, that will be used many times.

Exercise 2.3.6. Consider independent events (Ag)r>1. Prove that

P( U Ak) >1- exp(— > P(Ak)) - (2.18)

k<N k<N

In words: independent events such that the sum of their probabilities is small
are basically disjoint.

Exercise 2.3.7. (a) Consider independent r.v.s Y3, > 0 and u > 0 with

S PYr>u)>1. (2.19)
k<N

Prove that u
Esup Y, > —.
kgg =T
Hint: use (2.18) to prove that P(supy<y Yi > u) > 1/L.
(b) We assume (2.19), but now Y}, need not be > 0. Prove that

Esup Vi > — — E|Y3].
k<N L

Hint: observe that for each event 2 we have E1 sup, Y > —E|Y1].
(c) Prove that if (gi)rx>1 are independent standard Gaussian r.v.s then
Esupp<n gk > Viog N/L.

Before we go back to our main story, we consider in detail the conse-
quences of an “exponential decay of tails” such as in (2.12). This is the point
of the next exercise.

Exercise 2.3.8. (a) Assume that for a certain B > 0 the r.v. Y > 0 satisfies

Vu>0, P(Y >u) SQeXp(—%). (2.20)
Prove that v
— | < L. .
Eexp(2B) <L (2.21)

Prove that for z,a > 0 one has (z/a)* < expz. Use this for a = p and
x =Y/2B to deduce from (2.21) that for p > 1 one has

(EY?)YP < LpB . (2.22)
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(b) Assuming now that for a certain B > 0 one has

2
Yu>0, P(Y >u) SQexp(—%), (2.23)

prove similarly (or deduce from (a)) that Eexp(Y?2/2B?) < L, and that for

p > 1 one has
(EY?")Y? < LB\p. (2.24)

(c) Consider a r.v. Y > 0 and a number B > 0. Assuming that for p > 1
we have (EYP)/? < Bp prove that for v > 0 we have P(Y > u) <
2exp(—u/(LB)). Assuming that for each p > 1 we have (EY?)Y/? < B,/p
prove that for u > 0 we have P(Y > u) < 2exp(—u?/(LB?)).

In words, (2.22) states that “as p increases, the L? norm of an exponentially
integrable r.v. does not grow faster than p,” and (2.24) asserts that if the
square of the r.v. is exponentially integrable, then its LP norm does not grow
faster than ,/p. These two statements are closely related. More generally it is
very classical to relate the size of the tails of a r.v. with the rate of growth of
its LP norm. This is not explicitly used in the sequel, but is good to know as
background information. As the following shows, (2.24) provides the correct
rate of growth in the case of Gaussian r.v.s.

Exercise 2.3.9. If g is a standard Gaussian r.v. it follows from (2.24) that
for p > 1 one has (E|g|?)"/? < L,/p. Prove one has also

(ElgP)/P > %3 : (2.25)

One knows how to compute exactly E|g|?, from which one can deduce (2.25).
You are however asked to provide a proof in the spirit of this work by deducing
(2.25) solely from the information that, say, for v > 0 we have (choosing on
purpose crude constants) P(|g| > u) > exp(—u?/3)/100.

You will find basically no exact computations in this book. The aim is
different. We study quantities which are far too complicated to be computed
exactly, and we try to bound them from above, and sometimes from below by
simpler quantities with as little a gap as possible between the upper and the
lower bounds. Ideally the gap is only a (universal) multiplicative constant.

2.4 The Generic Chaining

We go back to our main story. The bound (2.9) (and hence (2.15)) will be
effective if the variables X; — X, are rather uncorrelated (and if there are not
too many of them). But it will be a disaster if many of the variables (Xy)ier
are nearly identical. Thus it seems a good idea to gather those variables X;
which are nearly identical. To do this, we consider a subset T} of 7', and
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for t in T we consider a point 7y (¢) in 71, which we think of as a (first)
approximation of t. The elements of T" which correspond to the same point
m1(t) are, at this level of approximation, considered as identical. We then
write

X — Xto =X; — Xﬂ.l(t) + Xﬂ.l(t) — Xto . (2.26)

The idea is that it will be effective to use (2.9) for the variables X () — X,
because there are not too many of them and, if we have done a good job
at finding 7 (t), they are rather different from each other (at least in some
global sense). On the other hand, since 71(t) is an approximation of ¢, the
variables Xy — X (;) are “smaller” than the original variables X; — Xy, so
that their supremum should be easier to handle. The procedure will then be
iterated.

Let us set up the general procedure. For n > 0, we consider a subset T;, of
T, and for t € T we consider 7, (t) in T},. (The idea is that the points 7, (t)
are successive approximations of t.) We assume that T consists of a single
element tg, so that my(t) = to for each t in 7. The fundamental relation is

Xo— Xty =Y (Xnnty = Xnws(t) » (2.27)

n>1

which holds provided we arrange that 7, (t) = t for n large enough, in which
case the series is actually a finite sum. Relation (2.27) decomposes the incre-
ments of the process X; — X, along the “chain” (m,(t))n>0 (and this is why
this method is called “chaining”).
It will be convenient to control the set T, through its cardinality with the
condition
cardT,, < N, (2.28)

where
No=1;N,=2% if n>1. (2.29)

The notation (2.29) will be used throughout the book. It is at this stage that
the procedure to control 7T;, differs from the traditional one, and it is the
crucial point of the generic chaining method.

It is good to notice right away that /Iog N,, is about 2"/2, which will
explain the ubiquity of this latter quantity. The occurrence of the function
Vlog  itself is related to the fact that it is the inverse of the function exp(z?),
and that the function exp(—z?) governs the size of the tails of a Gaussian
r.v. Let us also observe the fundamental inequality

2
N, <Npy1,

which makes it very convenient to work with this sequence.
Since m,(t) approximates ¢, it is natural to assume that”

7 The notation := below stresses that this is a definition, so that you should not
worry that your memory failed and that you did not see this before.
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d(t, ma(t)) = d(t,To) = inf dt.s). (2.30)

For u > 0, (2.4) implies
P(1 Xty = X 1] > 1L2"/2d(7rn(t),7rn_1(t))) < 2exp(—u?2"71).
The number of possible pairs (7, (t), m,—1(t)) is bounded by
card T, - card Tpy_1 < NpNp_y < Npyq = 22"
We define the (favorable) event (2, , by
Y, | Xty = Xy < 02" 2d(m (), moi (1)) - (2.31)

and we define 2, = ﬂn21 2y n- Then

plu) == P(28) < ST P(828,) < 3227 exp(-u?2" ). (2.32)

n>1 n>1

Here again, at the crucial step, we have used the union bound: P(£2¢) <
> on>1 P(£25 ). When £2, occurs, (2.27) yields

X, — Xyl <u Z 2" 2d(m, (), ™1 (1))

n>1

so that

sup | X; — X, | < uS

teT
where

Si=sup Y 2" %d(mp(t). mno1(t)).
teT 137

Thus

P(sup | Xy — X3 > uS) < p(u).
teT

For n > 1 and w > 3 we have
2 2
u2or—1 > % + 222 > % 4ot

from which it follows that

p(u) < Lexp(fu;) .

We observe here that since p(u) < 1 the previous inequality holds not only
for u > 3 but also for u > 0, because 1 < exp(9/2) exp(—u?/2) for u < 3.
This type of argument (i.e. changing the universal constant in front of the
exponential, cf. Exercise (2.3.3)(b)) will be used repeatedly. Therefore
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u?

P(fgg | X — X3 > uS) < Lexp( - —) . (2.33)

In particular (2.33) implies

Esup X; < LS.
teT

The triangle inequality yields
A (t), Tn—1(t)) < d(t,mn(t)) + d(t, mn-1(t)) = d(t, Ty,) + d(t, Tp—1),

so that (making the change of variable n = n’ + 1 in the second sum below)

S <sup Z 2%2d(t, T,,) + sup Z 2 2d(t, Ty—1) < 3sup Z 2V24(t,T),)
teT 157 teT 157 teT >0

and we have proved the fundamental bound

Esup X; < Lsup Z 2 2d(t,T,,) . (2.34)
teT teT 15

Now, how do we construct the sets 7,7 It is obvious that we should
try to make the right-hand side of (2.34) small, but this is obvious only
because we have used an approach which naturally leads to this bound. In
the next section, we investigate how this was traditionally done. Before this,
we urge the reader to fully understand the next exercise. It will be crucial to
understand a typical case where the traditional methods are not effective.

Exercise 2.4.1. Consider a countable metric space, T = {ti,ta,...}. As-
sume that for each ¢ > 2 we have d(t1,t;) < 1/y/logi. Prove that if
T, = {t1,ta,...,tN, } then for each t € T' we have ano 2n/2d(t,T,,) < L.

We end this section by reviewing at a high level the scheme of the previous
proof (which will be used again and again). The goal is to bound EY where
Yisar.v. >0 (here Y = sup,(X: — Xy,).) The method consists of two steps:

e Given a parameter v > 0 one identifies a “good set” §2,, where some
undesirable events do not happen. As u becomes large P(£2¢) becomes
small.

e When 2, occurs we bound Y, say Y < f(u) where f is an increasing
function on R*.

One then obtains the bound

EY:/OOP(YZU)dugf(O)—I—/OO P(Y > u)du
0 f

(0)
— 4(0) + / T PP > f(w)du, (2.35)
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where we have used a change of variable in the last equality. Now, since
Y < f(u) on £2,, we have P(Y > f(u)) < P(£2¢) and finally

EY < f(0) + /000 f(w)P(£28)du .

In practice, we will always have P(£2¢) < Lexp(—u/L) and f(u) = A +
u® B, yielding the bound EY < A + K(«)B.

2.5 Entropy Numbers

For a number of years, chaining was systematically performed (as in Sec-
tion 1.4) by choosing the sets T}, so that sup,cy d(¢,T},) is as small as possible
for card T,, < N,,. We define

en(T) =e,(T,d) = - Cilrl(fT x fgg d(t,T,), (2.36)

where the infimum is taken over all subsets T}, of T' with card T,, < N,,. (Since
here T' is finite, the infimum is actually a minimum.) We call the numbers
en(T') the entropy numbers.

Let us recall that in a metric space a (closed) ball is a set of the type
B(t,r) = {s € T;d(s,t) < r}. Balls are basic sets in a metric space and
will be of constant use. It should be obvious to reformulate (2.36) as follows:
en(T') is the infimum of the set of numbers r > 0 such that 7" can be covered
by < N, balls of radius < r (the set T}, in (2.36) being the set of centers of
these balls).

The definition (2.36) is not consistent with the conventions of Operator
Theory, which uses e;» to denote what we call e,,.8 When T is infinite, the
numbers e, (T) are also defined by (2.36) but are not always finite (e.g. when

T =R).
Let us note that, since Ng =1,
# <eg(T) < A(T) . (2.37)

Recalling that T is finite, let us then choose for each n a subset T}, of T' with
cardT), < N,, and e, (T') = sup,cp d(t,Ty,). Since d(t,T),) < en(T) for each t,
(2.34) implies the following.

Proposition 2.5.1 (Dudley’s entropy bound [38]). Under the incre-
ment condition (2.4), it holds that

EsupX, <L Z 22, (T) . (2.38)
teT n>0

8 We can’t help it if Operator Theory gets it wrong.
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We proved this bound only when T is finite, but using (2.2) it also extends
to the case where T is infinite, as is shown by the following easy fact.

Lemma 2.5.2. If U is a subset of T', we have e,(U) < 2e,(T).

The point here is that in the definition of e, (U) we insist that the balls are
centered in U, not in T'.

Proof. Indeed, if a > e, (1), by definition one can cover 1" by N, balls (for
the distance d) with radius a, and the intersections of these balls with U are
of diameter < 2a, so U can be covered by N,, balls in U with radius 2a. O

Exercise 2.5.3. Prove that the factor 2 in the inequality e, (U) < 2e,(T)
cannot be improved even if n = 0.

Dudley’s entropy bound is usually formulated using the covering numbers
of Definition 1.4.1. These relate to the entropy numbers by the formula

en(T) =inf{e; N(T,d,e) < N,}.

Indeed, it is obvious by definition of e, (T) that for € > e,(T), we have
N(T,d,e) < N, and that if N(T,d,e) < N,, we have e,(T) < e. Conse-
quently,

e<en(T)= N(T,d,e) >N,
= N(I,d,¢) > 1+ N, .

Therefore
en(T)
Viog(1 4+ Np)(en(T) — ent1(T)) < / V1og N(T,d,e) de .
ent1(T)

Since log(1 + N,,) > 2™ log2 for n > 0, summation over n > 0 yields
eo(T)
V1og?2 Z 22 (e, (T) — eni1(T)) < Vieg N(T,d,e)de. (2.39)
n>0 0
Now,

D 22 (en(T) = enia(T)) = Y22, (T) = Y 2D/2e, (T)

n>0 n>0 n>1

> (1 - %) > 22, (T),

n>0

so (2.39) yields
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EO(T)
> e, (T) < L / V1og N(T,d, €) de. (2.40)
0

n>0

Hence Dudley’s bound now appears in the familiar form

Esup X; < L/ Vieg N(T,d,¢€) de . (2.41)
0

te’l

Here, since log 1 = 0, the integral takes place in fact over 0 < e < eo(7). The
right-hand side is often called Dudley’s entropy integral.

Exercise 2.5.4. Prove that

/ VIogN(T,d,e)de <L> 22, (T),
0

n>0
showing that (2.38) is not an improvement over (2.41).

Exercise 2.5.5. Assume that for each 0 < ¢ < A and some a > 0 we have
log N(T,d,¢) < (A/e)®. Prove that e, (T) < K(a)A2-"/.

Here K (o) is a number depending only on a.® This, and similar notation
are used throughout the book. It is understood that such numbers need not
be the same on every occurrence, and it would help to remember this at all
times. The difference between the notations K and L is that L is a universal
constant, i.e. a number that does not depend on anything, while K might
depend on some parameters, such as « here.

When writing a bound such as (2.41), the immediate question is: how
sharp is it? The word “sharp” is commonly used, even though people do not
agree on what it means exactly. Let us say that a bound of the type A < LB
can be reversed if it is true that B < LA. We are not concerned with the value
of the universal constants.'® Inequalities which can be reversed are our best
possible goal. Then, in any circumstance, A and B are of the same order.

We give now a simple (and classical) example that illustrates well the
difference between Dudley’s bound (2.38) and the bound (2.34) and which
shows in particular that Dudley’s bound cannot be reversed. Consider an
independent sequence (g;);>1 of standard Gaussian r.v.s. Set X; = 0 and for
1> 2 set

X, = L (2.42)
Viogi
Consider an integer s > 3 and the process (X;)i1<i<n, so the index set is T' =
{1,2,..., N,}. The distance d associated to the process, given by d(i, j)? =
E(X, — X;)?, satisfies for 4,7 > 2, i # j,

9 Tt just happens that in this particular case K(a) = 1 works, but we typically do
not care about the precise dependence of K(a) on a.

10 Not that these values are unimportant, but our methods are not appropriate for
this.
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1 2
= <d(1,)) £ —F—s -
log(min(i, 5)) v/log(min(i, j))
Consider 1 < n < s—1and T,, C T with cardT,, = N,,. There exists
i < N, +1with i ¢ T),. Then (2.43) implies that d(i, j) > 27"/2/L for j € T,,.

This proves that the balls of radius 2="/2/L centered on T}, do not cover T,
so that e, (T) > 27/2 /L. Therefore

(2.43)

3 220, (T) > ° - Ly (2.44)

n

In the reverse direction, since for ¢ > 1 we have d(1,4) < 1/+/log ¢, Exercise
2.4.1 proves that the bound (2.34) is < L. Thus the bound (2.38) is worse
than the bound (2.34) by a factor about s.

Exercise 2.5.6. Prove that when 7' is finite, the bound (2.41) cannot be
worse than (2.34) by a factor greater than about loglogcard 7. This shows

that the previous example is in a sense extremal. Hint: use 2"/2e,(T) <
Lsup,er 502" 2d(t,T,) and e, (T) = 0 if Ny, > card T.

How does one estimate covering numbers (or, equivalently, entropy num-
bers)? Let us first stress a trivial but nonetheless fundamental fact.

Lemma 2.5.7. Consider a number € > 0 and a subset W of T' mazimal with
respect to the property

s,teW =d(s,t) >e€.
Then N(T,d,e) < card W.

Proof. Since W is maximum the balls of radius a centered at the points of
W cover T.

Exercise 2.5.8. Consider a probability measure g on T, a number € > 0 and
a number a. Let U = {t € T; u(B(t,€) > a}. Prove that N(U,d,2¢) < 1/a.

The next exercise introduces the reader to “volume estimates”, a simple
yet fundamental method for this purpose. It deserves to be fully understood.
If this exercise is too hard, you can find all the details below in the proof of
Lemma 2.13.7.

Exercise 2.5.9. (a) If (T, d) is a metric space, define the packing number
N*(T,d,e€) as the largest integer N such that T contains N points with mutual
distances > e. Prove that N(T,d,¢) < N*(T,d,¢). Prove that if ¢ > 2¢ then
N*(T,d,€e') < N(T,d,e).

(b) Consider a distance d on R* which arises from a norm || - ||, d(z,y) =
||z — yl||, and denote by B the unit ball of center 0. Let us denote by Vol(A)
the k-dimensional volume of a subset A of R*. By comparing volumes, prove
that for any subset A of R¥,
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Vol(A)
> — .
N(A,d,0) 2 5o (2.45)
and Vol(A + B
N(A,d,2¢) < N*(A, d, 2€) < % (2.46)
€
(c) Conclude that
1\ 2+ e\k
(Z) < N(B,d,¢) < ( . ) . (2.47)

(d) Use (c) to find estimates of e, (B) of the correct order for each value of n.
Hint: e, (B) is about 272"/%, This decreases very fast as n increases. Estimate
Dudley’s bound for B provided with the distance d.

(e) Prove that if T is a subset of RF and if ng is any integer then for n > ng
one has e, 1(T) < L272"/*e, (T). Hint: cover T by Ny, balls of radius
2ey,, (1) and cover each of these by balls of smaller radius using (d).

(f) This part provides a generalization of (2.45) and (2.46) to a more ab-
stract setting, but with the same proofs. Consider a metric space (7', d) and
a positive measure p on 1" such that all balls of a given radius have the same
measure, u(B(t,e)) = p(e) for each € > 0 and each ¢t € T. For a subset A
of T and € > 0 let A, = {t € T;d(t, A) < e}, where d(t, A) = infsca d(t, s).
Prove that

There are many simple situations where Dudley’s bound is not of the
correct order. We gave a first example on page 35. We give such another
example in Exercise 2.5.11 below. There the set T is particularly appealing:
it is a simplex in R™. Yet other examples based on fundamental geometry
(ellipsoids in R¥) are explained in Section 2.13.

The result of the following exercise is very useful in all kinds of examples.

Exercise 2.5.10. Consider two integers k,m with k& < m/4. Assume for
simplicity that k is even.

(a) Prove that
3 (?) < 2(%)’“2 (7;:) . (2.48)

0<t<k/2

(b) Denote by Z the class of subsets of {1, ..., m} of cardinality k. Prove that
you can find in Z a family F such for I, J € F one has card(I\J)U(J\I) > k/2
and card F > (m/(2k))*/2 /2. Hint: Use (a) and part (f) of Exercise 2.5.9 for
1 the counting measure on Z. Warning: this is not so easy.

Exercise 2.5.11. Consider an integer m and an i.i.d. standard Gaussian se-
quence (g;)i<m- For t = (t;)i<m € R™, let X; = Eigm t;g;. This is called the
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canonical Gaussian process on R™. Its associated distance is the Euclidean
distance on R™. It will be much used later. Consider the set

T:{(ti)igmeRm; >0, Zti:1}, (2.49)

i<m

the convex hull of the canonical basis. By (2.16) we have Esup,cr X: =
Esup,<,, 9 < Ly/logm. Prove, however, that the right-hand side of (2.41)
is > (logm)3?2/L. (Hint: For an integer k& < m consider the subset T}, of
T consisting of sequences t = (t;);<m € T for which t; € {0,1/k}, so that
t € Ty is determined by the set I = {i < m ; t; = 1/k} and cardI = k.
Using Exercise 2.5.10 prove that log N (T, d, 1/(LVk)) > klog(em/k)/L and
conclude.'!) Thus in this case Dudley’s bound is off by a multiplicative factor
of about log m. Exercise 2.7.9 below will show that in R" the situation cannot
be worse than this.

2.6 Rolling Up our Sleeves: Chaining in the Simplex

The bound (2.34) seems to be genuinely better than the bound (2.38) because
when going from (2.34) to (2.38) we have used the somewhat brutal inequality

sup 2"24(t,T,) < 22 supd(t,T,) .
St )< 3 g )

The method leading to the bound (2.34) is probably the most important
idea of this work. The fact that it appears now so naturally does not reflect
the history of the subject, but rather that the proper approach is being used.
When using this bound, we will choose the sets T;, in order to minimize
the right-hand side of (2.34) instead of choosing them as in (2.36). As we
will demonstrate later, this provides essentially the best possible bound for
Esup,cp X¢. It is remarkable that despite the fact that this result holds in
complete generality, it is a non-trivial task to find sets T,, witnessing this,
even in very simple situations. In the present situation we perform this task
by an explicit construction for the set T of (2.49).

Proposition 2.6.1. There exists sets T,, C R™ with card T, < N,, such that

sup Z 22d(t,T,) < L\/logm (= LEsup X;).

teT n>0 teT

Of course here d is the Euclidean distance in R™. The reader may try to find
these sets herself before reading the rest of this section, as there seems to be

' In case you wonder why e occurs in this formula, it is just to take care of the case
where k is nearly m. This term is not needed here, but is important in upper
bounds of the same nature that we will use below.
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no better way to get convinced of the depth of the present theory. The sets
T;, are not subsets of T. Please figure out by yourself how to correct this.'2

Lemma 2.6.2. For eacht € T we can find a sequence (p(n.t))n>0 of integers
0 < p(n,t) < 2n with the following properties:

> ot <1 (2.50)
n>0
Vn >0, p(n+1,t) <p(n,t)+2, (2.51)
card{i <m; t; > 2PV < on (2.52)

Proof. There is no loss of generality to assume that the sequence (¢;);<p, is
non-increasing. We set t; = 0 for i > m. Then for any n > 1 and 277! <
i < 2" we have t; > ton, so that 27 Mgn < Y on—1oij<on ti. By summation
over n > 1 we obtain ) ., 2"ts» < 2, and thus Zn>_0 2%9n < 3. For n >
0 consider the largest integer q(n,t) < 2n such that 279(*% > t,.. Thus
2-9t) =1 < o, when ¢ < 2n. In any case 27901 < 9tyn 4 272" and thus
Y >0 on—a(mt) < I, Also if t; > 2791 > 5. then i < 2". In particular
card{i < m;t; > 279t} < 27 Finally we define

p(n,t) =min{q(k,t) +2(n — k);0 <k <n} .

Taking k& = n shows that p(n,t) < q(n,t) < 2n, implying (2.52). If k < n is
such that p(n,t) = q(k,t)+2(n—k) then p(n+1,t) < q(k,t)+2(n+1—k) =

p(n,t) + 2, proving (2.51). Also, since 2"~P(nt) < 3~ on=2(n=k)—q(kt) -
> pan 28T aRD) we have -

S onpnt) < N7 gkalh) N gk < =

n>0 k>0 n>k

Given a set I C {1,...,m} and a integer p we denote by Vi, the set of
clements u = (u;)i<m € R™ such that u; =0if ¢ ¢ I and u; = r,27P if § € I,
where r; is an integer 0 < r; < 3. Then card V7, < qeardI For n > 1 we
denote by V,, the union of all the sets V7, for card/ < 2" and 0 < p < 2n.
Crudely we have card V,, < mL2" . We set Vo = {0} and for n > 1 we denote
by U, the set of all sums )., ., ©» where z; € V. Then cardU,, < mb2",

Lemma 2.6.3. Considert € T and the sequence (p(n,t))n>0 constructed in
Lemma 2.6.2. Then for each n we can write t = u(n)+v(n) where u(n) € U,
and where v(n) = (v(n);)i<m satisfies 0 < v(n); < min(t;, 27P0).

Proof. The proof is by induction over n. For n = 0 we set u(0) =0, v(0) =t.
For the induction from n to n + 1 consider the set I = {i S m;v(n); >

2 The argument can be found in Section 2.14.
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2-P(* LY Since v(n); < t; it follows from (2.52) that card I < 2"+!. For
each i € I let r; be the largest integer with ;2 P("+18) < 4(n); so that
v(n);—r2 P+ < 9=P(nH L) Since v(n); < 27P by induction and since
p(n+1,t) < p(n,t) +2 by (2.51) we have r; < 3. Define u = (u;)i<m € R™
by u; = 7,2 P18 if § € T and u; = 0 otherwise. Then u € VI pn+1,6) C Va-
Thus 2 = u(n + 1) + v(n + 1) where u(n + 1) := u(n) + u € U,y1 and
v(n +1) := v(n) — u satisfies v(n + 1); < min(t;, 27P(+1D), 0

Lemma 2.6.4. For eacht € T' we have }_ - 27/24(t,U,) < L.

Proof. Consider the sequence (v(n)),>0 constructed in Lemma 2.6.3, so that
d(t,Uy,) < |lv(n)|ls since t = u(n) +v(n). Let I, = {i <m;t; > 277"} 50
that by (2.52) we have card I,, < 2™. For n > 1 set J, = I,, \ I,,_1 so that for
i € I,, we have t; < 27718 Then |lv(n)||3 =3, ,, v(n)? = Dier, v(n):+
D kon 2ie g, v(n)3. Since v(n); < 27?8 and card I,, < 2" the first sum is
< 27/2=p(nt) Since v(n); < t; < 27PE-LY for i € Jp and card J, < 2F we

have 3., v(n)? < 2M27 P10 Thus [jo(n)|2 < D pop 28272 LY and

Z 2”’/2”’0(71)”2 < Z Z 2n/2+k/2—p(k—l,t) _ Z 2k/2—p(k—l,t) Z 2n/2

n>1 n>1k>n k>1 n<k
<L) ok <L (2.53)
k>1
where we have used (2.50) in the last inequality. a

Proof of Proposition 2.6.1. Consider the smallest integer ko with m < Ny, so
that 2%0/2 < L/Iogm. Observe also that m?" < (22°°)2" = 22" = N, ..
Thus cardU, < mP?" < Nio+n+k, where kq is a universal constant. For
n>ko+ki+1weset T, =U,_ng—rk,, so that cardT,, < N,,. Forn < kg+k;
we set T, = {0}. Finally, given ¢t € T (and keeping in mind that k; is a
universal constant) we have

D oon2d(t, T,) < L2kl2 4 YT on2d(t, 1)
n>0 n>ko+ki1+1
and, using Lemma 2.6.4 in the last inequality,

oo, Ty = > 22Uy kyg-ry)

n>ko+ki1+1 n>ko+k1+1
=Y bRtk 24t U,) < L2M/? . O

n>1
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2.7 Admissible Sequences of Partitions

The idea behind the bound (2.34) admits a technically more convenient for-
mulation.!3

Definition 2.7.1. Given a set T an admissible sequence is an increasing
sequence (Ap)n>0 of partitions of T' such that card A, < Ny, i.e. card Ag =1
and card A, < 22" forn > 1.

By an increasing sequence of partitions we mean that every set of A, 11
is contained in a set of A,,. Admissible sequences of partitions will be con-
structed recursively, by breaking each element C of A, into at most IV, pieces,
obtaining then a partition A, 1 of T consisting of at most N2 < N,, ;1 pieces.

Throughout the book we denote by A, (t) the unique element of A, which
contains t. The double exponential in the definition of N,, (see (2.29)) occurs
simply since for our purposes the proper measure of the “size” of a partition
A is log card A. This double exponential ensures that “the size of the partition
A,, doubles at every step”. This offers a number of technical advantages which
will become clear gradually.

Theorem 2.7.2. (The generic chaining bound). Under the increment con-
dition (2.4) (and if EX; = 0 for each t), then for each admissible sequence
(Ay) we have

Esup X; < Lsup Y 2"/?A(Ap(t)) . (2.54)
teT teT n>0

Here as always, A(Ay(t)) denotes the diameter of A, (t) for d. One could
think that (2.54) could be much worse than (2.34), but it will turn out that
this is not the case when the sequence (A,,) is appropriately chosen.

Proof. We may assume T to be finite. We construct a subset T,, of T' by
taking exactly one point in each set A of A,. Then for t € T and n > 0, we
have d(t,T;,) < A(A,(¢)) and the result follows from (2.34). O

Definition 2.7.3. Given o > 0, and a metric space (I',d) (that need not be
finite) we define

Ya(T,d) = infsup > 2"/ *A(Ay(t)),
teT n>0

where the infimum is taken over all admissible sequences.

It is useful to observe that since Ag(t) = T we have v, (T.d) > A(T).
The most important cases by far are & = 2 and o = 1. For the time being
we need only the case o = 2. The case o =1 is first met in Theorem 4.5.13,
although more general functionals occur first in Definition 4.5.

13 We will demonstrate why this is the case only later, in Theorem 4.5.13.
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Exercise 2.7.4. Prove that if d < Bd’ then (T, d) < By (T,d").

Exercise 2.7.5. Prove that v,(7,d) < K(a)A(T)(logcard T)'/* when T is
finite. Hint: Ensure that A(A,(t)) =0 if N,, > card T.

A large part of our arguments will take place in abstract metric spaces,
and this may represent an obstacle to the reader who has never thought about
this. Therefore, we cannot recommend too highly the following exercise.

Exercise 2.7.6. (a) Consider a metric space (7, d) and assume that for each
n > 0 you are given a covering B, of T with card B,, < N,,. Prove that you can
construct an admissible sequence (A,,) of partitions of T' with the following

property:

Vn>1,VAeA,,3BeB,_1, ACB. (2.55)
(b) Prove that for any metric space (1), d) we have
Y (T,d) < LY 2" 2en(T) . (2.56)
n>0

The following exercise explains one of the reasons admissible sequences of
sets are so convenient: given two such sequences we can construct a third
sequence which merges the good properties of the two sequences.

Exercise 2.7.7. Consider a set T and two admissible sequences (B,,) and
(Cn). Prove that there is an admissible sequence (A,,) such that

Vvn>1,VAeA,,3dBeB,_.,, AcCcB,3CeC,_1,ACC.

The following simple property should be clear in the reader’s mind.

Exercise 2.7.8. (a) Prove that for n > 0 we have
2"/ 26, (T) < Lo (T, d) . (2.57)

Hint: observe that 2"/2 max{A(A); A € A,} < sup,er >, 50 2V 2A(AL(1)).
(b) Prove that, equivalently, for € > 0 we have -

Y IOgN(T, dv 6) < LV?(Tv d) .

The reader should compare (2.57) with (2.56).

Exercise 2.7.9. Use (2.57) and Exercise 2.5.9 (e) to prove that if T' C R™
then
> 226, (T) < Llog(m + 1)72(T d) . (2.58)
n>0
In words, Dudley’s bound is never off by more than a factor of about
log(m + 1) in R™ 14

14 And we have shown in Exercise 2.5.6 that it is never off by a factor more that
about loglogcard T either.
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Exercise 2.7.10. Prove that the estimate (2.58) is essentially optimal.
Warning: this requires some skill.

Combining Theorem 2.7.2 with Definition 2.7.3 yields the following very
important result.

Theorem 2.7.11. Under (2.4) and (2.1) we have

Esup X; < Ly (7,d) . (2.59)
teT

To make (2.59) of interest we must be able to control v, (7', d), i.e. we must
learn how to construct admissible sequences, a topic we shall first address in
Section 2.9.

Exercise 2.7.12. When the process (X;)ter satisfies (2.4) but is no longer
assumed to be centered prove that

E sup | X — Xi| < Ly (T,d) . (2.60)
s,tel’

We now turn to the control of the tails of the process, which will follow
by a small variation of the same argument.

Theorem 2.7.13. Under (2.4) and (2.1) we have

P( sup X, = X| > Lo (T, d) + LuA(T)) < Lexp(—u?). (2.61)
s,te

Proof. We use the notation of the proof of (2.34). We may assume u > 1. Let
us consider the smallest integer k > 0 such that u? < 2% so that 2% < 2u2.
Consider the event (2; defined by

Vte Ty, | X, — Xi| < 4uA(T), (2.62)
so that by the union bound,
P(Y) < 92" . 2 exp(—8u?) < 2exp(2u? — 8u?) < exp(—u?) . (2.63)
Consider the event (25 given by

V> k, VEET, | Xa 1) — Xnnir o] < 2V2P2A(AL() (2.64)

Tn+1
so that by the union bound again,

P(25) < 327" 2exp(—2"1%) < 3 2exp(—2"+2) < dexp(—u?) , (2.65)

n>k n>k
using e.g. in the last inequality that 27+2 > 282 4 — k > 4u? +n — k.
Consequently, P(2; U §25) > 1 — 5exp(—u?), and on this event we have
X, — Xyl < 30 2/22A(A,(0) < Ls(T,d)
n>k

so that |Xt _Xto| < |Xt _X‘rrk(t)| + |X7Tk(t) _Xto| < L’)/Q(T, d) +LUA(T) O
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Let us note in particular that, using (2.24),

1/p
(E sup [X, = X,JP) " < Ly/pa(T,d) . (2.66)
s,teT

Needless to say that we will look for extensions of Theorem 2.7.13. We can
prove right away a particularly elegant result (due independently to R. Latala
and S. Mendelson). Let us consider a process (X;)icr, which is assumed to
be centered but need not to be symmetric. For n > 1 consider the distance
0p on T given by 0,(s,t) = || Xs — X¢||2n. Denote by A, (A) the diameter of
a subset A of T for the distance 6,

Theorem 2.7.14. Consider an admissible sequence (Ay)n>0 of partitions of
T. Then

E sup | X, — Xi| < Lsup > An(An(t)) . (2.67)
s,teT teT n>0

Moreover, given u > 0 and the largest integer k with 2% < u? we have

P(sup X, = Xi| = LAKT) +sup 3 Au(An(t)) < Lexp(—u?) . (2.68)
s,teT teT n>0

Proof. The increment condition (2.4) will be replaced by the following. For
ar.v.Y and p > 1 we have

Y P
P(IY] > u) < P(Y|P > uP) < (w) . (2.69)
U
Let us then consider the points 7, (t) as usual. For u > 1 let us consider the

event (2, defined by'®

Vn>1, |Xﬂ.n(t) - X (t)| < ud,(An(t)), (2.70)

Tn41
so that by the union bound and (2.69) for u > 4 we have

T () gl <k em

n>1 k>2

On (2, summation of the inequalities (2.70) for n > 1 yields sup,cp | X, —
Xy € Lud, 5 An(An(t)). Combining with (2.71) we obtain

Efqu Xy = Xey o] LD An(An(t)) -
S

n>1

Since Esupyeq | Xr, () — Xro(t)| < LAo(T) we have Esup,eq [ Xy — Xrp )| <
LY, ~0An(A,(t)) and (2.67) follows. The proof of (2.68) is nearly identical
to the proof of (2.61) and is left to the reader. O

15 We are following here the general method outlined at the end of Section 2.4.



2.8 Functionals 45

2.8 Functionals

Given a metric space (T, d) how do we calculate 72 (T, d)? Of course there is
no free lunch. The quantity v5(T,d) reflects a highly non-trivial geometric
characteristic of the metric space. This geometry must be understood in
order to compute (7, d). There are unsolved problems in this book (such
as Conjecture 17.1.4) which boil down to estimating ~2(7T,d) for a certain
metric space.

In this section we introduce functionals, which are an efficient way to
bring up the geometry of a metric space and to build competent admissible
sequences, providing upper bounds for v, (7T, d). We will say that a map F
is a functional on a set T if, to each subset H of T it associates a number
F(H) >0, and if it is increasing, i.e.

HCH cT=F(H)<FH). (2.72)
Intuitively a functional is a measure of “size” for the subsets of T. It allows
to identify which subsets of T" are “large” for our purposes. A first example

is given by F(H) = A(H). In the same direction, a fundamental example of
a functional is

F(H) = 72(H, d) . (2.73)
A second example, equally important, is the quantity
F(H) =Esup X; (2.74)
teH

where (X;),er is a given process indexed by T' and satisfying (2.4).

For our purposes the relevant property of functionals is by no means in-
tuitively obvious yet (but we shall soon see that the functional (2.73) does
enjoy this property). Let us first try to explain it in words: if a set is the union
of many small pieces far enough from each other, then this set is significantly
larger (as measured by the functional) than the smallest of its pieces. “Sig-
nificantly larger” depends on the scale of the pieces, and on their number.
This property will be called a “growth condition”.

Let us address a secondary point before we give definitions. We denote
by B(t,r) the ball centered at ¢ of radius r, and we note that

A(B(t,r)) <2r.

This factor 2 is a nuisance. It is qualitatively the same to say that a set is
contained in a ball of small radius or has small diameter, but quantitatively
we have to account for this factor 2. In countless constructions we will produce
sets A which are “small” because they are contained in a ball of small radius
r. Either we keep track of this property, which is cumbersome, or we control
the size of A through its diameter and we deal with this inelegant factor 2.
We have chosen here the second method.!®

6 The opposite choice was made in [171].
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What do we mean by “small pieces far from each other”? There is a scale
a > 0 at which this happens, and a parameter r > 8 which gives us some
room. The pieces are small at that scale: they are contained in balls with
radius 2a/r.'” The balls are far from each other: any two centers of such
balls are at mutual distance > a. The reason why we require r > 8 is that
we want the following: two points taken in different balls with radius 2a/r
whose centers are at distance > a cannot be too close to each other. This
would not be true for, say, r = 4, so we give ourselves some room, and take
r > 8. Here is the formal definition.

Definition 2.8.1. Given a > 0 and an integer r > 8 we say that subsets
Hy,...,Hpy of T are (a,r)-separated if

V¢ <m, Hy C B(tg,2a/r), (2.75)
where the points t1,te, ...ty in T satisfy
VO, 0 <m,0#0 = a<d(lete) <2ar. (2.76)

A secondary feature of this definition is that the small pieces H, are
not only well separated (on a scale a), but they are in the “same region
of T” (on the larger scale ra). This is the content of the last inequality in
condition (2.76).

Exercise 2.8.2. Find interesting examples of metric spaces for which there
are no points tq,...,t, as in (2.76), for all large enough values of m.

Now, what does “the union of the pieces is significantly larger than the small-
est of these pieces” mean? This is an “additive property”, not a multiplicative
one. In this first version of the growth condition, it means that the size of
this union is larger than the size of the smallest piece by a quantity a+/log N
where N is the number of pieces.'® Well, sometimes it will only be larger by a
quantity of say ay/log N /100. This is how the parameter ¢* below comes into
the picture. One could also multiply the functionals by a suitable constant
(i.e. 1/c*) to always reduce to the case ¢* = 1 but this is a matter of taste.
Another feature is that we do not need to consider the case with N pieces
for a general value of N, but only for the case where N = N,, for some n.
This is because we care about the value of log N only within, say, a factor
of 2, and this is precisely what motivated the definition of NV,,. In order to

understand the definition below one should also recall that v/log N,, is about
2n/2,

Definition 2.8.3. We say that the functional F satisfies the growth condi-
tion with parameters r > 8 and c¢* > 0 if for any integer n > 1 and any

17 This coefficient 2 is motivated by the considerations of the previous paragraph.
18 We remind the reader that the function y/logy arises from the fact that it is the
inverse of the function exp(z?).
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a > 0 the following holds true, where m = N,,. For each collection of subsets
Hy,...,Hy, of T that are (a,r)-separated we have

> oF n/2 .
F( U Hg) > ¢*a2"/? + min F(Hy) . (2.77)

<m

This definition is motivated by the fundamental fact that when (X¢)ier
is a Gaussian process, the functional (2.74) satisfies a form of the growth
condition, see Proposition 2.10.8 below.

The following illustrates how we might use the first part of (2.76).

Exercise 2.8.4. Let (7,d) be isometric to a subset of R¥ provided with the
distance induced by a norm. Prove that in order to check that a functional
satisfies the growth condition of Definition 2.8.3, it suffices to consider the
values of n for which N, ;1 < (1 + 2r)*. Hint: it follows from (2.47) that for
larger values of n and m = N,, there are no points t1,...,t,, as in (2.76).

You may find it hard to give simple examples of functionals which satisfy
the growth condition (2.77). It will become gradually apparent that this con-
dition imposes strong restrictions on the metric space (7, d) and in particular
a control from above of the quantity v2 (7, d). It bears repeating that v2(T, d)
reflects the geometry of the space (7', d). Once this geometry is understood, it
is usually possible to guess a good choice for the functional F'. Many examples
will be given in subsequent chapters.

As we show now, we really have no choice. Functionals with the growth
property are intimately connected with the quantity 2 (7', d).

Proposition 2.8.5. Assume r > 16. Then the functional F(H) = v2(H,d)
satisfies the growth condition with parameters v and ¢* = 1/8.

Proof. Let m = N, and consider points (t¢)e<m of T with d(te,ty) > a if
¢ #¢'. Consider sets Hy C B(ty,a/8), and the set H = J,,,, H;. We have to
prove that -

1
Yo(H,d) > =a2™'? 4 minyo(Hp, d) . (2.78)
8 <m

Consider an admissible sequence of partitions (A,) of H, and consider the
set

I,.={¢{<m;3JAeA,_1; AC Hy}.

Picking for ¢ € I,, an arbitrary element A € A,,_1 with A C H; defines a one-
to-one map from I,, to A,,_1. Thus card I, < card A,,_1 < Np_1 <m = N,,.
Hence there exists ¢y & I,,. Next, we prove that for t € Hy, we have

A(A,—1(t) > A(Ap—1(t) N Hy,) + ia . (2.79)

Since ¢y & I, we have A, _1(t) ¢ Hy,, so that since A,_1(t) C H, the set
Ap—1(t) must intersect a set Hy # Hy,, and consequently it intersects the ball
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B(te,a/8). Since t € Hy, we have d(t, B(tg,a/8)) > a/2. Since t € A,_1(t)
this implies that A(A,—1(t)) > a/2. This proves (2.79) since A(A,_1(¢t) N
Hy,) < A(H,) < /4.

Now, since for each k > 0 we have A(Ax(t)) > A(Ax(t) N Hy, ), we have

D 2R A(AR(t) — A(AR(t) N Hy,)))

k>0
>

[\]

=D/2(A(Ap_1 (1) — A(Ap_1(t) N Hy,))

> Lotz

B

where we have used (2.79) in the last inequality, and, consequently,

. 1
> 22 A(AL(E) > ZaQ<n—1>/ 24 2MPA(A() N Hy,) - (2.80)
k>0 k>0

Next, consider the admissible sequence (A})) of Hy, given by Al = {AN
Hy; A € A, }. We have by definition

sup Z 22 A(Ag(t) N Hey) > 72(Hey, d) -
tEH@O k>0

Hence, taking the supremum over ¢ in Hy, in (2.80) we get

1 1
sup Y 2F2A(Ak(t) > ZaQ("_l)/2 + 2 (Hyy, d) > §a2n/2 + min yz(Hy, d) .
tEHZO k>0 sm

Since the admissible sequence (A,,) is arbitrary, we have proved (2.78). O

2.9 Partitioning Schemes

In this section we use functionals satisfying the growth condition to construct
admissible sequences of partitions. The basic result is as follows.

Theorem 2.9.1. Assume that there exists on T a functional F which satis-
fies the growth condition of Definition 2.8.3 with parameters r and c¢*. Then'®

Y2 (T,d) < %F(T) + LrA(T) . (2.81)

This theorem and its generalizations form the backbone of this book. The
essence of this theorem is that it produces (by actually constructing them)
a sequence of partitions that witnesses the inequality (2.81). For this reason,
it could be called “the fundamental partitioning theorem.”

19 1t is certain that as r grows, we must obtain a weaker result. The dependence
of the right-hand side of (2.81) on r is not optimal. It may be improved with
further work.
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Exercise 2.9.2. Consider a metric space T consisting of exactly two points.
Prove that the functional given by F(H) = 0 for each H C T satisfies the
growth condition of Definition 2.8.3 for » = 8 and any ¢* > 0. Explain why
we cannot replace (2.81) by the inequality v2(7,d) < LrF(T)/c*.

Let us first stress the following trivial fact (connected to Exercise 2.5.9
(a)). It will be used many times. The last statement of (a) is particularly
useful.

Lemma 2.9.3. (a) Consider an integer N. If we cannot cover T by at most
N — 1 balls of radius a then there exist points (tg)e<n with d(te,ter) > a for
C# . In particular if e, (T) > a we can find points (t¢)e<n, with d(te,te) >
a for L £ L.

(b) Assume that any sequence (t¢)o<m with d(te,te) > a for £ # €' satisfies
m < N. Then T can be covered by N balls of radius a.

(c) Consider points (t¢)e<n,+1 such that d(te,ty) > a for £ # 0. Then
en(T) > a/2.

Proof. (a) We pick the points ty recursively with d(t¢,te) > a for £/ < L.
By hypothesis the balls of radius a centered on the previously constructed
points do not cover the space if there are < N of them so that the construction
continues until we have constructed N points.

(b) You can view this either as a reformulation of (a) or argue directly that
when m is taken as large as possible the balls B(ty, a) cover T.

(c) If T is covered by sets (B )e<n, , by the pigeon hole principle at least
two of the points ¢ty must fall into one of these sets, which therefore cannot
be a ball of radius < a/2. O

The admissible sequence of partitions witnessing (2.81) will be con-
structed by recursive application of the following basic principle.

Lemma 2.9.4. Under the conditions of Theorem 2.9.1 consider B C T with
A(B) < 2r=7 for a certain j € 7 and consider any n > 0. Let m = N,.
Then we can find a partition (A¢)e<m of B into sets which have either of the

following properties: _
A(Ay) < 2r7971 (2.82)

or else
te Ap= F(BNB(t,2r 772)) < F(B) — ¢*2"/2p371 (2.83)

In words, the piece of the partitions have two further properties. Either (case
(2.82)) we have reduced the bound on their diameter from 2r=7 for B to
2r=3=1 or else we have no new information on the diameter, but we have
gathered the information (2.83).
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Proof. Consider the set
C={teB:; F(BNB(t,2r772) > F(B) — c*2"/?p=i71}

Consider points (t¢)e<m in C such that d(te,te) > r=7=1 for £ # ¢'. We
prove that m’ < m. For otherwise, using (2.77) for a = 7~7~! and for the
sets Hy := B N B(ty,2r~7~2) shows that

F(B) = F(|J He) = ¢r /712" 4 min F(H,) > F(B) .

<m

This contradiction proves that m’ < m. Consequently, using Lemma 2.9.3 (b)
for N = m — 1 we may cover C by m’ < m balls (Bg)s<n of radius < r=771.
We then set Ay = CN(By\Up<¢By) for £ <m/, Ag =0 for m’ < ¢ < m and
A, =B\C. O

So, in picturesque terms, Lemma 2.9.4 produces many small pieces and
(possibly) a large one (on which one has further information).

Before we start the proof of Theorem 2.9.1 we need the following technical
fact which will be used many times: the sum of a geometric series is basically
of the size of either its first or its last term.

Lemma 2.9.5. Consider numbers (an)n>0, ¢n > 0, and assume sup,, a, <
o0o. Consider a > 1 and define

I:{nZO;VkZO,k;ﬁn,ak<ana‘"_k|}. (2.84)
Then I # (0 and we have

Y ap < % > an. (2.85)

k>0 nel

Proof. Let us write k < n when a; < ana~ "kl This relation is a partial

order: if Kk < n and n < p then a; < apa_|”_k’|_|"‘p| < apa_‘k_m, so that
k < p. We can then restate the definition of I:

I={77,20;Vk:20,n</<::>n=k:}.

In words, I is the set of elements n of N that are maximal for the partial
order <.

Next, we prove that for each k in N there exists n € I with k£ < n. Indeed
otherwise we can recursively construct an infinite sequence ny =n < ng < - --
and this is absurd because a,,,, > aa,, and we assume that the sequence
(ay) is bounded.

Thus for each k in N there exists n € I with k < n. Then aj, < anpo~ "=kl
and therefore

ZakSZZana_lk_”l S%Zan. O

k>0 nel k>0 nel
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Proof of Theorem 2.9.1. There is no question that this proof is the most
demanding up to this point. The result is however absolutely central, on its
own and also because several of our main results will follow the same overall
scheme of proof.

We have to construct an admissible sequence of partitions which witnesses
the inequality (2.81). The construction of this sequence is as simple as it
could be: we recursively use Lemma 2.9.4. More precisely, we construct an
admissible sequence of partitions A, and for A € A,, we construct an integer
Jn(A) € Z with

A(A) < 2r=in(A) (2.86)

We start with Ag = {T'} and jo(7T') the largest integer jo € Z with A(T) <
2r=J g0 that 2r=J° < rA(T). Having constructed A, we construct A, 41
as follows. For each B € A,, we use Lemma 2.9.4 with j = j,(B) to split
B into sets (A¢)e<n,. If A; satisfies (2.82) we set jnp41(Ae) = jn(B) + 1
and otherwise (since we have no new information on the diameter) we set
Jn+1(Ae) = jn(B). Thus, in words, j,t+1(As) = ju(B) + 1 if Ay is a small
piece of B and jn4+1(A4¢) = jn(B) if Ay is the large piece of B.

The sequence thus constructed is admissible, since each set B in A, is
split into at most N,, sets and since N2 < N,,;1. We note also by construction
that if B € A, and A C B, A € A, then

e either j,11(4) = jn(B)+1
e or else ju4+1(A4) = jn(B) and

te A= F(BnN B(t2r In1(M=2)) < F(B) — ¢*2/2p=dnt1(D=1 = (987)

Now we start the hard part of the proof, proving that the sequence of parti-
tions we just constructed witnesses (2.81). For this we fix t € T. We want to

prove that

" Lr
D 2MPA(AL (1) < — F(0) + LrA(T) .

n>0
We set j(n) = jn(An(t)), so that j(n) < j(n+1) < j(n) + 1. We set a(n) =
2n/2p=3 (") Since 2"/2 A(A,(t)) < 2a(n), it suffices to show that

> a(n) < %F(T) + LrA(T) . (2.88)

n>0
First, we prove a side result, that for n > 0 we have

L
a(n) < C—:F(T) + LA(T) . (2.89)
Ifn>1and j(n—1) = j(n) then using (2.87) for n — 1 rather than n yields
(2.89). Next, if n > 1 and j(n — 1) = j(n) — 1 then a(n) = vV2r ta(n —1) <
a(n — 1) since r > 8, and iterating this relation until we reach an integer n’
with either j(n’ — 1) = j(n') or n’ = 0 proves (2.89) since a(0) < LA(T).
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In particular the sequence (a(n)) is bounded. Consider then the set I as
provided by Lemma 2.9.5 for & = /2 and a,, = a(n), that is

I={n>0;Vk>0,n#k, alk) < a(n)Q‘k_”W} .
Recalling that a(0) = r—7° < rA(T)/2, it suffices to prove that
L
Y aln) < ZF(T). (2.90)
nel\{0} ¢

For n € I,n > 1 we have a(n + 1) < v/2a(n) and a(n — 1) < v/2a(n). Since
a(n + 1) = 2riW =i+ g(n) this implies

jin+1)=jn)+1; jn—1) =jn). (2.91)

Proving (2.90) is the difficult part. Assuming first that I is infinite (the
important case), let us enumerate the elements of I\ {0} as ny < ng < ....
so that (2.91) implies

Jng +1) = j(ng) + 15 jln — 1) = j(ng) - (2.92)

In words, ny is at the end of a sequence of partitions steps in which Api1(t)
was the large piece of Ay(t), and Ay, +1(t) is a small piece of A,, (t). Let us
note that as a consequence of (2.92) we have

jmc+1 2 jnk+1 > Jnk +1.
The key to the proof is to show that for £ > 1 we have
Lr
alm) < - (Flm 1)~ fs2) (2.93)
where f(n) = F(A4,(t)). Now the sequence (f(n)) is decreasing because

A, (t) C Ap—1(t), and f(0) = F(T). When k > 2 then f(ng — 1) < f(ng—1),
so that (2.93) implies

Lr
a(ng) < c_*(f(nk—l) — [(np+2)) - (2.94)
Summation of the inequalities (2.94) for k > 2 then yields
L -
> almy) < ZF(T), (2.95)
k>2 ¢

and combining with (2.93) for £ = 1 proves (2.90) and concludes the proof
of the theorem when I is infinite.

We now prove (2.93). Since ny, > 1 we may define n* := n; — 1. By (2.92)
we have j(n; — 1) = j(ng), i.e. j(n*) = j(n* + 1). We may then use (2.87)
for B=A,«(t), A= A, (t) = Ap-+1(¢) to obtain that
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F(BNB(t,2r 9 +1(0=2)) < F(B) — ¢*2n /2p=dn (A =1

Recalling that n* = ng — 1 this means

F(BN B(t,2r 9 A)=2)) < F(B) — ¢*2me=1/2p=0n, (A)=1 (2.96)
so that I
a(ng) < C—’” (F(B) — F(B N B(t,2r 7= (N)-2))) | (2.97)

Furthermore, by (2.92),
J(kt2) 2 G (nkyr) +1 2 G(ne) + 2. (2.98)

Since j(nk+2) = jnk+2 (Ank+2 (t))v (286) implies A(A
2r—3(Mk)=2 g4 that

(£) < 2rdtma) <

MNE+2

Apyry(t) C BN B(t, 2,90 =2) (2.99)

and thus f(ngy2) = F(Ap,,,(t) < F(BN B(t,2r 7 (4)=2)). Combining
with (2.97) and since F(B) = f(n, — 1) we have proved (2.93).

Assuming now that I is finite, it has a largest element nz. We use the
previous argument to control a(ny) when k + 2 < k, and for k = k — 1 and
k = k we simply use (2.89). 0

It is important for the sequel that you fully master the previous argument.

Exercise 2.9.6. We say that a sequence (Fy,)n>o of functionals on (7, d)
satisfies the growth condition with parameters r > 8 and ¢* > 0 if

VTLEO,FTH_lSFn

and if for any integer n > 0 and any a > 0 the following holds true, where
m = N,. For each collection of subsets Hi,...,H,, of T that are (a,r)-
separated we have

* /2 .
F, (EEJ Hg) > ¢*a2"/? 4 min Fyp (Hy) (2.100)
<m
Prove that then I
(T, d) < C—:FO(T) + LrA(T) . (2.101)

Hint: copy the previous arguments by replacing everywhere F(A) by F,(A)
when A € A,.

Proposition 2.9.7. Consider a metric space (T,d), and for n > 0, consider
subsets T, of T with cardTy = 1 and cardT,, < N,, for n > 1. Consider a
number S and let

v={teT: Y 2"t T,) < S}
n>0

Then ~v2(U,d) < LS.
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Proof. For H C U we define F(H) = infsup,c;; ., 2"/ 2d(t,Vy,) where
the infimum is taken over all choices of V,, C T with cardV,, < N,,. It is
important here not to assume that V,, C H to ensure that F' is increasing.
We then prove that F' satisfies the growth condition by an argument very
similar to that of Proposition 2.8.5. The proof follows from Theorem 2.9.1
since A(U,d) < 25, as each point of U is within distance S of the unique
point of Tp. a

A slightly different partitioning scheme has recently been discovered by
R. van Handel [59], and we describe a variant of it now. We consider a metric
space (T,d) and an integer r > 8. We assume that for j € Z we are given a
function s;(t) >0 on T.

Theorem 2.9.8. Assume that the following holds.

For each subset A of T, for each j € Z with A(A) < 2r™7 and for each
n > 1, then either e,(A) < r=I71 or else there exists t € A
with s;(t) > 2"/2p=371 (2.102)

Then

(T, d) < Lr(A(T) + sugz.sj(t)) : (2.103)
el jer

We will show later how to construct functions s;(t) satisfying (2.102) using
a functional which satisfies the growth condition.?%

The right-hand side of (2.103) is the supremum over ¢ of a sum of terms.
It need not always be the same terms which will contribute the most for
different values of ¢, and the bound is definitely better than if the supremum
and the summation were exchanged.

Proof of Theorem 2.9.8. Consider the largest jo € Z with A(T) < 2r =70 so
that 2r=J0 < rA(T). We construct by induction an increasing sequence of
partitions A,, with card A, < N,,, and for A € A, we construct an integer
jn(A) € Z with A(A) < 2r=n(A) We start with A9 = A; = {T} and
Jo(T) = j1(T) = Jo.

Once A, has been constructed (n > 1), we further split every element
B € A,,. The idea is to first split B into sets which are basically level sets
for the function s;(t) in order to achieve the crucial relation (2.107) below,
and then to further split each of these sets according to its metric entropy.
More precisely, we may assume that S = sup,cq ;7 8;(t) < o0, for there is
nothing to prove otherwise. Let us set 7 = j,(B) and define the sets Ay, for
1 <k <n by setting for k <n

Ay ={te B;27%S < 5;(t) <27FF1g5} (2.104)

20 See [59] for other constructions.
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and
A, ={teB; s;(t) <27"tS}. (2.105)
The purpose of this construction is to ensure the following:
kE<n;tt eAy=s;(t)<2(s;j(t)+27"9). (2.106)

This is obvious since s;(t') < 2s;(t) for k < n and s;(¢') < 27" 1S if k = n.
For each set Ay, k < n we use the following procedure.

o If e, 1(Ax) < r777! we may cover Aj by at most N,_; balls of radius
2r=771, 50 we may split Ay into N,_; picces of diameter < 4r=7~1. We
decide that each of these pieces A is an element of A, 11, for which we set
Jna1(A) = j + 1. Thus A(A) < 4r7=1 = 4p—Int2(4),

e Otherwise we decide that Ax € A,4; and we set jp4+1(Ax) = j. Thus
A(Ag) < 2r77 = 2r79n+1(A) | From (2.102) there exists ¢ € Ay, for which
s;(t") > 2(n=D/2p=3=1 Then by (2.106) we have

Vi€ Ay 20D/ 2pmI71 < 9(s4(t) +2708) (2.107)

In summary, if B € A, and A € A,11, A C B then
e cither j,1+1(A) = jn(B) +1
e or else j,11(A) = jn(B) and, from (2.107)

Vi€ A; 207D/ 2pmina M= <o(, (1) +2778) (2.108)
This completes the construction. Now for n > 1 we have n < N, 1 so that
card A1 < nNp_1N,, < N, 41 and the sequence (A,,) is admissible. Next,
we fix t € T. We set j, = jn(An(t)), and we observe that by construction

G < Jna1 < jn+1. Since A(A, (1)) < 4r~n(®) we have 272 A(A, (1)) < 4a(n)
where a(n) := 2"/2r=3n(®)_ To complete the argument we prove that

> a(n) < Lr(S + A(T)) . (2.109)
n>0
For this consider the set I provided by Lemma 2.9.5 for o = v/2, so that
since r—7° < 2rA(T) it suffices to prove that
> a(n) < LrS. (2.110)
nel\{0}

For n € T\ {0}, it holds that j,—1 = j, < jn+1 (since otherwise this con-
tradicts the definition of I). In particular, the integers j, for n € I are all
different so that ) -, s;,(t) < S. Using (2.108) for n — 1 instead of n yields

2(n=2)/2p=in=1 < 2(s;  (t) +27"*1S). Since j, 1 = j, we get
a(n) < Lr(s;, (1) + 27)
and summing these relations we obtain the desired result. a

The following connects Theorems 2.9.1 and 2.9.8.
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Proposition 2.9.9. Assume that the functional F' satisfies the growth con-
dition with parameters r and c*. Then the functions

sj(t) = i(F(B(t, QT_j+l)) — F(B(t, QT_j_2)))

C*
satisfy (2.102).

Proof. Consider a subset A of T, j € Z with A(A) < 2r=7 and n > 1. Let
m = Np. If e,(A) > r=771 then by Lemma 2.9.3 we may find (t¢)e<m in A
with d(tg, te) > r=771 for £ # ¢'. Consider the set H, = B(ty,2r=772) so that
by (2.77) used for a = r=7=1 it holds that

% —j—lon/2 .
F(U Hg) > ¢'rI712"/2 4 min F(Hy) (2.111)

<m
<m

Let us now consider ¢y < m such that F(Hyg,) achieves the minimum in
the right-hand side, so that ming<,, F(Hy) = F(B(ts,,2r=772)). The crude
inequality 2r=9=2 +2r=J < 2r=3*! implies that Hy C B(t,,,2r7*!) for each
¢, so that F(U,<,, He) < F(B(te,, 2r~971)). Then (2.111) implies

F(B(te,,2r77t1)) > ¢*r=3719"2 L F(B(ty,.2r777%))

ie. s;(tg) > 2n/2r—371, o

Despite the fact that the proof of Theorem 2.9.8 is a few lines shorter than
the proof of Theorem 2.9.1, in the various generalizations of this principle
we will mostly follow the scheme of proof of Theorem 2.9.1. The reason for
this choice is simple: it should help the reader that our various partition
theorems follow a common pattern. The most difficult partition theorem we
present is Theorem 6.2.8 (the Latata-Bednorz theorem), which is one of the
highlights of this work, and it is not clear at this point whether the method
of Theorem 2.9.8 can be adapted to the proof of this theorem.

The following simple observation allows us to construct a sequence which
is admissible from one which is slightly too large. It will be used several times.

Lemma 2.9.10. Consider o > 0, an integer 7 > 0 and an increasing se-
quence of partitions (B,,),>0 with card B,, < N,4,. Let

S :=sup 2" A(B,(t)) .
teT%% (Ba(1))

Then we can find an admissible sequence of partitions (Ay)n>0 such that

sup S 2O A(AL(1)) < 27/%(S + K () A(T) . (2.112)
teT n>0
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Of course (for the last time) here K(a) denotes a number depending on
a only (that need not be the same at each occurrence).
Proof. Weset A, = {T}ifn <7 and A, = B,,_, if n > 7 so that card 4,, <
N, and
> A A(E) =27/ 2 A(B,(1)) -
n>Tt n>0

Using the bound A(A,(t)) < A(T), we obtain
> 2 A(AL(E) < K(a)27/“A(T) . 0

n<t

Exercise 2.9.11. Prove that (2.112) might fail if one replaces the right-hand
side by K (a,7)S. Hint: S does not control A(T).

2.10 Gaussian Processes: The Majorizing Measure
Theorem

Consider a Gaussian process (X;)ier, that is, a jointly Gaussian family of
centered r.v.s indexed by T'. We provide T with the canonical distance

d(s,t) = (E(X, — X,)2)"/? . (2.113)
Recall the functional 5 of Definition 2.7.3.

Theorem 2.10.1. (The Majorizing Measure Theorem.) For a universal con-
stant L it holds that

l’yg(T, d) <Esup X; < Ly(T,d) . (2.114)

L teT

The reason for the name is explained in Section 3.1. We will meditate on

this statement in Section 2.12. We will spend much time trying to generalize

this theorem to other classes of processes. To link the statements of these

generalizations with that of (2.114) it may be good to reformulate the lower
bound v, (T, d) < LEsup,c X, in the following general terms:

The control from above of Esup Xy implies the existence of a
ter

“small” sequence of admissible partitions of T .

The right-hand side inequality in (2.114) is Theorem 2.7.11. To prove the
lower bound we will use Theorem 2.9.1 and the functional
F(H)=Esup X; := sup E sup X, . (2.115)
teH H*CH,H*finite t€H*
For this we need to prove that this functional satisfies the growth condition
with ¢* a universal constant and to bound A(T'). We strive to give a proof
that relies on general principles, and lends itself to generalizations.
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Lemma 2.10.2. (Sudakov minoration) Assume that
Vpaqgnh p#q jd(tpvtq)za"

Then we have

Esup X, > i\/logm . (2.116)
p<m Ly
Here and below Li, Lo, ... are specific universal constants. Their values re-

main the same, at least within the same section.
The proof of the Sudakov minoration is given just after Lemma 15.2.7.

Exercise 2.10.3. Prove that Lemma 2.10.2 is equivalent to the following
statement. If (X;);cr is a Gaussian process, and d is the canonical distance,
then
en(T,d) < L272Esup X, . (2.117)
teT

Compare with Exercise 2.7.8.

To understand the relevance of Sudakov minoration, let us consider the
case where EXtZP < 100a? (say) for each p. Then (2.116) means that the
bound (2.15) is of the correct order in this situation.

Exercise 2.10.4. Prove (2.116) when the r.v.s X; are independent. That
is, assume that these variables are Gaussian independent centered. Hint: use
the method of Exercise 2.3.7 (b).

Exercise 2.10.5. A natural approach (“the second moment method”) to
prove that P(sup,<,, X, > u) is at least 1/L for a certain value of u is as
follows. Consider the r.v. Y = Zp 1(x,,>u}, prove that EY? < L(EY)2,
and then use the Paley-Zygmund inequality (6.15) below to prove that
SUp,,<,, Xt, > ay/logm/L; with probability > 1/L. Prove that this approach
works when the r.v.s X;, are independent, but find examples showing that
this naive approach does not work in general to prove (2.116).

The following is a very important property of Gaussian processes, and
one of the keys to Theorem 2.10.1. It is a facet of the theory of concentration
of measure, a leading idea of modern probability theory. We refer the reader
to [74] to learn about this.

Lemma 2.10.6. Consider a Gaussian process (X,)ieu, where U is finite and
let ¢ = sup,er (EX?)'/2. Then for u > 0 we have

2
P(’supXt — EsupXt’ > u) < 2exp<—u—2) . (2.118)
teU teU 20
In words, the size of the fluctuations of sup,c;; X are governed by the size
of the individual r.v.s X, rather than by the (typically much larger) quan-
tity Esup;cr X¢. It is essential that the cardinality of U does not appear in
(2.118).
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Exercise 2.10.7. Find an example of a Gaussian process for which

Esup X; > o = sup(EX?)Y/2 |
teT ter

whereas the fluctuations of sup,c X; are of order o, e.g. the variance of
sup, X; is about o?. Hint: T = {(t;)i<n; > ;< t2 < 1} and X; = Yi<n tigi

i<n 71
where g; are independent standard Gaussian r.v.s

Proposition 2.10.8. Consider points (t¢)i<m n T. Assume that d(te,te) >
a if £ £ . Consider o > 0, and for £ < m a finite set Hy C B(ty,0). Then
if H= <., He we have

Esup X; > i\/logm—Lgan/logm—|—minE sup X; . (2.119)
teH Ly <mo e,

When o < a/(2L;Ls), (2.119) implies

Esup X; > i\/log m + min E sup X, (2.120)
teH 2L, t<m o teH,

which can be seen as a generalization of Sudakov’s minoration (2.116) by
taking Hy = {t¢}. When m = N, (2.120) proves that the functional F'(H) =
Esup,cp X, satisfies the growth condition (2.77).

Proof. We can and do assume m > 2. For £ < m, we consider the r.v.

Y, = (sup Xt) — X, = sup (X — Xy,) -
teEH, teEH,
For t € Hy we set Z; = Xy — Xy,. Since H; C B(tg,0) we have EZ? =
d(t,t¢)* < 02 and, for u > 0 equation (2.118) used for the process (Z;)icm,
implies
2
P(|Y; — EY)| > u) < 2exp(_2“—2) . (2.121)
o

Thus if V' = max<, |Yr — EY;| then combining (2.121) and the union bound,

we get
2

PV >u) < 2mexp<—2u—2) , (2.122)
o

and (2.13) implies
EV < Lyo+/logm . (2.123)

Now, for each ¢ < m,

Y, > EY; — V > minEY; — V,
<m

and thus
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SupXt:n+Xt22th+minEn—V
tEH, Kgm
so that
sup X; > max X minEY, -V .
tél}} t= egn)f te zglm ¢

Taking expectations we obtain

Esup X; > Emax X}, + minEY, — EV,
teH £<m <m

and we use (2.116) and (2.123). O

Exercise 2.10.9. Prove that (2.120) might fail if one allows ¢ = «a. Hint:
the intersection of the balls B(ts, a) might contain a ball with positive radius.

Exercise 2.10.10. Consider subsets (Hg)¢<m of B(0,a) and H = Up<p, Hy.
Prove that
Esup X; < Lay/logm + max E sup X, . (2.124)
tell <m o yeqy,

Try to find improvements on this bound. Hint: peek at (19.61) below.

Proof of Theorem 2.10.1. We fix r = max(8,4L1 L), so that 2a/r < a/2L1 L.
The growth condition for the functional F' of (2.115) follows from (2.120),
which implies that (2.77) holds for ¢* = 1/L. Theorem 2.9.1 implies

v2(T,d) < LEsup X; + LA(T) .
teT

To control the term A(T) we write that for ¢1,ts € H,

1
Emax(X;,, Xt,) = Emax(X,;, — X4,,0) = \/_z_ﬂd(tl’t2)’

so that A(T") < v2rEsup,er X:. O

The proof of Theorem 2.10.1 displays an interesting feature. This theorem
aims at understanding Esup,c;, X, and for this we use functionals that are
based on precisely this quantity. This is not a circular argument. The content
of Theorem 2.10.1 is that there is simply no other way to bound a Gaussian
process than to control the quantity v2(7’, d). The miracle of this theorem is
that it relates in complete generality two quantities, namely Esup;. X; and
Y2(T,d) which are both very hard to estimate. Still, in concrete situations,
to estimate these quantities, we must in some way gain understanding of the
underlying geometry.

The following is a noteworthy consequence of Theorem 2.10.1.
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Theorem 2.10.11. Consider two processes (Yi)ier and (X¢)ier indexed by
the same set. Assume that the process (Xi)ier is Gaussian and that the pro-
cess (Yi)ier satisfies the increment condition

2

ﬁ) . (2.125)

Vu>0, Vs, teT, P(|Y, — Y| > u) gzexp(_

where d is the distance (2.113) associated to the process X;. Then we have

E sup |V, — Y| < LEsup X; . (2.126)
s,teT teT

Processes satisfying the condition (2.125) are sometimes called sub-Gaussian.
We will see many examples later, see (6.2) below.

Proof. We combine (2.60) with the left-hand side of (2.114). O
Let us also note the following consequence of (2.126) and Lemma 2.2.1.%

Corollary 2.10.12. Consider two Gaussian processes (X;)ier and (Yy)ier.
Assume that
Vs, t €T, E(Ys —Y:)? <E(X, — X;)? .

Then

EsupY; < LEsup X, . (2.127)
teT teT

2.11 Gaussian Processes as Subsets of a Hilbert Space

In this section we learn to think of a Gaussian process as a subset of a Hilbert
space. This will reveal our lack of understanding of basic geometric questions.

First, consider a Gaussian process (Y:)ier and assume (the only case
which is of interest to us) that there is a countable set 7" C T which is dense
in T. We view each Y; as a point in the Hilbert space L?(§2,P) where (£2,P)
is the basic probability space. The closed linear span of the r.v.s (Y;)ier in
L?(£2,P) is a separable Hilbert space, and the map t — Y; is an isometry
from (T,d) to its image (by the very definition of the distance d). In this
manner we associate a subset of a Hilbert space to each Gaussian process.

Conversely, consider a separable Hilbert space, which we may assume to be
¢ = (*(N). Consider an independent sequence (g;);>1 of standard Gaussian
r.v.s We can then define the Gaussian process (X;);c¢2, where

X, = Ztigz- (2.128)
i>1

(the series converges in L?(£2)). Thus

21 Please do not miss the comments at the end of Section 2.16.



62 2. Gaussian Processes and the Generic Chaining

EX? =) 67 =t (2.129)

i>1

In this manner, for each subset 1" of ¢ we can consider the Gaussian process
(X¢)ter- The distance induced on T by the process coincides with the distance
of ¢2 by (2.129).

A subset T of €2 will always be provided with the distance induced by ¢2,
so we may also write 72(7T") rather than v5(T,d). We denote by convT the
convex hull of T'.

Theorem 2.11.1. For a subset T of ¢, we have
Yo(conv T) < Lyo(T) . (2.130)

Of course we also have (1) < ya(convT) since T' C conv 7.

Proof. To prove (2.130) we observe that since X ¢, 406, = 01Xy, + 02Xy,
we have

sup X; =sup X . (2.131)
teconv T’ tel
We then use (2.114) to write
1
—72(convT) <E sup X;=EsupX; < Ly(T). O
L teconv T teT

A basic problem is that it is absolutely not obvious how to construct an
admissible sequence of partitions on conv T witnessing (2.130).

Research problem 2.11.2. Give a geometrical proof of (2.130).

What we mean by geometrical proof is a proof that does not use Gaus-
sian processes but only the geometry of Hilbert space. The difficulty of the
problem is that the structure of an admissible sequence which witnesses that
Y2 (conv T) < Ly2(T") must depend on the “geometry” of the set T'. A really
satisfactory argument would give a proof that holds in Banach spaces more
general than Hilbert space, for example by providing a positive answer to the
following, where the concept of ¢g-smooth Banach space is explained in [80].

Research problem 2.11.3. Consider a 2-smooth Banach space, and the
distance d induced by its norm. Is it true that for each subset T of its unit
ball one has y2(conv T, d) < K+/log card T? More generally, is it true that for
each finite subset 1" one has y2(conv T, d) < K~5(T,d)? (Here K may depend
on the Banach space, but not on 7.)

Research problem 2.11.4. Still more generally, is it true that for a finite
subset 1" of a ¢-smooth Banach space, one has ~,(conv 1) < K~4(T")?



2.11 Gaussian Processes as Subsets of a Hilbert Space 63

Even when the Banach space is £, I do not know the answer to these problems
(unless p = 2!). (The Banach space ¢P is 2-smooth for p > 2 and g-smooth for
p < 2, where 1/p+1/q = 1.) One concrete case is when the set 7' consists of
the first N vectors of the unit basis of /P. It is possible to show in this case
that v,(convT) < K(p)(log N)'/9, where 1/p + 1/q = 1. We leave this as a
challenge to the reader. The proof here is pretty much the same as for the
case p = ¢ = 2 which was covered in Section 2.6.

Exercise 2.11.5. Prove that if @ > 2 we have Zkgl(k +1)"e < L279
We recall the 2 norm || - || of (2.129). Here is a simple fact.

Proposition 2.11.6. Consider a sequence (t)g>1 such that.

VE>1, |t <1/y/Ioglk + 1) .

Let T = {%ty, k > 1}. Then Esup,cp Xy < L and thus Esup,cooner X1t < L
by (2.131).

Proof. We have
U2
P(sup X, | > u) <N P(Xplzuw <Y 26Xp<—? log(k + 1)) (2.132)
k=1 k>1 k>1

since Xy, is Gaussian with EX? < 1/log(k 4 1). For u > 2, the right-hand
side of (2.132) is at most Lexp(—u?/L) by the result of Exercise 2.11.5, and
as usual the conclusion follows from (2.6). O

Exercise 2.11.7. Deduce Proposition 2.11.6 from (2.34). Hint: Use Exer-
cise 2.4.1.

It is particularly frustrating not to be able to solve the following special
instance of Problem 2.11.2.

Research problem 2.11.8. In the setting of Proposition 2.11.6 find a geo-
metrical proof that v(convT) < L.

The following shows that the situation of Proposition 2.11.6 is in a sense
generic.
Theorem 2.11.9. Consider a countable set T C €2, with 0 € T. Then we

can find a sequence () with

Vi >1, [[telVog(k + 1) < LE sup X,

tel

and
T C conv({tg; k >1}).

Furthermore we may assume that each ty is a multiple of the difference of
two elements of T.%?

22 This information is of secondary importance and will be used only much later.
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Proof. By Theorem 2.10.1 we can find an admissible sequence (A,,) of T with

Vte T,y 2"2A(A,(t)) < LEsup X; =S . (2.133)
>0 teT

We construct sets T,, C T, such that each A € A, contains exactly one
element of T,,. We ensure in the construction that 7' = J,,~, 75 and that
Ty, = {0}. (To do this, we simply enumerate the elements of T as (vy,)n>1
with vo = 0 and we ensure that v, is in 7),.) For n > 1 consider the set U,
that consists of all the points

-n/2 t—wv
[t =]

where t € T,,,v € T,_1, and t # v. Thus each element of U, has norm
2-7/2 and U, has at most N,N,_; < Np41 elements. Let U = (J,,~; Un.
Then since ) ,.,, Ney1 < Nyqo, U contains at most N,,;o elements of norm
> 27"/2, We enumerate U as {z;;k = 1,...} where the sequence (| z||) is

non-increasing, so that ||z;|| < 27™/2 for k > N, 2. Let us now prove that
llzkll < L/+/log(k + 1). If k < N5 this holds because ||z;x|| < 1. Assume then
that &k > Ny and let n > 0 be the largest integer with £ > N, 2. Then by
definition of n we have £k < N, ;3 and thus 2n/2 < L/\/logk. But then
|lzx| <272 < L/\/logk, proving the required inequality.

Consider t € T, so that t € T,, for some m > 0. Writing m,(t) for the
unique element of T}, N A,,(t), since my(t) = 0 we have

t= Y mt) = mualt) = > an(t)ua(t), (2.134)

1<n<m 1<n<m
with ay, (t) = 2"/2||m,(t) — 7,_1(t)|| and

() = 9-n/2_Tn(t) = Tn-1(t)
= @l <

Since

> an(t) <Y 2PA(A, (1) < 28

1<n<m n>1

and since u,(t) € U, C U we see from (2.134) that

t= > an(®un(t)+ (25— Y an(t)) x 0 € 25 conv(U U{0}).

1<n<m 1<n<m

Thus 7" C 2Sconv(U U {0}) = conv(25U U {0}), and it suffices to take
tr = 252. O

Exercise 2.11.10. What is the purpose of the condition 0 € T'7
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Exercise 2.11.11. Prove that if T C ¢ and 0 € T, then (even when T is
not countable) we can find a sequence (t) in 2, with ||tg|[\/log(k + 1) <
LEsup,er X; for all k and

T C conv{ty, ; k> 1},

where conv denotes the closed convex hull. (Hint: do the obvious thing, apply
Theorem 2.11.9 to a dense countable subset of T'.) Denoting now by conv*(A)
the set of infinite sums ), a;a; where )", |oy| = 1 and a; € A, prove that
one can also achieve

T Cconv*{ty; k>1}.

Exercise 2.11.12. Consider a set 7' C ¢? with 0 € T' C B(0,§). Prove that
we can find a sequence (t;) in £, with the following properties:

Vk>1, |tg]|v/log(k+1) < LEsup X, , (2.135)
teT

l[tell < L6, (2.136)

T ¢ convity ; k> 1}, (2.137)

where conv denotes the closed convex hull. Hint: copy the proof of The-
orem 2.11.9, observing that since T C B(0,4) one may chose A, = {T'}
and T, = {0} for n < ng, where ng is the smallest integer for which
omo/2 > §'Esup,er Xt, and thus U, = 0 for n < ny.

The following problems are closely related to Problem (2.11.2).

Research problem 2.11.13. Give a geometric proof of the following fact.
Given subsets (Tx)x<n of a Hilbert space, and T'= >, -y Tk = {21 + ... +
xn; Yk < N, ay € Ty}, prove that yo(T) < LY, oy v2(Th)-

We do not even know how to solve the following special case.

Research problem 2.11.14. Consider sets (T%)r<n in a Hilbert space, and
assume that each T} consists of M vectors of length 1. Let T' = 3", - Tj.
Give a geometrical proof of the fact that (1) < LN+/log M.

The next exercise is inspired by the paper [9] of S Artstein. It is more
elaborate, and may be omitted on first reading. A Bernoulli r.v. ¢ is such
that P(s = £1) = 1/2.%

Exercise 2.11.15. Consider a subset T C R"™, where R" is provided with
the Euclidean distance. We assume that for some § > 0, we have

0eTc B0,5). (2.138)

23 One must distinguish Bernoulli r.v.s ¢; from positive numbers ¢!



66 2. Gaussian Processes and the Generic Chaining

Consider independent Bernoulli r.v.s (&;)i p>1. Given a number ¢ < n con-
sider the operator U, : R" — R given by

= ()

< .
i<n p=q

(a) Prove that ||Ug|| > v/n.
We want to prove that despite (a) there exists a number L such that if

Esupier D oi<p, 9iti < 04/, then with high probability
U,(T) C B(0,Lé+/q) , (2.139)

whereas from (2.138) we would not expect better than U,(T) C B(0,8y/n).
(b) Use the subgaussian inequality (6.1.1) to prove that if ||2|| = 1, then

1 2
Eexp(é—1 (Z z—:z-,pxi) ) <L. (2.140)
i<n
(c) Use (2.140) and independence to prove that for z € R™ and v > 1,

P(I|Uq(2)| = Lv/g]lz)) < exp(—v?q) . (2.141)

(d) Use (2.141) to prove that with probability close to 1, for each of the
vectors ¢, of Exercise 2.11.12 one has ||U,(tx)| < Ld,/q and conclude.

We end this section with a discussion of a question which shares some
features with Problem 2.11.2, in a sense that it is a property which is obvious
on one hand, but difficult to prove without using the magic of linearity.?*
For k£ < N let us consider Gaussian processes (X t)ier, Wwith associated
distances d. On the space T' =[], - 5 Tk let us consider the distance d given
by

/2
d((tk)k<N’ tk k<N (Z dk tk,tk ) . (2.142)

k<N

Proposition 2.11.16. We have

Y(T,d) < LY 72Tk, di) - (2.143)
k<N

Proof. Assuming without loss of generality that the processes (Xj)r<n are
independent we can consider the Gaussian process (X;)ier given for t =
(tk)k<n by Xt = j <N Xk,t, It is obvious that the distance d of (2.143) is
associated to this process. It is also obvious that

sup X; = Z sup Xy, .
teT hon €Tk

Taking expectation and combining with (2.114) concludes the proof. a

24 There are several equally frustrating instances of this situation.
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The question now is to prove (2.143) without using Gaussian processes, for
example by proving it for any sequence ((Tj,dr))r<n of metric spaces. The
most interesting part of that project is that it is unexpectedly hard. Is it the
sign that we are still missing an important ingredient? In the next exercise
we show how to prove about the simplest possible case of (2.143), which is
already pretty challenging.

Exercise 2.11.17. Throughout this exercise each space T} consists of My
points, and the mutual distance of any two different points of T} is ¢ > 0.
The goal is to prove the inequality

/ Viog N(T,d,e)de <L ex+/log M, . (2.144)

k<N

Throughout the exercise I denotes a subset of {1,..., N} and I¢ denotes its
complement.

(a) Prove that if }_, ., €} < €® then N(T,d,€) <[, c;c Mi.

(b) Show that to prove (2.144) it suffices to prove the following. Consider two
sequences (€x)r<n and (ni)k<n. For € > 0 define S(e) by

S(e)? = inf{z ne ZG% < 62} )

kele kel

where the infimum is over all choices of I. Then

/000 S(e)de < L Z €xNk - (2.145)

k<N

(c) To prove (2.145), show that it suffices to prove the following. Consider a
function h > 0 on a probability space. For € > 0 define S(¢€) by

SN2 e 1 / 2
) = —dpu ; ) <e
S(e) 1nt{/Ac hdu ; Ahd,u <e } ,

where the infimum is over all choices of A. Then [;* S(e)de < L. Hint: Reduce

to the case where Y, v €éxnr = 1. Use the probability 4 on {1,..., N} such

that u({k}) = exnx and the function h given by h(k) = e /.

(d) Show that it suffices to prove that }_,., 2745(27¢) < L.

(e) Assuming for simplicity that u has no atoms?® prove the statement given

in (d). Hint: For ¢ € Z and 27% < [ hdu consider the set A, of the type

Ay = {h < t¢} where t; is such that [, hdp = 272, so that S(2762 <

i) Ag(l /h)du. Warning: this is not easy.

25 I am sure that this is true without this hypothesis, but I did not find the energy
to carry out the details.
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Exercise 2.11.18. This exercise continues the previous one. The spaces
(Ty, dy) are now any metric spaces, and the goal is to prove that

/ V1og N(T,d, e)de < L Z / V1og N(Ty, dy, €)de . (2.146)
0 0

k<N

Proving this requires passing the main difficulty of proving (2.143), but to
prove (2.143) itself, it will be convenient to use different tools, and that proof
is the object of Exercise 3.1.6.

(a) Show that to prove (2.146) it suffices to prove the following. Consider
decreasing functions fi : RT™ — RT and for € > 0 define V(¢) by

Vie)? = inf{ Z frlen)?; Z e < 62} ,

k<N k<N

where the infimum is taken over all families (eg)r<n. Then

/0 V(ede <L > /0 fr(e)de . (2.147)

k<N

(b) When each fj, is of the type fr = mx1(0,,[, deduce (2.146) from (2.145).
(c) Convince yourself that by approximation it suffices to consider the case
where each fj, is a finite sum ), 2_51[079“5[.

(d) In the case (c¢) prove (2.147) by applying the special case (b) to the
family fi ¢ of functions given by fi ¢ := 2t 10,0, [ for all relevant values of
k., (. Hint: this is a bit harder.

2.12 Dreams

We may reformulate the inequality (2.114)

1
z’h(T» d) < Esup Xy < Lyo(T,d)
teT

of Theorem 2.10.1 by the statement
Chaining suffices to explain the size of a Gaussian process. (2.148)

We simply mean that the “natural” chaining bound for the size of a Gaussian
process (i.e. the right-hand side inequality in (2.114)) is of correct order,
provided one uses the best possible chaining. This is what the left-hand side
of (2.114) shows. We may dream of removing the word “Gaussian” in that
statement. The desire to achieve this lofty goal in as many situations as
possible motivates much of the rest of the book.
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Besides the generic chaining, we have found in Theorem 2.11.9 another
optimal way to bound Gaussian processes: to put them into the convex hull
of a “small” process, that is to use the inequality

Esup X; < Linf{S; T C conv{ty,k > 1}, [|tx]| < S/y/log(k + 1)} .

teT

Since we do not really understand the geometry of going from a set to its
convex hull, it is better (for the time being) to consider this method as some-
what distinct from the generic chaining. Let us try to formulate it in a way
which is suitable for generalizations. Given a countable set V of r.v.s, let us
define the (possibly infinite) quantity

SW) = inf{S >0, /OO 3" P(V] > u)du < 5} . (2.149)

S yvey

Lemma 2.12.1. It holds that

E sup [|V|<25(V). (2.150)
Veconv V

Proof. We combine (2.6) with the fact that for S > S(V) we have

/ P( sup |V|2u)du§5—l—/ ZP(|V|>u)du§2S. O
0 V Econv V S Vey

Thus (2.150) provides a method to bound stochastic processes. This method
may look childish, but for Gaussian processes, the following reformulation of
Theorem 2.11.9 shows that it is in fact optimal.

Theorem 2.12.2. Consider a countable set T'. Consider a Gaussian process
(Xt)ter and assume that Xy, = 0 for some to € 1. Then there exists a
countable setV of Gaussian r.v.s, each of which is a multiple of the difference
of two variables X, with

VteT: Xy €convV, (2.151)
S(V) < LEsup X, . (2.152)
teT

To understand the need of the condition X;, = 0 for some ¢y think of
the case where T consists of one single point. The proof of Theorem 2.12.2
is nearly obvious by using (2.132) to bound S(V) for the set V consisting of
the variables X;, for the sequence (fj) constructed in Theorem 2.11.9. We
may dream of proving statements such as Theorem 2.12.2 for many classes
of processes.

Also worthy of detailing is another remarkable geometric consequence of
Theorem 2.11.9 in a somewhat different direction. Consider an integer V.
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Considering i.i.d. standard Gaussian r.v.s, we define as usual the process
X, = >, n giti. We may view an element ¢ of £3 as a function on ¢3, by
the canonical duality, and therefore view ¢ as a r.v. on the probability space
(6%, 1), where p is the law of the sequence (g;);<n. The processes (X;) and
(t) have the same law, hence they are really the same object viewed in two
different ways. Consider a subset 7" of /3, and assume that 7' C conv{ty; k >
1}. Then for any v > 0 we have

{supt > v} C U {tx > v}. (2.153)

teT K1

The sets {t; > v} on the right are very simple: they are half-spaces. Assume
now that for kK > 1 and a certain S we have ||tgx||\/log(k + 1) < S. Then for
u > 2

Sl = Su}) < Y exp(— log(k + 1)) < Lexp(—?/L)

k>1 k>1

the very same computation as in (2.132). Theorem 2.11.9 implies that one
may find such ¢ for S = LEsup, X;. Therefore for v > LEsup, X;, the
fact that the set in the left-hand side of (2.153) is small (in the sense of
probability) may be witnessed by the fact that this set can be covered by
a union of simple sets (half-spaces) the sum of the probabilities of which is
small.

We may dream that something similar occurs in many other settings. In
Chapter 13, which can be read right now, we will meet a fundamental such
setting, which inspired the author’s lifetime favorite problem, see Section 13.3.

2.13 A First Look at Ellipsoids

We have illustrated the gap between Dudley’s bound (2.41) and the sharper
bound (2.34), using the examples (2.49) and (2.42). These examples might
look artificial, but here we demonstrate that the gap between Dudley’s bound
(2.41) and the generic chaining bound (2.34) already exists for ellipsoids in
Hilbert space. Truly understanding ellipsoids will be fundamental in several
subsequent questions, such as the matching theorems of Chapter 4. A further
study of ellipsoids is proposed in Section 3.2.
Given a sequence (a;);>1,a; > 0, we consider the ellipsoid

5:{te£2;22—§2§1}. (2.154)

i>1 ¢
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Proposition 2.13.1. When ., a? < 0o we have
1 )\ 1/2 1/2
(>a?) T <Eswx < (Ya?) 2.155
L (; 2) = te? t = ; i ( )

Proof. The Cauchy-Schwarz inequality implies

1/2
Y :=supX; = supZtigi < (Z a?gf) . (2.156)
te€ te€ 155 =1

Taking t; = afgi/(zj21 a?g?)l/2 yvields that actually ¥ = (3 5, a2g?)'/?
and thus EY? = D1 a?. The right-hand side of (2.155) follows from the

2
Cauchy-Schwarz inequality:

1/2
EY < (EY?)V/2 = (Z a,f) . (2.157)
i>1
For the left-hand side, let 0 = max;>1 |a;|. Since Y = sup,c¢ X; > |a;[|g;| for
any ¢, we have 0 < LEY. Also,

2
EX? = th < mzaxaz2 Z a_J2. <o?. (2.158)
i j o

Then (2.118) implies?S

E(Y —EY)? < Lo? < L(EY)?,
so that 2121 a? =EY? =E(Y — EY)? + (EY)? < L(EY)2 O
As a consequence of Theorem 2.10.1,
1/2
12(E) < L(Z af) . (2.159)
i>1

This statement is purely about the geometry of ellipsoids. The proof we gave
was rather indirect, since it involved Gaussian processes. Later on, in Chapter
4 we will learn how to give “purely geometric” proofs of similar statements
that will have many consequences.

Let us now assume that the sequence (a;);>1 is non-increasing. Since

2" < i < 2" = agn > a; > agen

we get

26 One may extend (2.118) to the case where U is infinite by a proper definition of
Sup;cy Xt.
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Zaf = Z Z af < 22"(1%71

i>1 n>0 2n<j<2n+1 n>0
and
YILED SIS Srr
i>1 n>0 n>1
and thus 3, 5, 2"a3. <33, a;. So we may rewrite (2.155) as
%(Z 2”a§n)l/2 < E?‘lellg)Xt < (Z Q"agn)lﬂ . (2.160)

n>0 n>0

Proposition 2.13.1 describes the size of ellipsoids with respect to Gaus-
sian processes. Our next result describes their size with respect to Dudley’s
entropy bound (2.38).

Proposition 2.13.2. We have

1
7 D 2 Pagn <> 2 2e,(E) < LY 2" agn . (2.161)

n>0 n>0 n>0

The right-hand sides in (2.160) and (2.161) are distinctly different.?” Dud-
ley’s bound fails to describe the behavior of Gaussian processes on ellipsoids.
This is a simple occurrence of a general phenomenon. In some sense an el-
lipsoid is smaller than what one would predict just by looking at its entropy
numbers e, (£). This idea will be investigated further in Section 4.1.

Exercise 2.13.3. Prove that for an ellipsoid £ of R™ one has

32726, (€) < Ly/log(m + Da(€.d)
n>0

and that this estimate is essentially optimal. Compare with (2.58).

The proof of (2.161) hinges on ideas which are at least 50 years old, and
which relate to the methods of Exercise 2.5.9. The left-hand side is the easier
part (it is also the most important for us). It follows from the next lemma,
the proof of which is basically a special case of (2.45).

Lemma 2.13.4. We have e,(£) > Lasn.

Proof. Consider the following ellipsoid in R?":
12

En={(t)icen s > 5 <1}
i<an a;

27 This difference may seem rather small, but, as we shall see in Chapter 4, there
are natural situations where it really matters.
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Since &, is the image of £ by a contraction?®(namely the “projection on the
first 2™ coordinates”) it holds that e, (&,) < e, (£).

Throughout the rest of this section we denote by B the centered unit
Euclidean ball of R?" and by Vol the volume in this space. Let us consider a
subset T of &,, with card T < 22", and € > 0; then

vol( U(eB + t)) <3 Vol(eB + 1) < 22" VolB = (2¢)>"VolB.
teT teT

Since we have assumed that the sequence (a;) is non-increasing, we have
a; > agn for i < 2™ and thus asnB C &,, so that Vol&, > a%:VolB. Thus,
whenever 2¢ < agn, we cannot have &, C [J;cp(eB + 1), so that e,(E,) >
aon /2 O

We now turn to the upper bound, which relies on a special case of (2.46). We
keep the notation of the proof of Lemma 2.13.4.

Lemma 2.13.5. We have
en+3(E) < eny3(En) + aon . (2.162)

Proof. We observe that when ¢ € £, then, using that a; < agn for ¢ > 2" in
the last inequality,

t t; 1 >
12> gzl gz L
i>1 ° i>2m ¢

so that (3,05, t2)Y? < a9 and, viewing &, as a subset of &, we have
d(t,€,) < agn. Thus if for £k > 1 we cover &, by Nj balls of radius €, the
balls with the same centers but radius € + agn cover £. This proves that
er(€En) < ex(€) + azn and hence (2.162). O

Lemma 2.13.6. Let ¢ = maxy<n, asw 2", Consider a subset A of &, with
the following property:

any two points of A are at mutual distance > 2¢ . (2.163)
Then card A < Ny 43.

Proof. The balls centered at the points of A, with radius e, have disjoint
interiors, so that the volume of their union is card A Vol(eB), and since these
balls are entirely contained in &, + ¢B we have

card A Vol(eB) < Vol(&, + €B) . (2.164)

28 Generally speaking, a map ¢ from a metric space (7', d) to a metric space (1”,d’)
is called a contraction if d'(p(z), p(y)) < d(z,y).
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For t = (t;)ican € &, we have 37, o t?/a? < 1, and for ¢ in eB, we have
Dicon 2 /€2 < 1. Let ¢; = 2max(e, ;). Since

(t; +1})? 217 + 27 Lot 2
Z c? SZ c? Szﬁ(a_f—'—e_Q)Sl’

i<an i<an @ i<on
we have
1 t
En+eBCE ::{t; ZC—2§1}.
iSQn 7
Therefore

Vol(&, + eB) < Vol €' =VoIB [] ¢
i<2n
and comparing with (2.164) yields
C; 62" ( CLZ’)
< — = -t
card A < H ; 2 H max|( 1, -
3<2n <2

Next it follows from the choice of € that for any k& < n we have aqx k=1 < ¢
Then a; < agr < €277 for 28 < § < 2541 5o that

H max(l,%) = H H max(l,%)

i<2an k<n—12k<i<2k+1
< I @h =2Semnhzt <2
k<n—1
since Zi>0 i2~% = 4. Therefore card A < 22" .92"t? < Npi3. O
Lemma_2.13.7. We have
ent3(En) < 21;1231((0%2]“_") . (2.165)

Proof. Assume now that A is as large as possible under (2.163). Then the
balls centered at points of A and with radius < 2¢ cover &,,, for otherwise we
could add a point to A. Since card A < N,,;3 we have e,y3(E,) < 2e. O

Combining (2.165) with (2.162) we obtain
Corollary 2.13.8. We have

ent3(E) < 3max(agnw28) . (2.166)
k<n

Proof of Proposition 2.13.2. We have, using (2.166)

Z 2n/2€n(5) _ Z 2(n+3)/2€n+3(5) <L Z 271/2 (Z Qk—na2k)

n>3 n>0 n>0 k<n
=LY 2%ay Yy 272 <L) 2k, .
k>0 n>k k>0

Since £ is contained in the ball centered at the origin with radius a;, we have
en(€) < ay for each n. The result follows. O
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2.14 Rolling Up our Sleeves: Chaining on Ellipsoids

Let us recall the ellipsoid € of (2.154). We have proved (2.159) as a con-
sequence of the Majorizing Measure Theorem, Theorem 2.10.1. We will
later give a more geometrical proof of this result. In the present section we
demonstrate the hard way that these results are deep, by explicitly con-
structing a chaining on the ellipsoid £.29 This is surprisingly non-trivial.?"
Let us assume that the sequence (a;) is non-increasing, and for n > 0 let
I, = {i;2" < i < 27"} so that card I,, = 2" and

1 A
r_ 2, 2 _ 2 . 4 2
SCS_{teé,E 2 E tiél}_{teé,g - E tigl},
n>0 2" iel, n>0 " iel,
(2.167)

where ¢, = 2"ag~. Furthermore (as in the previous section) > ~,c, =
dons02"azn < 33,5, a7. For such an ellipsoid £ we will construct sets

U, C % with cardU,, < Ny 1y, (where ng is a universal constant) such that

vee Y 2Md(t,U,) < L(Z cn)1/2 : (2.168)

n>0 n>0

Let us now deduce from this result how to perform the chaining on the
ellipsoid £ of (2.154). As we have just seen, such an ellipsoid is contained in an
ellipsoid &’ of the type (2.167) for which >~ < ,¢, < LY .5, a?. Consider the
sets U, C €2 as in (2.168). Consider a map ¢ : £2 — £ such that d(z, (7)) <
2d(z, £) and observe that for t € £ and x € £? we have d(z, ¢(z)) < 2d(x,t) so
that d(t, p(z)) < d(t,z) + d(z, o(x)) < 3d(t,z). Consequently, d(t, o(Uy,)) <
3d(t,Uy). The sets o(U,) C & satisty card(U,,) < cardU,, < Njin,. We
define T,, = {0} for n < ng and T,, = U,,_,,, for n > ng. Thus card T,, < N,,
and (2.168) implies

vieE, Y 2Vt T,) < L(Z a§)1/2 .

n>0 [

We now prepare for the construction of the sets U,. There is no loss of
generality to assume that >~ ¢, = 1.

Lemma 2.14.1. Givent € £ we can find a sequence (p(n,t))n>o of integers
with the following properties.

ot <o) (2.169)
€L,

29 There are obvious similarities between this section and Section 2.6. It is a good
challenge to figure out by yourself how to do the chaining on ellipsoids after
having studied Section 2.6.

30 T am grateful to Dali Liu for having suggested to include this section
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Z on/2=p(nt)/2 < (2.170)
n>0
Yn >0, p(n+1,t) <p(n,t)+2. (2.171)

Proof. Define g(n.t) as the smallest integer ¢ < 2n such that I t2

29, Let A = {n > 0;q(n,t) < 2n}, so that for n € A we have 279"
23 e, t7. Thus, since t € £,

>

neA

<
<

Qn—q(n,t)

—<2222t2<2
cn c i=

n>0 " iel,

Since Y., ¢, = 1 then >, ., 27/274(n0/2 < [ by the Cauchy-Schwarz in-
equality. Since 27/2-1(n:)/2 — 9-n/2 fo1 n & A we have Y >0 on/2—a(nt)/2 <
L. We define now p(n,t) = min{q(k,t) +2(n —k);0 < k < n} so that (2.171)
holds. Also, since 27P("1)/2 <3~ 2=a(kt)/2=(n=k) we obtain

Z on/2=p(n,t)/2 < Z Z ok/2—q(kt)/29—(n—k)/2
n>0 n>0k<n
— Z ok/2—a(k:t)/2 Z o-(n=k)/2 <
k>0 n>k

For each n > 1 and p > 0 consider the set B(n,p) C ¢? which consists of
the t = (¢;);>1 such that t; = 0 if i > 2" and [|t|y < 27P/2*2. This is a ball
of dimension 2" — 1 and radius 277/2%2, Using (2.47) for ¢ = 1/4 there is a
set V,,, C B(n,p) with cardV,,, < L?" such that every point of B(n,p) is
within distance < 27P/2 of Vip- We consider the set V,, = Up<p<onVn,p SO
that card V,, , < L?*". We set Uy = {0} and we consider the sets U,, consisting
of the elements zg + ... + x, where x; € Vj,

For t € £2 and n > 0 we define t(™ e ¢2 by tl(-n) =t; if i < 2™ and tl(-n) =0
if i > 2". Note that t™ =t for ¢ € U,,.

Lemma 2.14.2. Fort € &' consider the sequence (p(n,t)) of Lemma 2.14.1.
Then for each n we can find u(n) € U, such that d(u(n),t(™) < 27p(nt)/2,

Proof. The proof is by induction over n. For n = 0 it suffices to take u(0) =0
since t(°) = 0. For the induction step from n to n+1 we have t(™) = u(n)+v(n)
where u(n) € Uy, and ||v(n)]]2 < 27P(1/2 5o that t"+D) = u(n)+o'(n) where
v'(n) = v(n) + T — ¢, By (2.169) ([t — M|y = (35, )12 <
2-P(1)/2 Thus ||/ (n)||y < 27P(D/2+1 < 2=P(n41.8)/242 where we have used
(2.171) in the second inequality. Since v(n); = 0 for ¢ > 2™ we have v'(n); =0
for i > 21 5o that v/(n) € B(n + 1,p(n + 1,t)). Thus there is an element
w € Vi1 pmty) € Vagr for which [[v/(n) —wlly < 2-P(n+1,1)/2 " Setting

u(n+1) :=u(n) +w € U,;1 we then have t(* D) —y(n+1) =v'(n) —w. O
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Corollary 2.14.3. Fort € & we have }_ -, 27/24(t,U,) < L.
Proof. Recalling (2.169) we have

R IED DI ED IR

k>n i€l k>n

so that ||t — (™|, < D kon 2-P(E:1)/2 Then

Z 2n/2Ht _ t(n)HQ < Z Z o—p(kt)/2 _ ZQ—P(’?J)/Q Z on/2
n>0 n>0k>n k>1 0<n<k
< LZ ok/2=p(k1)/2 < T, ,
E>1

using (2.170) in the last inequality. Since d(t,U,) < d(t™,U,) + ||t — t ||,
the result follows, using also Lemma 2.14.2. a0

2.15 Continuity of Gaussian Processes

By far the most important result concerning continuity of Gaussian processes
is Dudley’s bound (1.19). However since the finiteness of the right-hand side
of (1.19) is not necessary for the Gaussian process to be continuous, there
are situations where this bound is not appropriate.?! In the present section
we show that a suitable form of the generic chaining allows us to capture the
exact modulus of continuity of a Gaussian process with respect to its canon-
ical distance in full generality. Not surprisingly, the modulus of continuity
is closely related to the rate at which the series Y, 2"/2A(A,(t)) converges
uniformly on T for a suitable admissible sequence (A,,). Our first result shows
how to obtain a modulus of continuity using the generic chaining.

Lemma 2.15.1. Consider a metric space (T, d) and a process (Xi)ieT which
satisfies the increment condition (2.4):

2

u
_ > < — =05 | - :
Yu >0, P(|X; — X¢| >u) <2exp ( 2d(s,t)2> (2.4)

Assume that there exists a sequence (1) of subsets of T' with cardT,, < N,
such that for a certain integer m, and a certain number B one has

sup »  2"%d(t,T,) < B . (2.172)

el ==

31 In practice however, as of today, the Gaussian processes for which continuity is
important can be handled through Dudley’s bound, while for those which cannot
be handled through this bound (such as in Chapter 4) it is boundedness which
matters. For this reason, the considerations of the present section are of purely
theoretical interest and may be skipped at first reading.
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Consider 6 > 0. Then, for any u > 1, with probability > 1 — exp(—u?2™) we
have

Vs,teT, d(s,t) <= |X,— X, < Lu(2™/?6 + B) . (2.173)

Proof. We assume T finite for simplicity. For n > m and t € T denote by
mn(t) an element of T,, such that d(¢,m,(t)) = d(t,1,). Consider the event
12, defined by3?

Vn>m+1,VteT, |Xo o) — Xeny| < Lu2™2d(m,_1(t), ma(t))
(2.174)
and
V't €T, | Xo — Xp| < Lu2™?d(s',t') . (2.175)

Then as in Section 2.4 we have P(£2,) > 1 — exp(—u?2™). Now, when (2,
occurs, using chaining as usual and (2.174) we get

vteT, |Xt - Xﬂ'm(t)| < LuB. (2176)

Moreover, using (2.172) in the inequality, d(t, 7, (t)) = d(t, Tp,) < B2~™/2 |
so that, using (2.175),

d(s.t) <0 = d(mm(s), Tm(t)) < 6 +2B27™/2
= |Xﬂ.m(s) - Xﬂ.m(t)| < Lu(52m/2 + B) .

Combining with (2.175) proves that | X, —X;| < Lu(62"/?+B) and completes
the proof. a

Exercise 2.15.2. Deduce Dudley’s bound (1.19) from Lemma 2.15.1.

We now turn to our main result, which exactly describes the modulus of
continuity of a Gaussian process in term of certain admissible sequences. It
implies in particular the remarkable fact (discovered by X. Fernique) that for
Gaussian processes the “local modulus of continuity” (as in (2.177)) is also
“global”.

Theorem 2.15.3. There exists a constant L* with the following property.
Consider a Gaussian process (Xi)ier, with canonical associated distance d
given by (0.1). Assume that S = Esup,c Xy < 00. Fork > 1 consider § > 0
and assume that

VteT; E sup X, — X;| <27FS. (2.177)
{s€T3d(s,1) <ok}

Let ng = 0 and for k > 1 consider an integer ny for which

32 We are again following the general method outlined at the end of Section 2.4.



2.15 Continuity of Gaussian Processes 79
L*§27m/27k < 5, (2.178)
Then we can find an admissible sequence (Ay) of partitions of T such that

VE>0; sup Y 22A(An(t) < LS27F (2.179)
teT n>nk
Conversely, given integers ny and an admissible sequence (Ay,) as in (2.179),
and defining now &§ = S27"/27k with probability > 1 — exp(—u?2"™*) we
have
sup | X, — Xy| < Lu27*S . (2.180)
{s,t€Td(s,t)<55}

The abstract formulation here might make it hard at first to feel the power
of the statement. The numbers 0 control the (local) modulus of continuity
of the process. The numbers ny control the uniform convergence (over t)
of the series Y, ., 2"/2A(A,(t)). They relate to each other by the relation

8p ~ S27k/2=k The second part of the theorem asserts that in turn the
numbers ny, control the uniform modulus of continuity (2.180).

Proof. According to the Majorizing Measure Theorem and specifically (2.114),
there exists a constant L* such that for each subset U of T there exists an
admissible sequence (Ay) of partitions of U such that

L*
VEeU, Y 2P A(Au(1) < — Esup X, . (2.181)
n>0 seU

Assuming (2.177), by induction over k we construct an admissible se-
quence (A, )n<n, such that

l1<p<k=sup »  22A(A,(t) < L*S27P. (2.182)
teT ,

tp—1<n<np

For k = 1 the existence of the sequence (A, )n<n, follows from the Majorizing
Measure Theorem through (2.181) as explained, so we turn to the induction
step from k to k + 1. Using (2.182) for p = k we deduce that for each ¢t € T,
27k /2 A(Ay, (1)) < L*S27F, so that A(A,, (t) < L*S27™/27F < §; using
(2.178) in the last inequality. Consequently, for any element C' of A,, we
have A(C) < 8k, so that considering any point ¢ of C' we have, using (2.177)
in the last inequality

Esup X, = Esup(X, — X;) <E sup |X, — X,| < 527F.
seC seC {sET;d(s,t)<6x}

Using the Majorizing Measure Theorem we construct for each C' € A, an
admissible sequence (Ac¢ n)n>0 of partitions of C' for which

VteC, Y 2"2A(Agn(t) < L*S27F 1 (2.183)
n>0
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For nj, < n < ngyy we simply define A,, as the collection of all sets in one of
the partitions Ac ,—1 where C € A,,, so that card A,, < Nj,_;card A, <
N2_, < N,. Since for t € C we have A,(t) = Acn_1(t) it follows from
(2.183) that for any C' € A,,, we have

sup Y 2PA(AL(E) <sup Y 2PA(Ag () < LPS27R.

teC teC

nE<n<ngii n>ng

This completes the induction and the construction of the sequence (A,,) since
(2.182) implies (2.179).

It remains to prove the “conversely” part. For this for each n > 0 we
simply consider a subset T, of T' such that

VAec A, , card(T,NA)=1.
For each k we then use Lemma 2.15.1 for m = nj, and B = S27*. a

Key ideas to remember.33

e The generic chaining efficiently organizes the standard chaining argument
for processes whose increments have Gaussian-like tails governed by a dis-
tance d as in (2.4).

e The generic chaining applied to such processes motivates the introduction
of our main measure vo(7T,d) of the size of a metric space (T,d). This
measure involves the existence of suitable sequences of partitions.

e The fundamental problem then becomes how to construct such sequences
of partitions in a metric space.

e There is a machine (called a partitioning scheme) to construct such se-
quences of partitions. The input to the machine is a functional, a function
of the subsets of our basic metric space, which in a sense is a measure of
their size. The existence of such functionals with specific growth properties
is intrinsically linked to the existence of such sequences of partitions.

e The Majorizing Measure Theorem is the statement that for a Gaussian pro-
cess with index set 7" and canonical distance d the quantity Esup,c; X; is
exactly of order (T, d). The proof relies on a partitioning scheme, used
for the functional F'(A) = Esup,c 4 X;. Sudakov minoration and concen-
tration of measure are the main tools to prove that this functional satisfies
the required growth condition.

e Gaussian processes can be seen as subsets of a standard Hilbert space, but
the geometric understanding that would relate the size of a set with the
size of its convex hull is still lacking.

e The traditional way to organize chaining uses entropy numbers. Even for
sets as basic as ellipsoids in Hilbert space, entropy numbers provide only
a suboptimal description of their size.

33 The function of this brief summary is not to explain the material again, but is a

way for the reader to check that she did understand the main ideas. If any of the
points made below is not clear to the reader, she may not be ready to proceed
and may want to review the corresponding material.
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2.16 Notes and Comments

I have heard people saying that the problem of characterizing continuity and
boundedness of Gaussian processes goes back (at least implicitly) to Kol-
mogorov. The understanding of Gaussian processes was long delayed by the
fact that in the most immediate examples the index set is a subset of R or R™
and that the temptation to use the special structure of this index set is nearly
irresistible. Probably the single most important conceptual progress about
Gaussian processes was the realization, in the late sixties, that the bounded-
ness of a (centered) Gaussian process is determined by the structure of the
metric space (T, d), where d is the usual distance d(s,t) = (E(X, — X;)?)'/2.
It is difficult now to realize what a tremendous jump in understanding this
was, since this seems so obvious a posteriori.

In 1967, R. Dudley obtained the inequality (2.38). (As he pointed out,
R. Dudley did not state (2.38) though he performed all the essential steps,
and (2.38) totally deserves to be called Dudley’s bound.) A few years later,
X. Fernique proved that in the “stationary case” Dudley’s inequality can be
reversed [43], i.e. he proved in that case the lower bound of Theorem 2.10.1.
This historically important result was central to the work of Marcus and
Pisier [85], [86] who built on it to solve all the classical problems on random
Fourier series. Some of their results will be presented in Chapter 7. Interest-
ingly, now that the right approach has been found, the proof of Fernique’s
result is not really easier than that of Theorem 2.10.1.

Another major contribution of Fernique (building on earlier ideas of C.
Preston) was an improvement of Dudley’s bound based on a new tool called
majorizing measures (which we will study in Subsection 3.1.3). Fernique con-
jectured that his bound was essentially optimal. Gilles Pisier suggested in
1983 that I should work on this conjecture. In my first attempt I proved
fast that Fernique’s conjecture held in the case where the metric space (T, d)
is ultrametric. T learned that Fernique had already done this, so I was dis-
couraged for a while. In the second attempt, I tried to decide whether a
majorizing measure existed on ellipsoids. I had the hope that some simple
density with respect to the volume measure would work. It was difficult to
form any intuition, and I struggled in the dark for months. At some point I
tried a combination of suitable point masses, and easily found a direct con-
struction of the majorizing measure on ellipsoids. This made it believable
that Fernique’s conjecture was true, but I still tried to disprove it. Then I
realized that I did not understand why a direct approach using a partitioning
scheme should fail, while this understanding should be useful to construct a
counterexample. Once I tried this direct approach, it was a matter of three
days to prove Fernique’s conjecture. Gilles Pisier made two comments about
this discovery. The first one was “you are lucky”, by which he meant that
I was lucky that Fernique’s conjecture was true, since a counter example
would have been of limited interest. I am grateful to this day for his second
comment: “I wish I had proved this myself, but I am very glad you did it.”



82 2. Gaussian Processes and the Generic Chaining

Fernique’s concept of majorizing measures is difficult to grasp, and was
dismissed by the main body of probabilists as a mere curiosity. (I myself found
it very difficult to understand.) This could be the main reason why Fernique’s
path-breaking work did not receive the recognition it should have. I have tried
to repair this and to express my personal admiration by dedicating this book
to his memory and by paying homage to his work at numerous places in this
book.

In 2000, while discussing one of the open problems of this book with Keith
Ball (be he blessed for his interest in it!) I discovered that one could replace
majorizing measures by the totally natural variation on the usual chaining
arguments that was presented here. That this was not discovered much earlier
is a striking illustration of the inefficiency of my brain. For two decades it
looked like majorizing measures would not be of any use anymore, but they
now play again a major role again for reasons to be explained in Chapter 5.

In [150] the author presented a particularly simple proof of Theorem 2.10.1
(expressed in terms of majorizing measures since the generic chaining had not
been invented yet). It is based a on partition scheme related to the one we
use here. The precise relationship is discussed on page 72 of [171].

It is on purpose that I did not mention Slepian’s lemma, which is the
statement that (2.127) holds for L = 1. This lemma is very specific to Gaus-
sian processes, and focusing on it seems a good way to guarantee that one will
never move beyond these. One notable progress I made was to discover (ages
ago) the scheme of proof of Proposition 2.10.8 that dispenses with Slepian’s
lemma, and that we shall use in many situations. Comparison results such as
Slepian’s lemma are not at the root of results such as the Majorizing Mea-
sure Theorem, but rather are (at least qualitatively) a consequence of them
as in Corollary 2.10.12. This being said, Slepian’s lemma is historically very
important as it crystallizes the link between Esup,c; X; and the structure
of the metric space (T, d).
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In this chapter we systematically investigate different ways to measure the
size of a metric space. One of them, Fernique’s functional of Section 3.3 will
play a major role in the sequel, as it is the form which lends itself to vast
generalizations. The concept of a tree presented in Section 3.1 is historically
important: the author discovered many of the results he presents while think-
ing in terms of trees. We know now how to present these results and their
proofs without ever mentioning trees, arguably in a more elegant fashion, so
that trees are not used explicitly elsewhere in this book. However, it might
be too early to dismiss this concept, at least as an instrument of discovery.

3.1 Trees

We shall describe different ways to measure the size of a metric space and
show that they are all equivalent to the functional v (7', d).!

In a nutshell, a tree is a certain structure that requires a “lot of space” to
be constructed, so that a metric space needs to be large in order to contain
large trees. At the simplest level, it already takes some space to construct in
a set A sets By,..., B, which are appropriately separated from each other.
This is even more so if the sets By, ..., B, are themselves large (for example
because they contain many sets far from each other). Trees are a proper
formulation of the iteration of this idea. The basic use of trees is to measure
the size of a metric space by the size of the largest tree (of a certain type)
which it contains. Different types of trees yield different measures of size.

A tree T of a metric space (T, d) is a finite collection of non-empty subsets
of T" with the following two properties.

Given A,Bin T, if ANB # (), then either AC Borelse BCA. (3.1)

T has a largest element . (3.2)

The important condition here is (3.1), and (3.2) is just for convenience.
IfA,BeT and B C A, B # A, we say that B is a child of A if

L Tt is possible to consider more general notions corresponding to other functionals
considered in the book, but for simplicity we consider only the case of 2.
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CeT,BCCCA=C=BorC=A. (3.3)

We denote by ¢(A) the number of children of A. Since our trees are finite,
some of their sets will have no children. It is convenient to “shrink these sets
to a single point”, so we will consider only trees with the following property:

It AcT and c¢(A) =0, then A contains exactly one point . (3.4)

A fundamental property of trees is as follows. Consider trees 71, ..., T and
for 1 < ¢ < m let Ay be the largest element of 7,. Assume that the sets
Ay are disjoint, and consider a set A with (J,.,, Ar € A C T. Then the
collection of subsets of T' consisting of A and of [J,,, T¢ is a tree. The proof
is straightforward. This fact allows one to construct iteratively more and
more complicated (and larger) trees.

An important structure in a tree is a branch. A sequence Ag, Ay, ..., Ay
is a branch if Ay, is a child of Ay, and if moreover Aq is the largest element
of 7 while Ay has no child. Then by (3.4) the set Ay is reduced to a single
point ¢, and Ay, ..., Ay are exactly those elements of 7 which contain ¢. So
in order to describe the branches of 7 it is convenient to introduce the set

Sr=1{teT: {t}eT}, (3.5)

which we call the support of T. If a set A in a tree has no child, one may
call it a leaf. Thus a leaf of a tree is reduced to one single point, and the
support of a tree is the union of its leaves. By considering all the collections
{A € T;te A} as t varies in ST we obtain all the branches of 7.

3.1.1 Separated Trees

We now quantify our desired property that the children of a given set should
be far from each other in an appropriate sense. A separated tree is a tree T
such that to each A in 7 with ¢(A4) > 1 is associated an integer s(A4) € Z
with the following properties. First,

If By and By are distinct children of A,then d(By, By) > 47 (3.6)

Here d(B1, B2) = inf{d(z1,22); 1 € B1,z2 € Ba}. We observe that in (3.6)
we make no restriction on the diameter of the children of A. (Such restrictions
will however occur in the other notion of tree that we consider later.) Sec-
ond, to rule out pathologies, we will also make the following purely technical
assumption:

If B is a child of A, then s(B) > s(A) . (3.7)

To measure the size of a separated tree T" we introduce its depth, i.e.

p(T) = tier}qf Z 47 Jlog ¢(A) . (3.8)

7 ieaeT
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Here and below we make the convention that the summation does not include
the term A = {t} (for which ¢(A) = 0). The quantity (3.8) takes into account
both the separation between the children of A (through the term 4~5(4)) and
their number (through the term y/logc(A)). This will be a common feature
of all our notions of sizes of trees.

We observe that in (3.8) we have the infimum over ¢t € Sy. In words:

A tree is large if it is large along every branch.
We can then measure the size of T' by

sup{p(T) ; T separated tree C T'} . (3.9)

Fig. 3.1. A separated tree. The children of Ay are A1 and B. The children of A;
are As and C. Ag, A1, A2, A3 form a branch, of which Ajs is a leaf.

3.1.2 Organized trees

The notion of separated tree we just considered is but one of many possible
notions of trees and it does not seem fundamental. Rather, the quantity (3.9)
is used as a convenient intermediate technical step to prove the equivalence
of several more important quantities. Let us now consider another notion
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of trees, which is more restrictive (and apparently much more important).
An organized tree is a tree T such that to each A € T with ¢(4) > 1
are associated an integer j = j(A) € Z, and points ty,... 1) Wwith the
properties that

1<i<l <c(A)=471 <dteptp) <47%2 (3.10)

and that each ball B(t;,47772) contains exactly one child of A. In some sense
4~3(4) tells you at which scale the children of A live. Please note that it may
happen that 477(4) is much smaller than A(A).

If By and By are distinct children of A in an organized tree, then

d(By, By) > 477(A)~2 (3.11)

so that an organized tree is also a separated tree, with s(A) = j(A) + 2,
but the notion of organized tree is more restrictive. (For example we have no
control over the diameter of the children of A in a separated tree.)

P =
o - r
= o | |
L o g /A\,‘ Az O

Fig. 3.2. An organized tree. Here j(A42) > j(A1).

We define the depth 7(7) of an organized tree by

T(T) := tie%f Z 4774 flog ¢(A) . (3.12)

T ieAeT

Another way to measure the size of 7" is then
sup{7(T); T organized tree C T} . (3.13)

If we simply view an organized tree 7 as a separated tree using (3.11),
then p(T) = 7(7)/16 (where p(T) is the depth of T as a separated tree).
Thus we have shown the following.
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Proposition 3.1.1. We have
sup{7(T) ; T organized tree} < 16sup{p(T); T separated tree} . (3.14)

The next result provides the fundamental connection between trees and the
functional ~s.

Proposition 3.1.2. We have
Y2(T,d) < Lsup{7(T); T organized tree} . (3.15)
Proof. We consider the functional
F(A) =sup{r(T); T C A, T organized tree},

where we write 7 C A as a shorthand for VB e 7T, B C A”.

Next we prove that this functional satisfies the growth condition (2.77)
for r = 16 whenever a is of the type 1677, for ¢* = 1/L. For this consider
n >1and m = N,,. Consider j € Z and t1,...,t,, € T with

1<l<l <m=1677 <d(ty, tp) <2-1677T1 (3.16)

Consider sets Hy C B(tg,2-167771) and o < ming<,, F(H,). Consider,
for £ < m an organized tree Ty C Hy with 7(7¢) > « and denote by Ay its
largest element. Next we claim that the tree 7 consisting of C' = J,.,,, He
(its largest element) and the union of the trees T;, ¢ < m, is organized,
with j(C) = 2j — 1, and Ay,..., A, as children of C (so that ¢(C) = m).
To see this we observe that since 4=7(©)~1 = 16=J we have 4—7(0)-1 <
d(te,te) < 2-167711 < 47942 50 that (3.10) holds for C. Furthermore
Ay C Hy C B(ty,2 167771 C B(ty,477(€)=2), 50 that this ball contains
exactly one child of C. The other conditions follow from the fact that the
trees Ty are themselves organized. Moreover St = U,,, S7;-

Consider t € S, and let ¢ with t € S7,. Then t € C € T, and also
t € A€ T whenever t € A € Tp. Thus, using also in the second line that
j(C) =25 — 1 and that ¢(C) = m, we obtain

ST 4T loge(A) > 477 Vloge(C) + Y 47T Jlog e(4)
teACT teAETe

) 1 .
> 41677 \/logm + 7(T;) > E16—32"/2 +a.

Since « is arbitrary, we have proved that
1 _
—16=79on/2 i
F( Hg) > 7(T) > 716792"/2 + min F(H)

<m

This completes the proof of the growth condition (2.77).
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If one examines the proof of Theorem 2.9.1, one observes that it requires
only the growth condition (2.77) to hold true when a is of the type =7, and
we have just proved that this is the case (for » = 16), so that from (2.81)
we have proved that vo(T,d) < L(F(T) + A(T)). It remains only to prove
that A(T") < LF(T'). For this we simply note that if s,¢ € T, and jo is the
largest integer with 4790 > d(s,t), then the tree T consisting of T\, {t}, {s}, is
organized with j(T') = jo and ¢(T) = 2, so that F(T) > 7(T) > 4770/log 2
and 4770 < LF(T). O

3.1.3 Majorizing Measures

For a probability measure p on a metric space (T, d), with countable support,?
we define for each t € T the quantity

A(T)
I = I 1
/ og de / 0g ———— B e (3.17)

The second equality follows from the fact that p(B =1 when B(t,e) =
T, so that then the integrand is 0. It is important to master the mechanism
at play in the following elementary exercise.

Exercise 3.1.3. Consider a number A > 0 and non-increasing function f :
[0, A] — R*. Define ¢g = A and for n > 1 define €, = inf{e > 0; f(e) < 2"}.

Prove that
232 < /f Jde <23 27,

n>1 n>0

Proposition 3.1.4. Given a metric space (T,d) we can find on T a proba-
bility measure p, supported by a countable subset of T, and such that

sup I, (t) = sup/ \ /log dE < Ly (T,d) . (3.18)
teT teT

Any probability measure® p on (T,d) is called a majorizing measure. The
reason for this somewhat unsatlsfactory name is that Xavier Fernique proved
that for a Gaussian process and a probability measure p on T one has

Esup X; < Lsup,(t), (3.19)
ter ter

2 We assume g with countable support because we do not need a more general
setting. The advantage of this hypothesis is that there are no measurability
problems.

3 To avoid technicalities one may assume that p has countable support.
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so that p can be used to “majorize” the process (X;)ier.? This was a major
advance over Dudley’s bound. The (in)famous theory of majorizing measures
used the quantity
inf sup I, (t) (3.20)
HoteT
as a measure of the size of the metric space (T, d), where the infimum is over
all choices of the probability measure p. This method is technically quite
challenging. We are going to prove that the quantity (3.20) is equivalent to
Y2(T,d). A related idea which is still very useful is explained in Section 3.3.

Proof. Consider an admissible sequence (A,) with

VEEeT, Y 2"PA(A,(t) < 292(Td) .
n>0

Let us now pick a point ¢, 4 in each set A € A, for each n > 0. Since
card A, < N,, for each n there are at most INV,, points of the type ¢, 4.
Attributing a mass 1/(2"N,,) to each of them we obtain a total mass < 1.
Thus there is a probability measure p on 7', supported by a countable set,
and satisfying p({t, a}) > 1/(2"N,,) for each n > 0 and each A € A,,. Then,

1 1
> > > >
Vn - ]-7 VA € An» IU’(A) - lu({t"u,A}) - 2nN'n — N?L

so that given t € T and n > 1,

¢ > AlAn(1) = u(B(t,e) > =

= /log —u(B(lt, 3 < gn/2HL (3.21)

Now, since g is a probability, u(B(t,e)) = 1 for e > A(T), and then
log(1/pu(B(t,€))) = 0. Thus

§w|

t) = 0g ————~de = / 0g —————de
g 0 nw(B(t,¢)) oA @) w(B(t,e€))

<> 2 EDEFLA(A, () < Lya(T, d)

n>1

using (3.21). O

4 One typically uses the name only when such the right-hand side of (3.19) is
usefully small.
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Proposition 3.1.5. If u is a probability measure on T (supported by a
countable set) and T is a separated tree on T, then

p(T) < Lsup I,(t) .
ter
Combining with (3.14), (3.15) and (3.18), this completes the proof that

the four “measures of the size of 177 considered in this section, namely (3.9),
(3.13), (3.20) and (T, d) are indeed equivalent.

Proof. The basic observation is as follows. The sets
B(C,A™*W N —{z e T; d(z,C) <4751}

are disjoint as C' varies over the children of A (as follows from (3.6)), so that
one of them has measure < c¢(A)~!.

We then proceed in the following manner, constructing recursively an
appropriate branch of the tree. This is a typical and fundamental way to
proceed when working with trees. We start with the largest element Ay of T .
We then select a child A; of Ag with pu(B(Ap,4 5A0)~1)) < 1/¢(Ap), and a
child Ay of A; with u(B(Ag,4=5(41)=1)) < 1/¢(A;), etc., and continue this
construction as long as we can. It ends only when we reach a set of 7 that
has no child, and hence by (3.4) is reduced to a single point ¢ which we now
fix. For any set A with t € A € T, by construction we have

p(B(t, 47571 < -

—s(A)—1
/— 1
loge(4 / s(A)-2 \/ log u(B(t, e))d ' (3:22)

because the integrand is > 1/log ¢(A) and the length of the interval of integra-
tion is larger than 475(4)=2_ By (3.7) the intervals [4~5(4)=2 4=3(A)=1] are
disjoint for different sets A with t € A € T, so summation of the inequalities
(3.22) yields

Z 4752 flog (A / Ve
laer logu (te)

In the rest of this chapter, we will implicitly use the previous method of
“selecting recursively the branch of the tree we follow” to prove lower bounds
without mentioning trees.

We end this section by an exercise completing the proof of (2.143).

so that

Exercise 3.1.6. Consider metric spaces (T, dr)r<n and probability mea-
sures f, on T. Consider the product probability pon T =[], <~ T and the
distance (2.142).
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(a) Prove that for t = (tx)k<n we have

L) S LY T (te)

k<N

Hint: use (2.147).
(b) Complete the proof of (2.143).

3.2 Rolling Up our Sleeves: Trees in Ellipsoids

It is one thing to have proved abstract results, but quite another thing to
visualize the combinatorics in concrete situations. Consider an ellipsoid £ as

in (2.154), so that according to (2.155), S := />,y a? measures its size.
Assuming S < oo the goal of the present section is to construct explicitly
an organized tree T whose depth 7(7) witnesses the size of the ellipsoid,
i.e. 7(7) > S/L. This elaborate exercise will have us confront a number of
technical difficulties.

We first reduce to the case where cach a; is of the type 27 for some k € Z.
Let N* = N\ {0}. For k € Z let us set I}, = {i € N*;27% < q; < 27571} so
that the sets Ij, cover N* and Y, 272K card I, > 3, a?/4 > S%/4, while at

the same time
g;g/z{tegz’;Zz%thgl}. (3.23)
k i€l

Thus we have reduced the problem to considering only ellipsoids of the type
E’. Here comes a somewhat unexpected argument. We are going to replace
&’ by a set of the type

P:{te£2;v1c, 22’621539%},
i€l

where )", o = 1 (a condition which ensures that P C £’). At first sight the
set P looks much smaller than £’, but this is not the case. First, how should we
chose aj; to ensure that P is as large as possible? Considering independent

Gaussian 1.v.s (g;) we have sup,ep 5 tigi = Y /ar2 7% /3 .c; 92, s0
that since E /37, ; g7 is about y/card I}, by (2.155), we obtain
EsupZtigi is about Z Var2 F\/card I, . (3.24)
k

teP 157

So to maximize this quantity (and, in a sense, the size of P), it is a good idea
to chose a, = 27 2% card [}, /S where S"? = 3,272 card I,. Then P takes
the form
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—4k

P={te;vwk, Yy &< 23,2 card I}
i€},

This set is very simple: geometrically, P is a product of spheres of dimen-
sion card I}, and radius rj, where 7y is defined by r,% = 2% card I /S™. Tt
will be very useful to reduce to the case where the radii of these spheres are
quite different from each other. This is the purpose of the next lemma.

Lemma 3.2.1. There is a subset J of Z with the following two properties:

> 27k card I > S™/L . (3.25)
keJ
kned,k<n=r, <2 5. (3.26)

Proof. Since S < oo the sequence ap = 272 card I}, is bounded. We apply
Lemma 2.9.5 (or more precisely the version of this lemma where the index
set is Z rather than N) with o = 2 to find a finite subset I C Z such that

konelk#n=a, <a2m k", (3.27)

and
> ap>S?/L. (3.28)
kel
Consider k,n € I with k& < n. Then a,, < 2" *ay, and recalling the value of
a,, this means that card I,, < 23"~ card I},. Recalling the value of rj this
means that 72 < r?/2. Let us now enumerate I as a finite sequence (n(¢))s<n
in increasing order, so that ry, o1y < 7500)/ V2 and Tn(eg12) < 2’671”(@). For
0 < p < 11 consider the set J, = {n(p +12¢);¢ > 0,p + 12¢ < N}, so that
I = Up<p<i1Jyp. Consequently >, ap = ZOSPSH Zker ay. Thus using
(3.28) there exists some p, 0 < p < 11 such that Zker ar > S?/L and the
set J,, satisfies the desired requirements. |

Consider a set J as constructed in Lemma 3.2.1. We then replace P by the
subset P’ consisting of the points ¢ € P such that ¢; = 0 when i € I} and

k ¢ J. We note that Y, ., rpveardl = >, ;2 % card I},/S" > S'/L,
where the last inequality follows from (3.25).

We have now finished our preliminary reductions. To construct inside any
ellipsoid £ an organized tree T such that its depth 7(7") witnesses the size of
£ it suffices to perform the same task for a set of the type

p/:{tez2(1*);ngN, thgr,%},
i€ly,

where N is a given integer, where (Ix)g<n are disjoint subsets of N* of
union I*, and where 7441 < 2757, Just as in (3.24), the size of P’ is about

> ren TeVcard I.
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For k < N let us consider the sphere

Sk:{tEEQ(I*); thgri,igszmfi:O}.
i€l

It follows from the volume argument (2.45) (used for A = B and € = 1/2)
that there is a subset Uy of S, with

card Uy, > 20241 | (3.29)

such that any two distinct points of Uy, are at distance > r4/2. Given 1 <
m < N and for k < m given y, € Uk, yr = (Yk,i)icr~ consider the set
A=A(y1,...,Ym) C P’ defined as

Ay, -y Ym) = {t€€2(l*); VeE<m,Vielg,t :y;“}

We will show that these sets, together with the set P’ form an organized
tree T (as defined in the previous section). When m < N we have ¢(A) =
card Uy, 4+1: the children of A are the sets A(y1,...,Ym,y) where y € Uypt1.
When m = N we have ¢(A) = 0 and A(y1, ..., yn) consists of single point. We
now check the condition (3.10). Consider m < N. Define j(A) as the smallest
integer j such that 47771 < r,,,1/2, so that 7,41 <2-477. For y € U,,41
consider the unique point ¢(y) € A(y1,...,Ym,y) such that t(y); =0ifi € Iy,
for K > m + 1. Then for y,y € Upy1, y # ' the distance d(t(y),t(y"))
is the same as the distance between y and 3’, which are different points of
Upm+1 C Spyg1- Thus

4TI <1 /2 < d(H(Y), H(Y)) < 2rmga < 4TI

Furthermore, recalling that r41 < 275 (so that in particular Y, 7 <
2ry,) if ¢ € A(y1, ..., Ym,y) then

o =t < Y 1k < 2rpyn <2027,y <27047I A — g (72
k>m+2

so that A(y1,...,Ym,y) C B(t(y),4 74 =2) as required. Let us now study
7(T). A branch in 7T is defined by a point ¢ € Sy, which is the unique point of
a set of the type A(y1,...,yn). Let us set Ag = P’ and A, := A(y1,. .-, Ym)
for 1 <m < N.Then t € A, for 0 < m < N. Also ¢(A,) = card Uy, 1 and
4=3(Am) > p 1 /2. Thus, using (3.29) in the last equality,

Z 477 /log c(A) > Z 4774w Slog (A,

teAeT 0<m<N
> Z Tm+1+v/logcard Up41/L > Z rpy/card I, /L |
0<m<N 1<k<N

and, as we have seen, this last quantity is the size of P’.
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3.3 Fernique’s Functional

3.3.1 Fernique’s Functional

In Section 3.1 we presented four equivalent methods to measure the size of
a metric space. (Besides our usual y2 (7, d), these were the maximum depth
of a separated or organized tree contained in 7' and majorizing measures.)
Recalling (3.17), it will turn out that a fifth measure of size, the quantity

Fer(T,d) := Sip/TIu(t)dﬂ(f) (3.30)

will play an important role. Here the supremum is over all probability mea-
sures on 1" which are supported by a countable set.

Why is the functional (3.30) important? This is far from obvious. In the
context of Gaussian processes, this functional has no special importance, and
the related notion of majorizing measures is not particularly useful. We will
first understand the usefulness of Fernique’s functional in Chapter 5 while
studying a class of processes which are conditionally Gaussian. Furthermore
in following chapters we will be able to use similar ideas in far more general
situations, while the proper generalization of the other functionals has not
been found yet. In this section we will prove that Fernique’s functional is
equivalent to the functional v, (T, d),

Z9a(T,d) < Fer(T,d) < Lna(T'd). (3:31)

We will not give the simplest possible proof of this fact. Rather we will prepare
for future work by giving arguments which contain in germ the ideas which
will prove fruitful. The ideas of this section will not be critically used before
Chapter 11.

A further understanding of Fernique’s functional will be reached is Sec-
tion 3.5 where we will basically show the remarkable fact that the supremum
in the right-hand side of (3.30) is obtained when p is the “law of the supre-
mum”, i.e. the law of a r.v. such that X, = sup,cy X;, see Theorem 3.5.1
below.

The right-hand side inequality in (3.31) is the easiest, and is a consequence
of the following.

Proposition 3.3.1. Consider a probability measure p on a metric space
(T,d). Then

[ 10t < ra(r.) (3:32)
T
Proof. For cach t € T' we define €(t) = A(T') and for n > 1 we define

en(t) = inf{e > 0; u(B(t,e)) > N, }. (3.33)
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Thus /log(1/u(B(t,€))) < L2™/2 for € > ¢,(t) and then

d —
/ log(u(B(t,€)) - Z log B(t,¢))

O 6n+1

<L Z on/2¢ (3.34)
n>0

Consider an admissible sequence (A,) of partitions with
VEe T, Y 2VPA(An(L) < 292(T.d) . (3.35)
n>0

Let us fix n > 0 and set
Ty ={teT; p(Aun(t) > Noy i T = T\T, = {t € T'5 p(An(t)) < Ny }-

Thus T}, is the union of the sets A € A,, which are of measure < N, ! +1- Since
card A,, < N,, we have u(7)) < NnNn_+1 = N, !. Also, by definition of €, (t)
we have €, (t) < A(Ay(t)) ift € T}, and €, (t) < A(T) if t € T},. Consequently,

/T 9"/2¢, (t)dp(t) = /T 2 Pen()an(0) - / 2 en0aut)

< / 22 A(A, () dp(t) + LA(T)2V2 N
T,

n

Combining with (3.34) we obtain

n/2
/T 1. (H)du(t) < LA(T / S 272 A4, (1)) (3.36)

n>1

Integrating (3.35) with respect to p proves that the last term of (3.36) is
< K,(T,d) and concludes the proof since A(T') < Lyo(T, d). O

3.3.2 Fernique’s Convexity Argument

Our approach to the left-hand side of (3.31) is based on the following ele-
mentary fact, which is a consequence of the Hahn-Banach theorem.

Lemma 3.3.2. Consider a number a > 0. Consider a set S of functions on
a finite set T. Assume that for each probability measure v on T there exists
f €8 such that [ fdv < a. Then for each € > 0 there is a function f in the
convex hull of S such that f < a+«.
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Proof. Denote ST the set of functions g such that there exists f € S with
f < g. Denote by C the closed convex hull of ST. We prove that the constant
function a equal to a everywhere belongs to C. We proceed by contradiction.
If this is not the case, by the Hahn-Banach theorem we may separate C and
a. That is, there exists a linear functional ¢ on the space of functions on T'
such that ¢(f) > ¢(a) for f € C. Consider then a function g on T with g > 0.
For each A > 0 and each f € S we have f + Ag > f so that f + Ag € C
and hence ¢(f) + Ap(g) > ¢(a). This proves that ¢(g) > 0, i.e. ¢ is positive.
Since T is finite, ¢ is of the form ¢(g) = >°,.r cug(t) for numbers o > 0.
Setting 8 = > ,.p «(t) consider the probability measure v on T' given by
v({t}) = ay/pB for t € T. Then p(g) = B [ gdv for each function g on T.
Taking g = a shows that Sa = ¢(a). By hypothesis there exists f € C with
[ fdv < a. Then ¢(f) = 8 [ fdv < Ba = ¢(a), a contradiction.

So we have proved that a € C, the closure of the convex hull of ST. Con-
sequently there is one point of this convex hull which is < a + € everywhere.
The result follows. a

Of course, the hypothesis that T is finite is inessential, it is just to avoid
secondary complications.

Let us give a version of the basic lemma sufficiently general to cover all
our needs.

Lemma 3.3.3. Consider a finite metric space (T,d). Consider a convex
function @ :)0,1] — R*. Assume that for each probability measure p on T
and a certain number D one has

A(T)
/ d,u(t)/ P(u(B(t,e)))de < D. (3.37)
T 0

Then there exists a probability measure p on T for which

A(T)
sup/ D(u(B(t,€)))de < 2D . (3.38)
te1 Jo

Proof. Let us denote by M(T') the set of probability measures on T'. The
class C of functions f on T that satisfy

A(T)
€ M) VEET, )= [ #u(B(a)ae < 1(0)

is convex. This is immediate to check using the convexity of @. For each
probability measure v on T, there exists f in C with [ fdv < B: this is true
for f = f, by (3.37). Consequently by Lemma 3.3.2, there exists f € C such
that f < 2B, which is the content of the lemma. a

Corollary 3.3.4. Consider a finite metric space (T,d). Assume that for a
certain number C and for each probability measure p on T we have
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/ I,(@)du) < C. (3.39)
T
Then there is probability measure y on T such that

VteT, I,(t) <2C+2A(T) . (3.40)

Proof. Calculus shows that the function &(z) = +/log(e/x) is convex for

x €]0,1], and y/log(1l/z) < &(x) < 1+ /log(1l/z). Thus

A(T)
R < [ BB )de < AT+ 1,0).

so that (3.39) implies that (3.37) holds for D = C' + A(T') and (3.40) then
follows from (3.38). O

Lemma 3.3.5. We have A(T) < LFer(T,d).

Proof. Consider s,u € T with d(s,u) > A(T)/2 and the probability u on
T such that u({s}) = p({u}) = 1/2. For ¢ < A(T)/2 < d(s,u) we have
w(B(s,€)) < 1/2 and this implies that I,,(s) > A(T)/1og2/2. Similarly we
have I,,(u) > A(T)/L so that [ 1, d,u(t) > A(T)/L. O

Proof of (5.31) when T is finite. Combining Corollary 3.3.4 and Lemma 3.3.5
we obtain that there exists a probability x on T such that sup,cq 1,,(t)
LFer(T,d). On the other hand we have proved in Section 3.1 that v2(T, d)

Lsup,ep I1,(t).°

O INIA

3.3.3 From Majorizing Measures to Sequences of Partitions

In Section 3.1 we have proved that given a probability measure 1 on a metric

space T we have
v2(T,d) < Lsup I,(t) . (3.41)
teT
We do not know how to generalize the arguments of the proof to the more
general settings we will consider later. We give now a direct proof, following
a scheme which we know how to generalize. The contents of this section will
not be relevant until Chapter 11. First, we prove that

A(T) < LsupI,(t). (3.42)
teT

For this we consider s,t € T with d(s,t) > A(T)/2 so that since the balls
B(t,A(T)/2) and B(s, A(T)/2) are disjoint, one of them, say the first one,

5 The argument by which we have proved this inequality will not generalize, but
fortunately there is another route, which is described in the next section.
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has a measure < 1/2. Then u(B(t,€)) < 1/2 for e < A(T)/2 and thus I,,(t) >
VIOEIA(T)2.

We start the main argument. We will construct an admissible sequence
(A,,) of partitions of T which witnesses (3.41). For A € A,, we also construct
an integer j,(A) as follows. First, we set A9 = A1 = {T} and jo(T) =
§1(T) = jo, the largest integer with A(T) < 27790(T), Next for n > 1 we
require the conditions

Ae A, = A(A) < 27n(D+2 (3.43)

te Ae A, = u(B(t, 277"y > N1 (3.44)

The construction proceeds as follows. Having constructed A, we split each
element A of A, into at most N,, pieces, ensuring that card A,; < N2 =
Ny 41. For this we set

A ={t € A u(B(t,277"V71)) > 1/N, } . (3.45)

We claim first that we may cover Ay by < N, sets, each of diameter <
2-in(A)+1 For this we consider a subset W of Ao, maximal with respect to
the property that any two points of W are at distance > 277(4) The balls of
radius 2779(4)~1 centered at the points of W are disjoint, and each of them
is of measure > N,; ! by (3.45), so that there are < N,, of them. Since W is
maximum, the balls of radius 2777(4) centered at the points of W cover Ay,
and each of them has diameter < 2~9»(A)+1 Thys there exists a partition of
Ag in < N, sets of diameter < 2-9»(4A)+1 The required partition of A consists
of these sets B and of A1 = A\ Ag. For each set B we set jn4+1(B) = jn(A)+1,
and we set jn,41(A1) = jn(A4), so that conditions (3.43) and 3.44 hold.
This completes the construction. The important point is that

Be Apy1,BCAE A, juii(B) = jn(A) = u(B(t,279n+1(B)))
= u(B(t,27"W)) < N7t (3.46)

This property holds because if t € A and u(B(t,277(4))) > N then t €
Ap and the element B of A, 11 which contains ¢ has been assigned a value
jn-i—l(B) = ]n(A) + 1.

To prove (3.41) we will prove that

VEeT Y 2M2A(AL(t) < LIL(t) .

n>0

We fix t € T. We set j(n) = jn(An(t)), and a(n) = 27/22-7() Using (3.43)
it suffices to prove that

> a(n) < LIL(t) . (3.47)

n>0
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We consider a = /2 and the corresponding set I as in (2.84). (Leaving to
the reader to prove that the sequence (a(n)) is bounded, which will become
clear soon.) Thus as in (2.91) we have

nel,n>1=jn+1)=4n)+1, j(n—1)=j4n). (3.48)

We enumerate I\ {0} as a sequence (ng)r>o0 (leaving again to the reader the
easier case where I is finite), so that j(ngi1) > j(ng + 1) = j(ng) + 1 and

> a(n) < La(0) + LY a(n) (3.49)

n>0 k>1
From (3.48) we have j(ng —1) = j(ng). Using (3.46) for n = nj — 1 we obtain
u(B(t, 277 < N7

ne—1

so that /log(1/u(B(t,€)) > 2™/2 /L for e < 2790™)_ Since j(ngy1) > j(nx)
this implies

a(ng) = onk/2—j(nk) <92. 2”k/2(2—j(nk) _ 2j(nk+1))

o i(ngk) 1
<L log ————dpfe) .
= /ﬂw °% Bt ) O

Summation of these inequalities and use of (3.42) and (3.49) proves (3.47).

O
3.4 Witnessing Measures
Proposition 3.4.1. ([91]) For a metric space (T,d), define
02(T,d) = stle tléljﬁ I,(t), (3.50)
where the supremum is taken over all probability measures 1 on T.6 Then
%'yg(T, d) < 65(T,d) < Lyo(T,d) . (3.51)
It is obvious that inf,e I, (t) < [, I, ) so that do(7', d) < Fer(T,d).

Thus the right-hand side of (3 51) follows from the right-hand side of (3.31)

while the left-hand side of (3.31) follows from the left-hand side of (3.51).
The most important consequence of (3.31) is that there exists a probabil-

ity measure p on T' for which inficr I,,(¢t) > v2(T,d)/L. Such a probability

6 Please observe that the order of the infimum and the supremum is not as in
(3.20).
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measure “witnesses that the value of (T, d) is large” because of the right-

hand side of (3.51). In this spirit, we will call p a witnessing measure, and
we define its “size” as the quantity infyer I, (f).” Witnessing measures can
be magically convenient. One of the first advances the author made beyond
the results of [171] was the realization that witnessing measures yield a proof
of Theorem 5.2.1 below an order of magnitude easier than the original proof.
This approach is now replaced by the use of Fernique’s functional because,
unfortunately we do not know how to extend the idea of witnessing mea-
sure to settings where multiple distances will be considered. Finding proper
generalizations of Proposition 3.4.1 to more general settings is an attractive
research problem, see in particular Problem 10.15.4.

Proof of Proposition 3.4.1. The right-hand side inequality follows from Propo-
sition 3.3.1 and the trivial fact that infyeqr I,(¢t) < [ I,(t)du(t). The reader
should review the material of Section 3.1 to follow the proof of the converse.
Recalling (3.5), given an organized tree 7 we define a measure u on T' by
u(A) =0if AN Sy =10 and by

1

te ST = lu’({t}) HteAeT C(A) .

The intuition is that the mass carried by A € T is equally divided between
the children of A. Then I,(t) = oo if t ¢ Sy. Consider t € A € T and
j = j(A). Then, since T is an organized tree, B(t,477~2) meets only one
child of A, so that u(B(t,47772)) < 1/c(A). Copying the argument of (3.22)
readily implies that L1, (t) > 3, 47477 /log c(A) from which the result
follows by (3.15). O

Exercise 3.4.2. For a metric space (T, d) define

(7o) = supin [ 3722 A4, 0)dp().

n>0

where the infimum is taken over all admissible sequences and the supremum
over all probability measures. It is obvious that x2(7,d) < 42(T,d). Prove
that vo(T,d) < Lx=2(T,d). Hint: Prove that the functional xo(7,d) satisfies
the appropriate growth condition. Warning: the argument takes about half a
page and is fairly non-trivial.

3.5 An inequality of Fernique

We end up this chapter with a beautiful inequality of Fernique. It will not
be used anywhere else in this work, but is presented to emphasize Fernique’s
lasting contributions to the theory of Gaussian processes.

7 Thus a probability measure p on T is both a majorizing and a witnessing
measure. It bounds v2(T,d) from above by Lsup,cy [,(t) and from below by
infier 1,,(t)/ L. Furthermore one may find p such that these two bounds are of
the same order.
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Theorem 3.5.1. Consider a Gaussian process (X;)ier. Provide T with the
canonical distance associated to this process and consider a probability mea-
sure j1 on T. Consider a r.v. T of law p. Then for any probability measure v
on T we have

EX, < L/L,(t)d,u,(t) + LA(T,d) . (3.52)
Here of course X is the r.v. X, (,)(w). We leave some technical details aside
and prove the result only when T is finite. The basic principle is as follows.

Lemma 3.5.2. Consider a standard Gaussian r.v. g and a set A. Then
Elalgl < LP(A)/log(2/P(A)).

Proof. We write
Elalg| = / P(AN{|g| > t}dt < / min(P(A), 2exp(—t*/2))dt .
0 0

Letting o = /2log(2/P(A)) we split the integral in the regions ¢ < a and
t > «. We bound the first part by aP(A) and the second by

o0

/OO 2exp(—t?/2)dt < é/ 2t exp(—t?/2)dt = P(A)/a < LP(A)a. O

«

Corollary 3.5.3. Consider Gaussian r.v.s (g;)i<n with Eg? < a?®. Con-
sider a r.v. T valued in {1,...,N}, and let o; = P(r = i). Then E|g,| <

Lay’, o nain/log2/o;.

Proof. Since |gr| = > .oy l{r=ilgi|, and using Lemma 3.5.2 to obtain
El—i|gi| < Laagy/log2/ay. O
We also need the following elementary convexity inequality.

Lemma 3.5.4. Consider numbers a; > 0 with ZigN a; <a<1. Then

Z aiv/log(2/a;) < ay/log(2N/a) . (3.53)

i<N

Proof. Calculus shows that the function ¢(z) = xz+/log(2/x) is concave
increasing for < 1, so that if o’ = 3, ya; then N7' 37 v () <
p(a’/N) < p(a/N). O

The slightly technical part of the proof of Theorem 3.5.1 is contained in the
following.

Lemma 3.5.5. Consider probability measures p and v on a metric space
(T',d). Then there exist ng € Z and a sequence of partitions (Bp)n>n, (which
need not be increasing) of T with the following properties. First, By, contains
only one set. Next, the sets of By are of diameter < 2712, Finally,
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S 2 Y (AN B)iog@/u(AN B))

n>ng AGBR,BEBR+1

<L / I(#)du(t) + LA(T,d) . (3.54)

Proof. We consider the largest integer ng with 27 > A(T, d). We set B,,, =
{T'}. For n > ng we proceed as follows. For k > 0 we set

Ez,k = {t eT; 1/]\Tk-‘rl < V(B(th_n)) < I/Nk} .

The sets (Ln,x)k>0 form a partition of 7. Consider a subset V' of T}, ; such
that the points of V are at mutual distance > 27"%1. The balls of radius 27"
centered at the points of V' are disjoint and by definition of T}, ; they have
a v-measure > 1/Ng11. Thus card V' < Niy 1 and according to Lemma 2.9.3,
ekt+1(Thx) <271 and thus 7, ; can be partitioned into at most Ny sets
of diameter < 27"*2, We construct such a partition B i of Ty, 1 for each k
and we consider the corresponding partition 5,, of T.

We now turn to the proof of (3.54). First we note that card B, ; < Ni4+1
and card By 11,0 < Neg1 Also 3o e | pes wWANB) < w(Thn xNThi1.e)-
We then use (3.53) to obtain

Shkt = > n(AN B)y/log(2/u(AN B))

AAGBnyk,BGBn#»l,Z
< pw(Tor 0 Tn+1,lz)\/IOg(QNkHNHl/N(Tn,k NThy1e)) -

The left-hand side of (3.54) is >, 5, 27" >4, Snke. We will use the
decomposition B

n+1,¢

ZSn,k,ZZ Z Sn ke + Z Sn. ke
k.t

(k,)eI(n) (k,£)eJ(n)

where I( ) = {(k’ f) ( ),k N Tn+1[) > 1/(Nk+1N[+1)} and J(TZ) =
{(k, 0); (T N Thg1e) < 1/(Nk+1Ne+1)} Then

> Suke < ZM nk N Tng1,0)/10g(2NE N7 )
(k,t)el(n)
< LZ“ e N Trg1,0) (272 4 28/2)
<LZ,U 2k/2+LZMT+1£)2/2 (3.55)

Now the definition of 7},  shows that

> (T )2 < /\/log 1/v(B(t,2="))du(t) , (3.56)

k>1
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and thus

D2y T, <L / L(t)du(t) -

n>ngo k>1

Next, since the function ¢(z) = x4/log2Ny41Ner1/z increases for x <
Ni+1Negq, for (k,0) € J(n) we have o(u(Th s NTht1.0)) < ©(1/(Nig+1Net1))
so that

> Sake < Y @TakNTupre) < Y ©(1/Niy1Nega)
(k)€ (n) (k.)€ (n) (k,0)€J (n)

<Ly ——2 <. (3.57)

Combining these estimates yields the desired inequality:

> 2y Supe<L / L,(t)du(t) + L27™ . 0

n>ng k,£>0

Proof of Theorem 8.5.1. For n > ng and A € B,, we fix an arbitrary point
tn,a € A. We lighten notation by writing ¢ty = t,,, 7. We define 7, (t) = t, 4
for t € A € B,,. We write

Xr =Xy =Y Xei(r) = X » (3.58)

n>no

so that defining Yy, - := X . (7) — Xz, (r) we have
E|X7' - Xto‘ < Z E|}/n.,7'| . (359)
n>ngo

Given A € B, and B € B, let us define the variable Y4 p := Xy, ., , —
Xt, o- The sets AN B for A € B, and B € B,41 form a partition of 7.
When 7(w) € AN B we have m,(7) = tp,4 and mp41(7) = typ41,5 so that
Y, =Y p. The event 7(w) € AN B has probability p(A N B) since 7 has
law p. When AN B # () we have d(tn+1,8,tn.a) < A(A) + A(B) < L27", so
that EYZ p = d(tn41,8,tn,a)> < L272". Tt then follows from Corollary 3.5.3

that
E[Y, . <L2™" Y u(AnB)y/log(2/u(ANB)),
AEBR,BGBR+1
and summation over n and use of (3.54) finishes the proof. O

It is actually possible to give a complete geometric description of the
quantity sup, EX, where the supremum is taken over all the 7 of given law
w, see [137].

Key ideas to remember.
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e Trees in a metric space (T, d) are well-separated structures which are easy
to visualize, and provide a convenient way to measure the size of this metric
space, by the size of the largest tree it contains. For suitable classes of trees,
this measure of size is equivalent to 2 (7, d).

e One may also measure the size of a metric space by the existence of certain
probability measures on this space. Fernique’s majorizing measures were
used early to control from above the size of a metric space in a way very
similar to the functional v5(7, d), which is however far more technically
convenient than majorizing measures.

e An offshoot of the idea of majorizing measures, Fernique’s functional, is
an equivalent way to measure the size of a metric space and will be of
fundamental importance in the sequel.

e The size of a metric space (1, d) can also be bounded from below by the
existence of well-scattered probability measures on 7.
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‘We remind the reader that, before attacking any chapter, she should find use-
ful to read the overview of this chapter, which is provided in the appropriate
subsection of Chapter 1. Here this overview should help to understand the
overall approach.

4.1 The Ellipsoid Theorem

As pointed out after Proposition 2.13.2, an ellipsoid £ is in some sense quite
smaller than what one would predict by looking only at the numbers e, (&).
We will trace the roots of this phenomenon to a simple geometric property,
namely that an ellipsoid is “sufficiently convex”, and we will formulate a
general version of this principle for sufficiently convex bodies. The case of
ellipsoids already suffices to provide tight upper bounds on certain matchings,
which is the main goal of the present chapter. The general case is at the root of
certain very deep facts of Banach space theory, such as Bourgain’s celebrated
solution of the Ap-problem in Sections 19.3.1 and 19.3.2.
Recall the ellipsoid € of (2.154), which is defined as the set

t2
8{te€2;zi2<1} (2.154)
i>1 @
and is the unit ball of the norm
1’2 1/2
lelle = (X %) (@)
i>1 ¢

Lemma 4.1.1. We have

Tty = — I
lalle . llglle < 1= |52, <1 - FHE (4.2)

Proof. The parallelogram identity implies

lz = yliz + |z + yllz = 2ll=]Z +2[yllz <4
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so that
lz+yllz <4—|lz—yl?

and

H:z:+y

o< (=t —u2) <1 Ly 0
— =z - — |z — .
2 e = v yle) =2 glr—ylle

Since (4.2) is the only property of ellipsoids we will use, it clarifies matters
to state the following definition.

Definition 4.1.2. Consider a number p > 2. A norm ||-|| in a Banach space
is called p-convez if for a certain number n > 0 we have

rT+y
ol ol < 1= |55 < 1= alle -yl (4.3)

Saying just that the unit ball of the Banach space is convex implies that
for ||z||, ly]] < 1 we have ||(z +y)/2|| < 1. Here (4.3) quantitatively improves
on this inequality. Geometrically it means that the unit ball of the Banach
space is “round enough”.

Thus (4.2) implies that the Banach space ¢ provided with the norm || - [|¢
is 2-convex. For 1 < ¢ < oo the classical Banach space L? is p-convex where
p = max(2,q). The reader is referred to [80] for this result and any other
classical facts about Banach spaces. Let us observe that, taking y = —z in
(4.3) we must have

2P <1. (4.4)

In this section we shall study the metric space (7', d) where T is the unit
ball of a p-convex Banach space B, and where d is the distance induced on
B by another norm || - ||~. This concerns in particular the case where T is
the ellipsoid (2.154) and | - ||~ is the £2 norm.

Given a metric space (T, d), we consider the functionals

Ya.8(T,d) = inf(sug Z(gn/aA(An(t)))ﬂ)l/B ’ (4.5)
teT 10

where o and [ are positive numbers, and where the infimum is over all
admissible sequences (A;). Thus, with the notation of Definition 2.7.3, we
have v4,1(T,d) = 74(T,d). For matchings, the important functionals are
v2.2(T, d) and v, 2(T,d) (but it requires no extra effort to consider the general
case). The importance of these functionals is that under certain conditions
they nicely relate to v2(7', d) through Hélder’s inequality. We explain right
now how this is done, even though this spoils the surprise of how the terms
v1og N occur in Section 4.5.

Lemma 4.1.3. Consider a finite metric space T, and assume that card T <
Np,. Then

Yo (T, d) < vVmy22(T,d) . (4.6)
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Proof. Since T is finite there exists! an admissible sequence (A,,) of T' for
which
VEe T, Y 2"A(An(1)? < 72.2(T,d)* . (4.7)
n>0

Since card T < N,,,, we may assume that A,, consists of all the sets {t} for
t € T. Then A,,(t) = {t} for each ¢, so that in (4.7) the sum is really over
n < m — 1. Since for any numbers (an)o<n<m—1 we have Y o, ... 4 a, <
V(Y ocnem_1 a2)'/? by the Cauchy-Schwarz inequality, it follows that

VteT, Y 2P A(An(t) < Vimaa(T.d) . O

n>0

How to relate the functionals ;2 and 2 by a similar argument is shown in
Lemma 4.7.9 below.

We may wonder how it is possible, using something as simple as the
Cauchy-Schwarz inequality in Lemma 4.1.3, that we can ever get essentially
exact results. At a general level the answer is obvious: it is because we use
this inequality in the case of near equality. That this is indeed the case for the
ellipsoids of Corollary 4.1.7 below is a non-trivial fact about the geometry of
these ellipsoids.

Theorem 4.1.4. If T is the unit ball of a p-convex Banach space, if n is as
in (4.3) and if the distance d on T is induced by another norm, then

Yap(T,d) < K(a, p,n) sup 2’”/“en(T, d) . (4.8)
n>0

Before we prove this result (in Section 4.2) we explore some of its con-

sequences. The following exercise stresses the main point of this theorem.

Exercise 4.1.5. Consider a general metric space (T, d).
(a) Prove that

o\ 1/p
Yap(T,d) < K(a)(Z(Q"/aen(T, d))p) , (4.9)
n>0
and that
sup 2%, (T, d) < K()Yap(T,d) . (4.10)
n>0

(b) Prove that it is essentially impossible in general to improve on (4.9). Hint:
you probably want to review Chapter 3 before you try this.

! Since there are only finitely many admissible sequences, the infimum over these
is achieved.
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Thus, knowing only the numbers e, (T, d), we would expect only the gen-
eral bound (4.9). The content of Theorem 4.1.4 is that the size of T, as
measured by the functional 74 p, is actually much smaller than that.

Corollary 4.1.6. (The Ellipsoid Theorem.) Consider the ellipsoid £ of
(2.154) and o > 1. Then?

Ya2(€) < K(a) sup e(card{i ; a; > e})V/e. (4.11)
>0

Proof. Without loss of generality we may assume that the sequence (a;) is
non-increasing. We apply Theorem 4.1.4 to the case || - || = || - ||, and where
d is the distance of £2, and we get

Ya,2(€) < K(a) sup 2”/"‘en(c€) .

n>0
To bound the right-hand side we write

sup 2V %, (€) < 2%/ %y (E) + sup 2/ e, 4 (E) .
n>0 n>0

We now proceed as in the proof of Proposition 2.13.2. Using (2.166), we have

sup 20nt3/ ¢ o (€) < K (o) sup 2% max 25 "
n>0 n>0 k<n

= K(a) sup 2F—n-1/a)g
0<k<n

= K(a)sup2¥/%aq (4.12)
k>0

and since eg(£) < a1 we have proved that v,2(£) < K(a)sup,>g 2"/ g
Finally, the choice € = agn shows that

2" %agn < supe(card{i ; a; > €})¥/®
e>0

since card{i; a; > aan } > 2™ because the sequence (a;) is non-increasing. 0O

The restriction o > 1 is inessential and can be removed by a suitable
modification of (2.166). The important cases are &« = 1 and « = 2. We will
use the following convenient reformulation.

Corollary 4.1.7. Consider a countable set J, numbers (b;);cs and the el-
lipsoid
e{wern; Y t<}.
jed
Then
Ta2(6) < K (@) sup — (card (j € T ; [b5] < uh)!/*
u>0 U

2 Recalling that a subset of £2 is always provided with the distance induced by the
£2 norm.
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Proof. Without loss of generality we can assume that J = N. We then set
a; = 1/b;, we apply Corollary 4.1.6, and we set € = 1/u. O

We give right away a striking application of this result. This application is
at the root of the results of Section 4.7. We denote by A Lebesgue’s measure.

Proposition 4.1.8. Consider the set L of functions f : [0,1] = R such that
f(0) = f(1) =0, f is continuous on [0,1], f is differentiable outside a finite
set and sup|f'| < 1.3 Then v12(L,ds) < L, where da(f,g) = ||f — gll2 =

(]‘[0’1] (f - g)2d>\) e .

Proof. The very beautiful idea (due to Coffman and Shor [36]) is to use the
Fourier transform to represent £ as a subset of an ellipsoid. The Fourier
coefficients of a function f € £ are defined for p € Z by

1
ep(f) = / exp(2mipz) f(x)dx .
0
The key fact is the Plancherel formula,

Il = (3 len(£)2)2 (4.13)

pEZ
which states that the Fourier transform is an isometry from L?([0,1]) into
(2(Z). Thus, if
D ={(cp(f)pez: FEL},

the metric space (L£,ds) is isometric to a subspace of (D,d), where d is
the distance induced by ¢%(Z). It is then obvious from the definition that
m,2(L,d2) < 711,2(D,d), so that it suffices to prove that v 2(D,d) < co. By
integration by parts, and since f(0) = f(1) = 0, ¢,(f') = —2wipc,(f), so
that, using (4.13) for f’, we get

D Ple(HIP <D len(fIP = I1F15 -

PEL PEL
For f € £ we have f(0) = 0 and |f'| < 1 so that |f| <1 and |eo(f)] < 1.
Thus for f € £ we have

lco(H)I*+ D Plep (NP <2,

pEZ
and thus D is a subset of the complex ellipsoid & in ¢%(Z) defined by
£ = {(cp) € 2(Z); Y max(1,p?)[e,* < 2} .
pEL

3 The same result holds for the set £’ of 1-Lipschitz functions f with f(0) = f(1) =
0, since £ is dense in £’.
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Viewing each complex number ¢, as a pair (zp,y,) of real numbers with
lep|® = 22 4 y2 yields that € is (isometric to) the real ellipsoid defined by

Zmax(l,pQ)(mf) +y2)<2.
pEL

We then apply Corollary 4.1.7 as follows. The set J consists of two copies of
Z. There is a two-to-one map ¢ from J to Z and b; = max(1, |¢(j)|). Then
card{j € J;|bj| <u} < Lu for u > 1 and = 0 for u < 1. O

Exercise 4.1.9. (a) For k& > 1 consider the space T' = {O,l}Qk. Writing
t = (t;);<2r a point of T, consider on T the distance d(t,t') = 277!, where
§ =min{i < 2*;¢; # t'}. Consider the set £ of 1-Lipschitz functions on (T, d)
which are zero at t = (0,...,0). Prove that v12(£,ds) < LVk, where do
denotes the distance induced by the uniform norm. Hint: use Lemma 4.5.18
below to prove that e, (£, ds) < L27™ and conclude using (4.9).

(b) Let o denote the uniform probability on 7' and ds the distance induced
by L?(u). Tt can be shown that v; o(£,ds) > Vk/L. (This could be chal-
lenging even if you master Chapter 3.) Meditate upon the difference with
Proposition 4.1.8.

4.2 Partitioning Scheme, 1T

Consider parameters a,p > 1.

Theorem 4.2.1. Consider a metric space (T,d) and a number r > 4. As-
sume that for j € Z we are given functions s; > 0 on T with the following

property:
Whenever we consider a subset A of T and j € Z with A(A) < 2r~7
then for each n > 1 either e,(A) <r I~ or else there erists t € A
with s;(t) > (2 er=I71)P (4.14)

Then we can find an admissible sequence (Ay,) of partitions such that
Ve T: S (2 A4, (1)) < K(ap,r) (A(T, )P +sup sj(t)) . (4.15)
n>0 €T ez,

The proof is identical to that of Theorem 2.9.8 which corresponds to the case
a=2andp=1.

Proof of Theorem 4.1.4. We recall that by hypothesis T is the unit ball for
the norm | - || of p-convex Banach space (but we study 7" for the metric d
induced by a different norm). For ¢t € T and j € Z we set

cj(t) = inf{|jv]| ; v € By(t,r I)NT} <1, (4.16)



4.2 Partitioning Scheme, II 111

where the index d emphasizes that the ball is for the distance d rather than
for the norm. Since T is the unit ball we have ¢;(t) < 1. Let us set

D = sup 2%, (T.d) . (4.17)
n>0

The proof relies on Theorem 4.2.1 for the functions
5;(t) = KDP(cjs(t) — c1(1)) (4.18)
for a suitable value of K. Since ¢;(t) <1 it is clear that

VteT ., > si(t) <3KDP,
JEZ

and (using also that A(T,d) < 2e¢(T,d)) the issue is to prove that (4.14)
holds for a suitable constant K in (4.18). Consider then a set A C T with
A(A) < 2r7J, consider n > 1 and assume that e, (A) > a :=r=7=1. The goal
is to find ¢ € A such that s;(t) > (2% ~I71)P je.

KDP(cjpa(t) — cj_q(t)) > (2V/ =iy (4.19)

For this let m = N,,, According to Lemma 2.9.3, (a) there exist points (t¢)¢<m
in A, such that d(ts,ty) > a whenever £ # ¢'. We will show that one of the
points ¢, satisfies (4.19). Consider H, = T N By(t¢,a/r) = T N By(te,r=972).
By definition of ¢;;1(t¢) we have ¢; o(ty) = inf{||v|| ; v € H}. The basic
idea is that the points of the different sets H, cannot be too close to each
other for the norm of T' because there are N, such sets. So, since the norm is
sufficiently convex, we will find a point in the convex hull of these sets with
a norm quite smaller than maxs<m ¢j4+2(t¢). To implement the idea, consider
u’ such that

2 > o' > maxinf{||v] ; v € Hy} = maxc;ia(te) . (4.20)
<m <m

For £ < m consider vy € Hy with |ve|| < o'. It follows from (4.3) that for
0,0 <m,
Ve — Uy

Vy + Vyr H P
<1- . 4.21
H 2u’ - u/ ( )
Set
u = inf{||v|| ;v € conv U Hg} . (4.22)
<m

Since (ve+vpr)/2 € conv U<, He, by definition of u we have u < [lve +vy| /2,

and (4.21) implies
P

I

Vg — Vgr

u< _—
J_I_UH u

so that, using that v’ < 2 in the second inequality below,
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r_ 1/p r_ 1/p
loe —vell <w (“2) 7 < R=2(2) T,
nu n

and hence the points wy := R~ (v, —v1) belong to the unit ball T'. Now, since
Hy C By(te,a/r) we have vp € By(te,a/r). Since r > 4, we have d(ve, ve) >
a/2 for £ # ', and, since the distance d arises from a norm, by homogeneity
we have d(wg, we) > R™1a/2 for £ # ¢'. Then Lemma 2.9.3, (c) implies that
en_1(T,d) > R~'a/4, so that from (4.17) it holds that 2("~1/®R=1q/4 < D,
and recalling that R = 2((u/ — u)/n)"/? we obtain

(2"/arj_1)p < KDP(u' —u),

where K depends on « only. Since this holds for any u’ as in (4.20), there
exists ¢ such that

(20 @I~ < K DP(cjy0(te) — u) . (4.23)
Now, by construction, for £ < m we have
Hy C Bd(tg/,a/r) = Bd(tg/, T_j_2) C Bd(tg,r_j-’_l)

since d(tg,te) < 2r~7 asty,ty € Aand A(A) < 2r~J. Thus conv Ue,gm Hy C
Ba(te,r=7™)NT, and from (4.16) and (4.22) we have u > ¢;_1(t;) and we
have proved (4.19). O

Exercise 4.2.2. Write the previous proof using a certain functional with an
appropriate growth condition.

The following generalization of Theorem 4.1.4 yields very precise results
when applied to ellipsoids. It will not be used in the sequel, so we refer to
[171] for a proof.

Theorem 4.2.3. Consider 3, ', p > 0 with

1 1 1
- == 4. 4.24
g B p (4.24)
Then, under the conditions of Theorem 4.1.4 we have
/o 5 1/6
Yas(Td) < K (p,n, ) (32" en(T,ad)”)

n

Exercise 4.2.4. Use Theorem 4.2.3 to obtain a geometrical proof of (2.159).
Hint: Choose a« =2,8=1,5"=p =2 and use (2.166).
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4.3 Matchings

The rest of this chapter is devoted to the following problem. Consider N r.v.s
X1,...,Xn independently and uniformly distributed in the unit cube [0, 1]‘1,
where d > 1. Consider a typical realization of these points. How evenly dis-
tributed in [0, 1]¢ are the points X1, ..., X5 ? To measure this, we will match
the points (X;);<n with non-random “evenly distributed” points (Y;)i<n,
that is, we will find a permutation = of {1,..., N} such that the points X;
and Y7 ;) are “close”. There are different ways to measure “closeness”. For
example one may wish that the sum of the distances d(X;, Yz(;)) be as small
as possible (Section 4.5), that the maximum distance d(X;, Y, (;)) be as small
as possible (Section 4.7), or one can use more complicated measures of “close-
ness” (Section 17.1).

The case d = 1 is by far the simplest. Assuming that the X; are labeled in a
way that X; < X5 < ... and similarly for the Y; one has Esup,. 5 |X; —Y;| <

L+/N. This is a consequence of the classical inequality (which we will later
prove as an exercise)

E sup |card{i <N; X; <t} — Nt| < LVN . (4.25)
0<t<1

The case where d = 2 is very special, and is the object of the present
chapter. The case d > 3 will be studied in Chapter 18. The reader having
never thought of the matter might think that the points Xi,..., X are very
evenly distributed. This is not quite the case; for example, with probability
close to one, one is bound to find a little square of area about N~!log NV that
contains no point X;. This is a very local irregularity. In a somewhat informal
manner one can say that this irregularity occurs at scale v/log N/ V/N. This
specific irregularity is mentioned just as an easy illustration, and plays no part
in the considerations of the present chapter. What matters here? is that in
some sense there are irregularities at all scales 2 Ffor1<k<L! log N, and
that these are all of the same order. To see this, let us think that we actually
move the points X; to the points Y7 (;) in straight lines. In a given small square

of side 2% there is often an excess of points X; of order vV N2—2k = 27k/N
When matched these points will leave the square and will cross its boundary.
The number of points crossing this boundary per unit of length is independent
of the scale 27%. It will also often happen that there is a deficit of points X; in
this square of side 27%, and in this case some points X; will have to cross the
boundary to enter it. The flows at really different scales should be roughly
independent, and there are about log N such scales, so when we combine what
happens at different scales we should get an extra factor v/log N (and not
log N). Crossing our fingers, we should believe that about /N log N points
X, per unit of length cross a typical interval contained in the square, so that
the total length of the segments joining the points X; to the points Y (;

4 This is much harder to visualize and is specific to the case d = 2.
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should be of that order.® This fact that all scales have the same weight is
typical of dimension 2. In dimension 1, it is the large scales that matter most,
while in dimension > 3 it is the small ones.

Exercise 4.3.1. Perform this calculation.
One can summarize the situation by saying that

obstacles to matchings at different scales may combine

in dimension 2 but not in dimension >3 . (4.26)

It is difficult to state a real theorem to this effect, but this is actually seen with
great clarity in the proofs. The crucial estimates involve controlling sums each
term of which represents a different scale. In dimension 2, many terms con-
tribute to the final sum (which therefore results in the contribution of many
different scales), while in higher dimension only a few terms contribute. (The
case of higher dimension remains non-trivial because which terms contribute
depend on the value of the parameter.) Of course these statements are very
mysterious at this stage, but we expect that a serious study of the methods
involved will gradually bring the reader to share this view.

What does it mean to say that the non-random points (Y;);<n are evenly
distributed? When N is a square, N = n?, everybody will agree that the N
points (k/n,¢/n),1 < k, £ < n are evenly distributed, and unless you love
details you are welcomed to stick to this case. More generally we will say that
the non-random points (Y;);<n are evenly spread if one can cover [0, 1]? with
N rectangles with disjoint interiors, such that each rectangle R has an area
1/N, contains exactly one point Y;, and is such that® R ¢ B(Y;, 10/V/N).
To construct such points one may proceed as follows. Consider the largest
integer k with k? < N, and observe that k(k + 3) > (k+ 1) > N, so that
there exists integers (n;);<x with £ <n; <k +3 and >, n; = N. Cut the
unit square into k vertical strips, in a way that the i-th strip has width n;/N
and to this i-th strip attribute n; points placed at even intervals 1/n;.”

The basic tool to construct matchings is the following classical fact. The
proof, based on the Hahn-Banach theorem, is given in Section B.1.

Proposition 4.3.2. Consider a matriz C = (c;5): j<n. Let

5 As we will see later, we have guessed the correct result.

6 There is nothing magic about the number 10. Thinks of it as a universal constant.
The last thing I want is to figure out the best possible value. That 10 works should
be obvious from the following construction.

" A more elegant approach dispenses from this slightly awkward construction. Tt is
the concept of “transportation cost”. One attributes mass 1/N to each point Xj,
and one measures the “cost of transporting” the resulting probability measure
to the uniform probability on [0,1]?. In the presentation one thus replaces the
evenly spread points Y; by a more canonical object, the uniform probability on
[0,1]%. This approach does not make the proofs any easier, so we shall not use it
despite its aesthetic appeal.
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M(C) =inf > Cingy) »

i<N
where the infimum is over all permutations © of {1,...,N}. Then
M(C) = sup Z(wi +wy), (4.27)
i<N

where the supremum is over all families (w;)i<n , (W})i<n that satisfy
Vi,j < N, w; + w§ < Cij - (428)
Thus, if ¢;; is the cost of matching ¢ with j, M(C) is the minimal cost of a

matching, and is given by the “duality formula” (4.27).

A well-known application of Proposition 4.3.2 is another “duality for-
mula”.

Proposition 4.3.3. Consider points (X;);<n and (Y;)i<n in a metric space
(T,d). Then

Y (X)) = F(Y) (4.29)

i<N

inf Z d(Xi, Yr(s)) = sup
TN fec

where C denotes the class of 1-Lipschitz functions on (T,d), i.e. functions f
Jor which | f(z) — f(y)| < d(z,y).

Proof. Given any permutation 7 and any 1-Lipschitz function f we have
D OFX) = FY) =D (X)) = f(Ya@)) € D d(Xi, Yags)) -
i<N i<N i<N

This proves the inequality > in (4.29). To prove the converse, we use (4.27)
with ¢;; = d(X;,Y;), so that

inf > (X, Yge) = sup 3 (w; + 1)) (4.30)
i<N i<N

where the supremum is over all families (w;) and (w]) for which
Given a family (w});<n, consider the function

f(z) = jrr%iﬁ(—wg +d(z,Y;)) . (4.32)

It is 1-Lipschitz, since it is the minimum of functions which are themselves
L-Lipschitz. By definition we have f(Y;) < —w’; and by (4.31) for i < N we
have w; < f(X;), so that

Z(wz--l—w;)ﬁ Z(f(Xz)—f(Yz)) 0

i<N i<N
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Exercise 4.3.4. Consider a function f which achieves the supremum in the
right-hand side of (4.29). Prove that for an optimal matching we have f(X;)—
F(Yey) = d(Xi, Yryy). If you know f, this basically tells you how to find the
matching. To find Y7 (;), move from X; in the direction of steepest descent of
f until you find a points Y}.

The following is a well-known, and rather useful result of combinatorics.
We deduce it from Proposition 4.3.2 in Section B.1, but other proofs exist,
based on different ideas, see e.g. [10] § 2.

Corollary 4.3.5 (Hall’s Marriage Lemma). Assume that to each i <
N we associate a subset A(i) of {1,...,N} and that, for each subset I of
{1,..., N} we have
card(U A(z)) > card ] . (4.33)
iel
Then we can find a permutation m of {1,..., N} for which
Vi < N, w(i) € A(i).

4.4 Discrepancy Bounds

Generally speaking, the study of expressions of the type

sup| Y (%) ~ [ 1) (4.31)

fer i<N

for a class of functions F will be important in the present book, particularly
in Chapter 14. A bound on such a quantity is called a discrepancy bound
because since

’Z(f(Xi)_/fd/i)‘ ZN\%Zf(Xi)—/fdu‘

i<N i<N

it bounds uniformly on F the “discrepancy” between the true measure [ fdu
and the “empirical measure” N=! > _ . f(X;). Finding such a bound simply
requires finding a bound for the supremum of the process (|Z¢|) e, where
the (centered) r.v.s Z; are given by®

Zy =Y (f(Xi) - /fdu) , (4.35)

i<N

a topic at the very center of our attention.

A relation between discrepancy bounds and matching theorems can be
guessed from Proposition 4.3.3 and will be made explicit in the next section.
In this book every matching theorem will be proved through a discrepancy
bound.

8 Please remember this notation which is used throughout this chapter.
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4.5 The Ajtai-Komldés-Tusnady Matching Theorem

Theorem 4.5.1 ([5]). If the points (Y;)i<n are evenly spread and the points
(X:)i<n are i.i.d. uniform on [0,1]2, then (for N >2)

E inf Y d(X;, () < Ly/Nlog N (4.36)

i<N

where the infimum is over all permutations of {1,..., N} and where d is the
Euclidean distance.

The term /N is just a scaling effect. There are N terms d(Xs,Yx(;)) each

of which should be about 1/v/N. The non-trivial part of the theorem is the
factor y/log N. In Section 4.6 we shall show that (4.36) can be reversed, i.e.

E inf > d(Xi, Yegp) = %\/NlogN. (4.37)

i<N

In order to understand that the bound (4.36) is not trivial, you can study
the following greedy matching algorithm which was shown to me by Yash
Kanoria.

Exercise 4.5.2. For each n > 0 consider the partition H,, of [0,1]? into 22"
equal squares. Consider the largest integer ng with 2270 < N and proceed as
follows. For each small square in ‘H,, match as many as possible of the points
X; with points Y; in the same square. Remove the points X; and the points Y;
that you have matched this way. For the remaining points proceed as follows.
In each small square of H,,—; match as many of the remaining points X;
to remaining points Y; inside the same square. Remove all the points X;
and the points Y; that you have removed at this stage and continue in this
manner. Prove that the expected cost of the matching thus constructed is
< LVNlogN.?

Let us state the “discrepancy bound” at the root of Theorem 4.5.1. Consider
the class C of 1-Lipschitz functions on [0,1]2, i.e. of functions f that satisfy

Va,y € [071]27 |f($) - fW)l <d(z,y),

where d denotes the Euclidean distance. We denote by A the uniform measure
on [0,1]2.

Theorem 4.5.3. We have

Esup|Z(f(X¢)—/fd/\)| < L\/NlogN . (4.38)

fec <N

9 It can be shown that this bound can be reversed.
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Research problem 4.5.4. Prove that the following limit

e S - f s
exists.

At the present time there does not seem to exist the beginning of a general
approach for attacking a problem of this type, and certainly the methods
of the present book are not appropriate for this. Quite amazingly, however,
the corresponding problem has been solved in the case where the cost of the
matching is measured by the square of the distance, see [6]. The methods
seem rather specific to the case of the square of a distance.

Theorem 4.5.3 is obviously interesting in its own right, and proving it is
the goal of this section. Before we discuss it, let us put matchings behind us.
Proof of Theorem 4.5.1. We recall (4.29), i.c

inf Z A( X, Yri)) = sup Z Y;)), (4.39)

i<N z<N

and we simply write

S (60 = £00) < [ (0 [ Fan)|+[ 3 (5

i<N i<N i<N

/ FAN)| . (4.40)

Next, we claim that

Y (s / fAN| < LVN . (4.41)

i<N

We recall that since (Y;);<n are evenly spread one can cover [0,1]* with NV
rectangles R; with disjoint interiors, such that each rectangle R; has an area
1/N and is such that Y; € R; € B(Y;,10/v/N). Consequently N [ fdX =
N3 icn Jg, fdX and

/fdAy_ny N/fdA\

1<N i<N

< Yl —N/R Fa)|

i<N i

< ZN\/ (2))d\(z)] . (4.42)

i<N

Since f is Lipschitz and R; is of diameter < L/v/N we have |f(V;) — f(z)| <
L/ V/N when z € R;. This proves the claim.
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Now, using (4.39) and taking expectation

Eir;f Z d(Xs, Yr(s)) < LVN + Esup|Z(f(Xi) — /fd/\)|

i<N feC <N
< L/NlogN

by (4.38). O

4.5.1 The Long and Instructive Way

S. Bobkov and M. Ledoux recently found [27] a magically simple proof of
Theorem 4.5.3. We will present it in Subsection 4.5.2. This proof relies on
very specific features, and it is unclear as to whether it will apply to other
matching theorems. In the present section we write a far more pedestrian (but
far more instructive) proof with the general result Theorem 6.8.3 in mind.

To prove Theorem 4.5.3 the overall strategy is clear. We think of the
left-hand side as Esupec|Zy|, where Z; is the random variable of (4.35).
We then find nice tail properties for these r.v.s, and we use the methods
of Chapter 2. In the end (and because we are dealing with a deep fact) we
shall have to prove some delicate “smallness” property of the class C. This
smallness property will ultimately be derived from the ellipsoid theorem. The
(very beautiful) strategy for the hard part of the estimates relies on a kind
of two-dimensional version of Proposition 4.1.8 and is outlined on page 121.

The class C of 1-Lipschitz function on the unit square is not small in
any sense for the simple reason that it contains all the constant functions.
However the expression >, x (f(X;) — [ fdA) does not change if we replace
f by f+ a where a is a constant. In particular

sup| S (£(X) — [ fa0] = sup| S (F(x) - [ 1)

feC icn re€ i<n

where we define C as the set of 1-Lipschitz functions on the unit square for
which £(1/2,1/2) = 0.1° The gain is that we now may hope that C is small in
the appropriate sense. To prove Theorem 4.5.3, we will prove the following.

Theorem 4.5.5. We have

EsuE‘Z(f(Xi)—/fd/\)’ < L/NlogN . (4.43)
FEC <N

The following fundamental classical result will allow us to control the tails
of the r.v. Zy of (4.35). It will be used many times.

10 There is no real reason other than my own fancy to impose that the functions
are zero right in the middle of the square.
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Lemma 4.5.6 (Bernstein’s inequality). Let (W;);>1 be independent r.v.s
with EW; = 0 and consider a number a with |W;| < a for each i. Then, for
v >0,

v2 v
(=) <avo(wn(om e t)).
2 1Y EW2 24

Proof. For |z| <1, we have

and thus, since EW; = 0, for a|A| < 1, we have
[Eexp A\W; — 1] < \2EW2 .
Therefore Eexp A\W; < 1+ A2EW? < exp A2EW?, and thus
EeprZWi = H Eexp AW; < exp A2 Z EWf .
i>1 i>1 i>1
Now, for 0 < A < 1/a we have

p(Z W, > q)) < exp(—)\U)EeXp)\Z Wi

i>1 i>1

< exp (/\2 > EW? - /\v) :

i>1

If av < 2375, EW?, we take A = v/(2 D1 EW?), obtaining a bound
exp(—v? /(43,5 EW?)). If av > 237, EW?, we take A = 1/a, and we

note that 1
v _av w v
- EW?2 - - < — — = = ——
a? Z ' aT 22 a 2a’
i>1
so that P(>",o; Wi > v) < exp(—min(v?/4)",., EW? v/2a)). Changing W;
into —W; we obtain the same bound for P(3_,5, Wi < —v). O

Corollary 4.5.7. For each v > 0 we have

2

P(1Z| > v) < Zexp(— min(éu\;fTH%, m)) , (4.45)

where ||f|l, denotes the norm of f in L,(X).

Proof. We use Bernstein’s inequality with W; = f(X;) — [ fd\ if i < N
and W; = 0 if ¢ > N. We then observe that EW? < Ef? = || f||3 and
Wil < 2sup|f| = 2[|f|oo- 0
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Let us then pretend for a while that in (4.45) the bound was instead
2exp(—v?/(4N||f]13)). Thus we would be back to the problem we considered
first, bounding the supremum of a stochastic process under the increment
condition (2.4), where the distance on C is given by d(fi, f2) = V2N||f1 —
f2|l2- The first thing to point out is that Theorem 4.5.3 is a prime example of
a natural situation where using covering numbers does not yield the correct
result, where we recall that for a metric space (T,d), the covering number
N(T,d, ) denotes the smallest number of balls of radius € that are needed to
cover T'. This is closely related to the fact that, as explained in Section 2.13,
covering numbers do not describe well the size of ellipsoids. It is hard to
formulate a theorem to the effect that covering numbers do not suffice, but
the root of the problem is described in the next exercise, and a more precise
version can be found later in Exercise 4.5.20.

Exercise 4.5.8. Prove that for each 0 < e <1

1

lOgN(C,dQ,G) Z L_e2 s

(4.46)
where dy denotes the distance in L?(]0,1]?). Hint: Consider an integer n > 0,
and divide [0, 1]? into 22 equal squares of area 2727, For every such square C'
consider a number e = +1. Consider then the function f € C such that for
x € C one has f(z) = ecd(x, B), where B denotes the boundary of C. There
are 22°" such functions. Prove that by appropriate choices of the signs e¢

one may find at least exp(22"/L) functions of this type which are at mutual
distance > 27" /L.

Since covering numbers do not suffice, we will appeal to the generic chaining,
Theorem 2.7.2. As we will show later, in Exercise 4.5.21 we have v2(C, d2) =
oo. To overcome this issue we will replace C by a sufficiently large finite subset
F C C, for which we shall need the crucial estimate v2(F,d2) < L/log N.
This will be done by proving that 72 2 (CA, dy) < oo where 73 2 is the functional
of (4.5), so that 72 ,2(F,d2) < oo, and appealing to Lemma 4.1.3.

The main ingredient towards the control of 9 (CA, ds) is the following
2-dimensional version of Proposition 4.1.8.

Lemma 4.5.9. Consider the space C* of 1-Lipschitz functions on [0, 1]
which are zero on the boundary of [0,1]2. Then ~22(C*,dz) < oco.

Proof. We represent C* as a subset of an ellipsoid using the Fourier transform.
The Fourier transform associates to each function f on L?([0,1]?) the complex
numbers ¢, 4(f) given by

cpq(f) = // fx1, o) exp(2im(px1 + quo))dwidas (4.47)
[0,1]2

The Plancherel formula
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1/2
172 = (3 lena(DI?) (4.48)
p,qE€EZ

asserts that Fourier transform is an isometry, so that if

D= {(Cp_,q(f))p,qez ; fe C*)}v

it suffices to show that 2 2(D, d) < oo where d is the distance in the complex
Hilbert space ¢Z(Z x Z). Using (4.47) and integration by parts we get

—2impcy o (f) = cpyq (%) '

Using (4.48) for 0f /dx, and since ||0f /0x|lz <1 we get Yy p|cpq(f)I?
< 1/4n%. Proceeding similarly for df/dy, we get

DCE={(cpg) ERZXT); lconl <1, Y 0 +)lepgl* <1}
P,qEL

We v21ew egmch c012nplex number ¢, 4 as a pair (T, q, Yp,q) of real numbers, and
lep.gl® = 75 4 + Up 4o SO that

E= {((xpg) (Upg)) € C(Z X L) x *(ZXTL);

33%70 + yaO S 1 ’ Z (p2 + q2)(x1277q + yf),q) S 1} . (449)
P,qEL

For u > 1, we have

card{(p,q) € Z X Z; PP+ < u2} < (2u+1)? < Lu?.
We then deduce from Corollary 4.1.7 that v, 2(€,d) < co. O
Proposition 4.5.10. We have ’}/2_’2(8, dg) < o0.

I am grateful to R. van Handel who showed me the following simple argu-
ments, which replaces pages of gritty work in [171]. The basic idea is to deduce
this from Lemma 4.5.9, essentially by showing that Cisa Lipschitz image of
a subset of C*, or more exactly of the clone considered in the next lemma.

Lemma 4.5.11. The set C* of 1-Lipschitz functions on [—1,2]> which are
zero on the boundary of this set satisfies Y2,2(C*, d*) < oo where d* is the
distance induced by L?([—1,2]%,d)\).

Proof. This should be obvious form Lemma 4.5.9, we just perform the same
construction on two squares of different sizes, [0,1]* and [—1,2]%. 0

Lemma 4.5.12. Each Lipschitz function f € C is the restriction to [0,1]2 of
a function f* of CE.
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Proof. A function f € 4 may be extended to a 1-Lipschitz function f on
R? by the formula f(y) = inf,ep,1)2 f(z) + d(z,y). Since f(1/2,1/2) =0
by definition of C and since f is 1-Lipschitz, then [f(z)] < 1/ V2 < 1 for
x € [0,1]2. The function f*(y) = min(f(y),d(y,R?\ [~1,2]?)) is 1-Lipschitz.
Since each point of [0, 1]? is at distance > 1 of R?\ [~1,2]%, f¥ coincides with
f on [0,1]?, and it is zero on the boundary of [—1,2]%. O

Proof of Proposition 4.5.10. To each function f of C* we associate its restric-
tion ¢(f) to [0,1]2. Since the map ¢ is a contraction, by Lemma 4.5.11 we
have ¥o,2(¢(C*)) < 0o, and by Lemma 4.5.12 we have C C ¢(C#). O

Let us now come back to Earth and deal with the actual bound (4.45).
For this we develop an appropriate version of Theorem 2.7.2. Tt will be used
many times. The ease with which one deals with two distances is remarkable.
The proof of the theorem contain a principle which will be used many times:
if we have two admissible sequences of partitions such that for each of them,
the sets of the partition as small in a certain sense, then we can construct an
admissible sequence of partitions whose sets are small in both senses.

Theorem 4.5.13. Consider a set T provided with two distances dy and ds.
Consider a centered process (Xy)ier which satisfies

Vs, t €T, Yu>0,

2

. u u
P Xs — Xi| >u) < 2exp(— m1n<d2(s 2 di(s t))) . (4.50)
Then
E S;le[:)r |X5 — Xt| S L(’“/l(T, dl) + ’)/Q(T, dg)) . (451)
S,

This theorem will be applied when d; is the £, distance, but it sounds funny,
when considering two distances, to call them ds and dq.

Proof. We denote by A;(A) the diameter of the set A for d;. We consider an
admissible sequence (By,),>0 such that!?

VEeT, Y 2"Ay(Bn(t) < 2 (T, dy) (4.52)
n>0
and an admissible sequence (Cy)p>0 such that
VEET, Y 27 Ay(Cult)) < 292(T. da) . (4.53)
n>0

1 The factor 2 in the right-hand side below is just in case the infimum over all
partitions is not attained.
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Here B,(t) is the unique element of B,, that contains t (etc.). We define
partitions A,, of T as follows. We set Ay = {T'}, and, for n > 1, we define A,
as the partition generated by B,—1 and C,,—1, i.e. the partition that consists
of the sets BN C for B € B,,_; and C € C,,_1. Thus card A,, < N2_; < N,
and the sequence (A,,) is admissible. We then choose for each n > 0 a set T,
such that cardT,, < N,, which meets all the sets in A,,. It is convenient to
reformulate (4.50) as follows: when v > 1 we have

Vs,t €T, P(| X, — X¢| > u’di(s,t) + uda(s, t)) < 2exp(—u?) .

We then copy the proof of (2.34), replacing (2.31) by

Ve, [ Xt = X1y < 0220d1 (0 (1), T (1)) + 2" 2da (0 (1), Ta1 (2)) -
O

Exercise 4.5.14. The purpose of this exercise is to deduce Theorem 4.5.13
from Theorem 2.7.14.
(a) Prove that if for some numbers A, B > 0 a r.v. Y > 0 satisfies

PY >u) <2ex (—min(u—2 2))

- — p A27 B )

then for p > 1 we have [|Y||, < L(A\/p + Bp).
(b) We denote by D,,(A) the diameter of a subset A of T for the distance
On(s,t) = || Xs — X¢||on. Prove that under the conditions of Theorem 4.5.13
there exists an admissible sequence of partitions (A,,) such that

sup > Du(An(t)) < L(n(T,dr) +72(T, d2)) - (4.54)
te n>0

Exercise 4.5.15. Consider a space T equipped with two different distances
di and ds. Prove that

Yo (T',dy 4 dz) < L(v2(T, dy) + v2(T, dz)) . (4.55)

We can now state a general bound, from which we will deduce Theo-
rem 4.5.3.

Theorem 4.5.16. Consider a class F of functions on [0,1]? and assume
that 0 € F. Then

Esup‘Z(f(Xi)—/fd/\)‘ < L(VN%(F,dz) + 71(F,ds)) . (4.56)

reF iy

where dy and do are the distances induced on F by the norms of L? and L>
respectively.
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Proof. Combining Corollary 4.5.7 with Theorem 4.5.13 we get, since 0 € F
and Zy =0,

Esup |Z¢| <E sup |Z;—Zp| < L(’YQ(]:,Q\/Ndz) + 1 (F, 4doo)) . (4.57)
ferF f.frer

Finally, v2(F, 2/ Ndy) = 2/ N~ (F, dy) and v, (F,4ds) = 471 (F,ds). O

Exercise 4.5.17. Try to prove (4.25) now. Hint: Consider F = {1jg /n7; k <
N}. Use Exercise 2.7.5 and entropy numbers.

In the situation which interests us, there will plenty of room to control the
term 71 (F, doo ), and this term is a lower-order term, which can be considered
as a simple nuisance. For this term, entropy numbers suffice. To control these,
we first state a general principle, which was already known to Kolmogorov.

Lemma 4.5.18. Consider a metric space (U,d) and assume that for certain
numbers B and o« > 1 and each 0 < ¢ < B we have

N(U,d,e) < (g)a : (4.58)

Consider the set B of 1-Lipschitz functions f on U with ||fllec < B. Then
for each ¢ > 0 we have

B\«
log N(B,dw,€) < K(a) (?) , (4.59)
where K(a) depends only on a. In particular,
en(B,ds) < K(a)B27™/ (4.60)

Proof. By homogeneity we may and do assume that B = 1. Using (4.58) for
e = 27", for each n > 0 consider a set V,, C U with card V,, < 2™% such that
any point of U is within distance 2™ of a point of V;,. We define on B the
distance d,, by d,(f,g) = maxzev, |f(x) — g(x)|. We prove first that

doo(frg) < 27" 1 dn(f,9) - (4.61)

Indeed, for any € U we can find y € V,, with d(z,y) < 27" and then
[f(@) = g(@)] < 27" +[f(y) —g(y)| <27"*! +du(f.9)-
Denote by W,,(f,r) the ball for d,, of center f and radius r. We claim
that
W1 (f, 27" € Wi (f,277F3) . (4.62)

Indeed, using (4.61) for n—1 rather than n we see that d,(f,¢) < do(f,g9) <
27 H2 o7l <273 for g € W, (f,277HY).
Next, we claim that

N(Wu(f,27"3),dy, 27) < LoV (4.63)
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Since du(f,9) = n () —9n(9)lloe Whete () = (F(2))sev, we are actually
working here in Reard Va and (4.63) is a consequence of (2.47): in R4 Vr e

are covering a ball of I'adius 277%3 by balls of radius 27",

Covering B by N(B,d,_1,27"*!) balls W,,_1(f,27"*!) and hence by
N(B,dp—1,27"F1) balls W, (f,27""3) and then covering each of these by
N(W,(f,2773),d,,27") < Lard Ve Dalls for d,, of radius 27" we obtain

N(B,d,,2 ") < L*VaN(B,d,,_1,2 ") . (4.64)

Since card V,, = 2%™, iteration of (4.64) proves that log N(B,d,,2™") <
K2, Finally (4.61) implies that

log N(B,duo,27""%) <log N(B,d,_1,27 " 1) < K297
and concludes the proof. a

We apply the previous lemma to U = [0,1]? which obviously satisfies
(4.58) for o = 2, so that (4.60) implies that for n > 0,

en(C,dso) < L2772 (4.65)

Proposition 4.5.19. We have

Esup| > f(X;) — /fd/\| < L\y/NlogN . (4.66)
feC i<n

An interesting feature of this proof is that it does not work to try to use
(4.56) directly. Rather we will use (4.56) for an appropriate subset 7" of C,
which can be thought of as the “main part” of C and for the “rest” of C we
will use other (and much cruder) bounds. This method is not artificial. As we
will learn much later, in Theorem 6.8.3, when properly used, it always yields
the best possible estimates.

Proof. Consider the largest integer m with 2=™ > 1/N. By (4.65) we may
find a subset T" of C with cardT < N,,, and

VfeC, dol(f,T)<L2™?><L/VN .
Thus for each f € C consider f e T with deo (f, f) < L/V/N. Then
\Zs| <1Zf| + 125 = Z5) = |25 +1Z;_fl < |Zf + LVN

where we have used the obvious inequality |Z,_ 7| < 2doo(/f, f). Since f e T
we obtain
Esup |Zy| < Esup|Zf|+L\/_ (4.67)
fec
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To prove (4.66) it suffices to show that
Esup |Zf| < L\/NlogN . (4.68)
fer

Proposition 4.5.10 and Lemma 4.1.3 imply v (7,d2) < Ly/m < L+/log N.
Now, as in (2.56) we have

N(Tdoe) S LD 2%en (T, doo) -
n>0

Since e, (T,ds) = 0 for n > m, (4.65) yields 71 (T, ds) < L2™/2% < LV/N.
Thus (4.68) follows from Theorem 4.5.16 and this completes the proof. O

Exercise 4.5.20. Use Exercise 4.5.8 to prove that Dudley’s bound cannot
yield better than the estimate (7, d2) < Llog N.

Exercise 4.5.21. Assuming v,(C*,dy) < oo, show that the previous argu-
ments prove that

Efsup |Z f(Xy) — /fd)\| < LVN(1 +7,(C*,dy)) .

€C" <N

Comparing with (4.78) conclude that v2(C*, d2) = co. Convince yourself that
the separated trees implicitly constructed in the proof of (4.78) also witness
this.

Exercise 4.5.22. Suppose now that you are in dimension d = 3. Prove that
Esup,ca|Xion f(Xi) — [ fdA] < LN?/3. Hint: according to Lemma 4.5.18

we have en(CA, dso) < L27"/3. This is the only estimate you need, using the
trivial fact that e, (C,ds2) < e,(C, dw).

Exercise 4.5.23. Consider the space T = {0, 1} provided with the distance
d(t,t') = 279/2, where j = min{i > 1;t; # t,} for t = (t;);>1. This space
somewhat resembles the unit square, in the sense that N(T,d,e) < Le 2
for € < 1. Prove that if (X;);<ny are i.i.d. uniformly distributed in 7" and
(Yi)i<n are uniformly spread (in a manner which is left to the reader to
define precisely) then

Einf » " d(X;,Ye(;)) < LVNlog N, (4.69)
" <N
where the infimum is over all the permutations of {1,..., N}. Hint: You can

do this from scratch, and for this covering numbers suffice, e.g. in the form of
(4.59). The method of Exercise 4.5.2 also works here. In Exercise 4.6.8 below,
you will be asked to prove that this bound is of the correct order.
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4.5.2 The Short and Magic Way

We now start studying the Bobkov-Ledoux approach [27] which considerably
simplifies previous results such as the following one.

Theorem 4.5.24. [[149]] Consider the class C* of 1-Lipschitz functions on
[0, 1] which are zero on the boundary of [0,1]>. Consider points (z;)i<n in
[0,1]2 and standard independent Gaussian r.v.s g;. Then

Esup | gif(2)|" < LNlog N . (4.70)
fecricn

It should be obvious from Lemma 4.5.12 that in the previous result one may
replace C* by C of Theorem 4.5.5. The following improves on Theorem 4.5.3.

Corollary 4.5.25. Consider an independent sequence (X;);<n of r.v.s val-
ued in [0,1)%. (It is not assumed that these r.v.s have the same distribution.)

Then
Esup| > (f(Xi) — Ef(X,))| < Ly/NlogN . (4.71)

feC i<N

Proof. Consider i.i.d standard Gaussian r.v.s g;. Taking first expectation in
the g; given the X, it follows from Theorem 4.5.24 (or more accurately from
the version of this theorem for the class C) that Esup rec| 2ien 9if (X2 <
LNlog N. The Cauchy-Schwarz inequality yields Esup ;g | dien 9if(Xi)| <
Lv/Nlog N. We will learn later the simple tools which allow to deduce (4.71)
from this inequality, in particular the Giné-Zinn inequalities and specifically
(11.35) (which has to be combined with (6.6)). O

Let us consider an integer n > /N and the set
G={(k/n,t/n); 0<k,<n-—1}.

Using the fact that the functions f € C* are 1-Lipschitz, and replacing each
point z; by the closest point in G (which is at distance < \/5/ n < L/VN of
z), the following is obvious.

Lemma 4.5.26. To prove Theorem 4.5.24 we may assume that each z; € G.

Let us define an ellipsoid € in RY as a set £ = {3 4> arur} where (ug)rp>1
is a given sequence in RY and where (aj)g>1 varies over all the possible
sequences with Y, o, a7 < 1.12 For t € RY we write Xy = >,y tigi as
usual. - -

2 The name is justified, a bit a of algebra allows one to show that such a set is an
ellipsoid in the usual sense, but we do not need that.
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Lemma 4.5.27. We have

Esup [X:* < [luxl” .
tee =

Proof. This is exactly the same argument as to prove (2.157). For t =
Y oks1 okuy € € we have Xy =37, -, X, so that by the Cauchy-Schwarz
inequality we have | X2 < 3, o, [ Xy, |?> and the result follows from taking
the supremum in ¢ and expectation since E|X,, |2 = [Juz||%. 0

To prove Theorem 4.5.24 we will show that the set {(f(z;))i<n; f € C*}
is a subset of an appropriate ellipsoid.

For this we identify G with the group Z, x Z,, where Z,, = Z/nZ, with
the idea to use Fourier analysis in G, keeping in mind that a function on
[0,1]? which is zero on the boundary of this set will give rise to a function
on Zy, X Zy. Consider the elements 71 = (1,0) and 2 = (0,1) of G. For a
function f : G — R we define the functions fi(7) = f(r + m) — f(7) and
f2(1) = f(T +72) — f(7), and the class C of functions G — R which satisfy

VI e G f(T) <1;Vr e G AN <1/n; |fa(r) <1/n. (4.72)

Thus, seeing the functions on C* as functions on G, they belong to C.
Let us denote by G the set of characters x on G.13AThe Fourier trans-
form f of a function f on G is the function f on G given by f(x) =
(card G)~' 3" . f(7)x(7) where we recall that |x(7)| = 1. One then has
the Fourier expansion

F=>f0x, (4.73)

xea

and the Plancherel formula

SR = e (a7
TEG

xeé

The key to the argument is the following.

Proposition 4.5.28. There exist positive numbers (c(X)), g such that

Z ﬁ < Llogn (4.75)
x€G
and ~ N
VieC, Y cIfP <t. (4.76)
xe@G

13 A character of a group G is a group homomorphism from G to the unit circle.
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We start the preparations for the proof of Proposition 4.5.28. The following

lemma performs integration by parts.

Lemma 4.5.29. For each function f on G and every x € G we have filx) =

(x(=m) =110 -

Proof. Since ) ... f(t4+711)x(7) = >, c; f(T)x(7—71) by change of variable,
we have

(card G)fi(x) = D _(f(r +7) = f(r)x(7) = Y f(T)(x(T = 71) = x(7))

TEG TG

= (x(11) = 1) Y f(m)x(7) = (x(m1) = D(card G)f(x) ,

TEG
where we have used in the third equality that x(7 — 7)) = x(7)x(—=m). O

Corollary 4.5.30. For f € C we have

S (k) = 1P + ) — IR < & (@7)

xe@

Proof. Using Lemma 4.5.29 and then the Plancherel formula (4.74) and (4.72)
we obtain

; ; 1 1
S he(=m) — 1EF0R = ST A0 = S IAEE < -,
pl < card G n
xXEG xeG T€G
and we proceed similarly for 75. a

Proof of Proposition 4.5.28. For x € G let us set c(x) = 1/2 if x is constant
character x( equal to 1, and otherwise

e(0) = 7 ((=m) =12+ [x(=m2) — 1) -

Then, since |f(xo)| < 1 because |f(7)] < 1 for each 7, and using (4.77) in the
second inequality,

S eIFP = 500+ Y elFP <

xeG x€G x#x0

and this proves (4.76). To prove (4.75) we use that G is exactly the set of
characters of the type xp 4(a,b) = exp(2ir(ap+bg)/n) where 0 < p,q <n—1.
Thus Xpq(—71) = exp(—2inrp/n) andxpq(—72) = exp(—2irg/n). Now, for
0 <z <1 we have |1 — exp(—2imz)| > min(z,1 — x) so that
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1 1 .
Npa(=71) = 1] = T min(p,n = p) ; [Xpg(~72) — 1| = T-min(g,n — q)

Thus

1 1

< + L - - )
~ c(xo) Z min(p,n — p)? + min(g, n — ¢)?

1
C
- (x)

where the sum is over 0 < p,¢g < n — 1 and (p,q) # (0,0). Distinguishing
whether p < n/2 or p > n/2 (and similarly for ¢) we obtain

> 1 <1yt
min(p,n — p)2 + min(q,n — ¢)2 ~ P2 g2’
where the sum is over the same set and this sum is < Llogn. O

Proof of Theorem 4.5.24. We write (4.73) as f = Exe@ ayX/+/c(x) where

ay = Ve(x)f(x) so that 2 oed lay|? < 1 by (4.76). Now we come back to
real numbers by taking the real part of the identity f = er@ o x /v e(x)-

This gives an equality of the type f = er@(a;x’ + Bx")/\/c(x) where
Yyea(a))? +(B)?) < Land '], [X"| < 1. That is, the set {(f(z))i<n; f €
C*} is a subset of the ellipsoid & = {d>, <, aur; >, af < 1}, where the
family (ug) of points of RY consists of the points (x'(2:)/y/c(x))i<n and
(X" (21)//e(x))i<n where x takes all possible values in G. For such a uj, we
have |uy, ()] < 1/4/c(x) so that [Jug]|? = 3,c n ur(2:)? < N/e(x), and then
by (4.75) we have Y, [lux|* < LNlogn. Finally we apply Lemma 4.5.27,
and we take for n the smallest integer > v/N. O

Exercise 4.5.31. Let us denote by v the uniform measure on G and by d,
the distance in the space L?(v). Prove that y2(C*,d,) > v/logn/L. Warning:
this is not so easy, and the solution is not provided. Hint: make sure you
understand the previous chapter, an construct an appropriate tree. The in-
gredients on how to build that tree are contained in the proof given in the
next section, and Section 3.2 should also be useful. You may assume that N
is a power of 2 to save technical work. Furthermore, you may also look at
[171] where trees were explicitly used.

4.6 Lower Bound for the Ajtai-Komlés-Tusnady
Theorem

Recall that C* denotes the class of 1-Lipschitz functions on the unit square
which are zero on the boundary of the square. We shall prove the following,
where (X;);<n are i.i.d. in [0, 1]%
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Theorem 4.6.1. We have

E sup ‘Z /fd)\)’ > %\/NlogN. (4.78)

fecx

Since

sup‘z —/fd>\ | < Sup|z F(vi)|

fecx i<N fecx <N
+ sup|Z(f(Y /fd/\

i<N

taking expectation and using (4.41) it follows from (4.78) that if the points
Y; are evenly spread then (provided N > L),

1
Esup | (f(X:) — f(¥)| > v/ Nlog N,

fecr N

and since C* C C the duality formula (4.29) implies that the expected cost of
matching the points X; and the points Y; is at least /N log N/L.

The proof of Theorem 4.6.1 occupies this entire section and starts now.
The beautiful argument we present goes back to [5]. We can expect that this
proof is non-trivial. To explain why, let us recall the set T" used in the proof
of Proposition 4.5.19. Analysis of the proof of that proposition leads us to
guess that the reason why the bound it provides cannot be improved is that
v2(T, ds) is actually of order v/log N (and not of a smaller order). So a proof
of (4.78) must contain a proof that this is the case. In the previous chapter,
we learned a technique to prove such results, the construction of “trees”.
Not surprisingly, our proof implicitly uses a tree which witnesses just this,
somewhat similar to the tree we constructed in Section 3.2.14

We may assume N large and we consider a number r € N which is a small
proportion of log N, say r ~ (log N)/100.'> The structure of the proof is to
recursively construct for & < r certain (random) functions fj such that for
any ¢ <r

Z fx is 1-Lipschitz (4.79)
k<q
and for each k£ <,

¢_
E fe(X fdA > (4.80)
;V g / KA =T

14 1t should also be useful to solve Exercise 4.5.31 above.

15 We absolutely need for the proof a number r which is a proportion of log N, and
taking a small proportion gives us some room. More specifically, each square of
side 27" will have an area larger than, say, 1/ V/N, so that it will typically contain
many points X;, as we will use when we perform normal approximation.
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The function f* =3, fx is then 1-Lipschitz and satisfies

ey (1o - [ra) > VAT
i<N

This completes the proof of (4.78). The function fi looks to what happens
at scale 27%, and (4.80) states that each such scale 27% contributes about
equally to the final result.

Following the details of the construction is not that difficult, despite the
fact that ensuring (4.79) requires technical work. What is more difficult is to
see why one makes such choices as we do. There is no magic there, making the
right choices means that we have understood which aspect of the geometric
complexity of the class C* is relevant here.

The main idea behind the construction of the function fj is that if we
divide [0,1]? into little squares of side 27F in each of these little squares
there is some irregularity of the distribution of the X;. The function f; is a
sum of terms, each corresponding to one of the little squares, see (4.90). It is
designed to, in a sense, add the irregularities over these different squares.

The functions fx will be built out of simple functions which we describe
now. For 1 < k <7 and 1 < ¢ < 2% we consider the function fl;’e on [0,1]
defined as follows:

0  unless z € [(£—1)27% r27F]
Jeo®)=<1  forze[(t—1)27% (£—1/2)27k] (4.81)
—1 forz e [(£—1/2)27F 27F].
We define .
fua@) = [ fawiy . (4.82)
0

Fig. 4.1. The graphs of fx,1 and fi 3.

We now list a few useful properties of these functions. In these formulas
|.]l2 denotes the norm in L?([0,1]), etc. The proofs of these assertions are
completely straightforward and better left to the reader.
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Lemma 4.6.2. The following holds true:

The family (f; ) is orthogonal in L*([0,1]) . (4.83)
Ifkel3 =275 (4.84)
[ f el =275 (4.85)
fr.e is zero outside (€ —1)27% (27 . (4.86)
[ frell =272 (4.87)
I fkelloo =15 fwelloo =271 (4.88)
1
=273, 4.89
el = = (1.89)
The functions fj will be of the type
2k—5

Je = 7 > ke fee® fre (4.90)

£,0 <2k

where fro @ froo(x,y) = foo(@)fre(y) and zg 0 € {0,1,—1}. Note
that fr, ® fre is zero outside the little square [(¢ — 1)27% £27F[x[(¢' —
1)27% /27, and that these little squares are disjoint as £ and ¢’ vary. The
term zy o0 fre ® fre is designed to take advantage of the irregularity of
the distribution of the X; in the corresponding little square. The problem of
course is to choose the numbers z; ¢ . There are two different ideas here.
First, as a technical device to ensure (4.79), z ¢ may be set to zero. This
will happen on a few little squares, those where are getting dangerously close
to violate this condition (4.79). The second idea is that we will adjust the
signs of zx ¢ in a way that the contributions of the different little squares
add properly (rather than canceling each other).

Let us now explain the scaling term 25=°/1/r in (4.90). The coefficient 2~°
is just a small numerical constant ensuring that we have enough room. The
idea of the term 2%/./r is that the partial derivatives of f) will be of order
1/4/r. Taking a sum of a most r such terms and taking cancellations in effect
will give us partial derivatives which, at most of the points are < 1. This
is formally expressed in the next lemma. So, such sums are not necessarily
1-Lipschitz, but are pretty close to being so and some minor tweaking will
ensure that they are.

Lemma 4.6.3. Consider q < r. Consider a function of the type f =
Zk<q fr, where fi is given by (4.90) and where zp ¢ € {0,1,—1}. Then

|5

- H2 <276 (4.91)
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Proof. First we note that

Qk 5
Z Z 20,00 Fr o (2) froe (y) (4.92)
k<q 0,01 <2k
which we rewrite as
8f 2k 5
ax(az,y _Z Zaké ) Fro(z
k<q <2k

where ak,e(y) = Dy <or Zk0.0 fre(y). Using (4.83) we obtain

/(gi) de =3 > a1 el

k<q <2k

22k 10

Since Zl%,l,é’ < 1, and since the functions (f,¢),<2x have disjoint support, we
have a ¢(y)? < 3y <or fre(y)?, so that

[

Integrating in y and using (4.84) and (4.89) yields

£, l13 ke ().

k<q 0,0 <2k

2k—10 9—2k -10
af H 2 2 q?2
r

= <2712 O
r 12 12 —

5

Naturally, we have the same bound for ||0f/0y||2. These bounds do not imply

that f is 1-Lipschitz, but they imply that it is 1-Lipschitz “most of the time”.

We construct the functions fj recursively. Having constructed fi,..., fq,

let f:=>" k<q Jk> and assume that it is 1-Lipschitz. We will construct fq4+1 of

the type (4.90) by choosing the coefficients z441,¢,¢. Let us say that a square
of the type

[(0—1)279, 0279 x[(¢' —1)279, 0279 (4.93)

for 1 < £,¢' < 29 is a g-square. There are 227 such g-squares.

Definition 4.6.4. We say that a (¢ + 1)-square is dangerous if it contains
a point for which either |0f /0x| > 1/2 or |0f/dy| > 1/2. We say that it is
safe if it is not dangerous.

The danger is that on this square (4.93) the function f + f;+1 might not be
1-Lipschitz.

Lemma 4.6.5. At most half of the (¢ +1)-squares are dangerous, so at least
half of the (g + 1)-squares are safe.
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This lemma is a consequence of the fact that “f is 1-Lipschitz most of the
time.” The proof is a bit technical, so we delay it to the end of the section.

The following is also a bit technical, but is certainly expected. It will also
be proved later.

Lemma 4.6.6. If z41100 = 0 whenever the corresponding (g + 1)-square
(4.93) is dangerous, then f + fqi1 is 1-Lipschitz.

We now complete the construction of the function fq41. For a dangerous
square we set 24410, = 0. Let us define

heo () = for1.0 @ for1,0(x /fq+1z®fq+1 edX .

Using (4.89) and (4.87) we obtain

[heel|3 >27%/L . (4.94)
Let us define then
Dy = Z he e (X5) - (4.95)
i<N

For a safe square, we choose 2411, = £1 such that

Zgt1,6,00Deer = | Do | -

Thus, if
204

for1 = o Y Zerveeferne® fore
0,01<20+1

we have

Z fon (X /fq+1d)\ \/— Z|D€€’ (4.96)

i<N safe

where the sum is over all values of (¢, ¢) such that the corresponding square
(4.93) is safe.

We turn to the proof of (4.80) and for this we estimate EY"_ . |Dse|.
An obvious obstacle to perform this estimate is that the r.v.s Dy are not
independent of the set of safe squares. But we know that at least half of the
squares are safe, so we can bound below >"_ . |Dy /| by the sum of the 22¢*1
smallest among the 22972 r.v.s | Dy pr|.

Let us estimate EDzE/. By definition (4.95) Dy is a sum Y, -y he e (X;)
of independent centered r.v.s so that ED7 , = N||hg |3, and using (4.94) we
obtain an estimate

safe

ED;, >2"%N/L. (4.97)

Let us then pretend for a moment that the r.v.s Dy ¢ are Gaussian and inde-
pendent as ¢, ¢’ vary. For a Gaussian r.v. g we have P(|g| > (E¢?)/2/100) >
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7/8. Then for each ¢, ¢’ we have | Dy | > 2739\/N /L with probability > 7/8.
In other words the r.v. Yy o = 1|De J|>2-30VN/L satisfies EYp » > 7/8. Then
Bernstein’s inequality shows that ‘with overwhelming probability at least
3/4 of these variables equal 1. For further use let us state the following

more general principle. Considering M independent r.v.s Z; € {0,1} with
P(Z; =1) = a; = EZ; then for u > 0 we have

(| S (2 -a)| > uM) < 2exp(—Mu?/L) (4.98)
<M

and in particular P(3_, s Z; < 37, ppai — Mu) < 2exp(—Mu?/L).
Thus | Dy | > 2-34\/N /L for at least 3/4 of the squares, so that at least

1/4 of the squares are both safe and satisfy this inequality. Consequently
(4.80) holds (for g + 1 rather than ¢) follows from (4.96) as desired.

It is not exactly true that the r.v.s Dy, are independent and Gaus-
sian. Standard techniques exist to take care of this, namely Poissoniza-
tion and normal approximation. There is all the room in the world because
r < (log N)/100. As these considerations are not related to the rest of the
material of this work they are better omitted.

We now turn to the proofs of Lemmas 4.6.5 and 4.6.6. The next lemma
prepares for these proofs.

Lemma 4.6.7. Consider ¢ < r and a function of the type f = Ek<q fr
where fi is given by (4.90) and where z o € {0,1,—1}. Then B

O?f 2t
— | < —. 4.99
dxdyl — Jr (4.99)
Proof. We have
5?2 f 9k—5
ol =[5 5 meeteo e <TIE T o il
y 0,0<2k k<gq 0,0/ <2k
The functions f,’M ®f,'f_[, have disjoint support, and by the first part of (4.88)
|fre ® frol <10 Also, Yo, 28 <2071 O

Proof of Lemma 4.6.5. We will observe from the definition that all functions
fi.p for k < q are constant on the intervals [£2797, (¢ + 1)2797'[. Thus
according to (4.92), on a (¢ + 1)-square, 9f/0x does not depend on z. If
(z,y) and (2’,y") belong to the same (q + 1)-square then

8 8
a—i(az’,y’) = a—i(x,y’) : (4.100)

Moreover |y — y'| < 27971 so that (4.99) implies
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of of

205
/
- < —
ax(l’»y) Gx(x’y)

/ 27"
< —
and combining with (4.100) we obtain

af 8f AN ﬁf 8f , 2—6
a_l,(fﬂy)_a(fﬁ Y| = a(z,y)—%(‘ry) SW'

In particular if a (¢ + 1)-square contains a point at which |0f/0x| > 1/2,
then at each point of this square we have |0f/dx| > 1/2 —275/\/r > 1/4.
The proportions a of (g + 1)-squares with this property satisfies a(1/4)? <
|0f/0x]|3 < 2712, where we have used (4.91) in the last inequality. This
implies that at most a proportion 27% of (¢ + 1)-squares can contain a point
with |0f/0z| > 1/2. Repeating the same argument for 9f/0y shows that as
desired at most half of (¢ + 1)-squares are dangerous. O

Proof of Lemma 4.6.6. To ensure that g := f + fg41 is 1-Lipschitz, it suffices
to ensure that it is 1-Lipschitz on each (g + 1)-square. When the square is
dangerous, fy4+1 = 0 on this square by construction and g is 1-Lipschitz on it
because there g = f and f is 1-Lipschitz.

When the square is safe, everywhere on the square we have |0f/0x| < 1/2
and |0f/0y| < 1/2. Now the second part of (4.88) implies

o R v :
i = ||—=2¢ Zgr1,60,0 far1.0 @ forr,er <
Hdw 02 oo NG /z,e/gm q a+1, q o 25\
and
0g Of | ! L
Ha_y - 8_yHoo N HWQ 2 cenreefynne® f| < 21

0,07 <2a+1

where we have used that the elements of the sum have disjoint supports. So
we are certain that at each point of a safe square we have |9g/dz| < 1/v/2
and |0g/dy| < 1/4/2, and hence that g is 1-Lipschitz on a safe square. O

Exercise 4.6.8. This is a continuation of Exercise 4.5.23. Adapt the method
you learned in this section to prove that the bound (4.69) is of the correct
order.

4.7 The Leighton-Shor Grid Matching Theorem

Theorem 4.7.1 ([77]). If the points (Y;)i<n are evenly spread and if
(X:)i<n are i.i.d. uniform over [0,1)%, then (for N > 2), with probability
at least 1 — Lexp(—(log N)3/2 /L) we have
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. (log N)*/*
infsupd(X;,Y,;) < L—————. 4.101
= iSJI\)l XirYrtw) VN ( )
In particular
loe N 3/4
Einf sup d(X;, Yy(;)) < plos N (4.102)

T <N VN

To deduce (4.102) from (4.101) one simply uses any matching in the (rare)
event that (4.101) fails. We shall prove in Section 4.8 that the inequality
(4.102) can be reversed. A close cousin of this theorem can be found in Ap-
pendix A.

A first simple idea is that to prove Theorem 4.7.1 we do not care about
what happens at a scale smaller than (log N)3/4/y/N. Therefore consider the
largest integer ¢ with 2=¢1 > (log N)3/*/v/N (so that in particular 2 <
V/N). We divide [0, 1]? into little squares of side 2~1. For each such square,
we are interested in how many points (X;) it contains, but we do not care
where these points are located in the square. We shall deduce Theorem 4.7.1
from a discrepancy theorem for a certain class of functions.'® What we really
have in mind is the class of functions which are indicators of a union A of
little squares with sides of length 274, and such that the boundary of A has a
given length. It turns out that we shall have to parametrize the boundaries of
these sets by curves, so it is convenient to turn things around and to consider
the class of sets A that are the interiors of curves of given length.

To make things precise, let us define the grid G of [0,1]? of mesh width
2—51 by
G= {(:1:1,132) €[0,1]?; 26ix; €N or 2825 € N} .

A wverter of the grid is a point (xq,22) € [0,1]? with 292, € N and
2f1z9 € N. There are (2% + 1)2 vertices. An edge of the grid is the segment
between two vertices that are at distance 27 of each other. A square of the
grid is a square of side 27 whose edges are edges of the grid. Thus, an edge
of the grid is a subset of the grid, but a square of the grid is not a subset of
the grid, see Figure 4.2.

A curve is the image of a continuous map ¢ : [0,1] — R2. We say that
the curve is a simple curve if it is one-to-one on [0, 1[. We say that the curve
is traced on G if ¢(]0,1]) C G, and that it is closed if ¢(0) = p(1). If C is
a closed simple curve in R?, the set R? \ C has two connected components.
One of these is bounded. It is called the interior of C' and is denoted by é’

The proof of Theorem 4.7.1 has a probabilistic part (the hard one) and
a deterministic part. The probabilistic part states that with high probability
the number of points inside a closed curve differs from its expected value
by at most the length of the curve times Lv/N(log N)3/%. The deterministic
part will be given at the end of the section and will show how to deduce
Theorem 4.7.1 from Theorem 4.7.2.

6 This is the case for every matching theorem we prove.
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Fig. 4.2. A square A, and edge e, a vertex V and a simple curve C' traced on G.

Theorem 4.7.2. With probability at least 1 — L exp(—(log N)3/2/L), the fol-
lowing occurs. Given any closed simple curve C traced on G, we have

D (15(X) = AMO))| < LUC)YN(log NY¥/4, (4.103)
i<N

where /\(5) is the area ofé’ and £(C) is the length of C.

We will reduce the proof of this theorem to the following result, which con-
cerns curves of a given length going through a given vertex.

Proposition 4.7.3. Consider a vertex T of G and k € Z. Define C(1,k)
as the set of closed simple curves traced on G that pass through 7 and
have length < 2%. Then, if —¢1 < k < {1 + 2, with probability at least 1 —
Lexp(—(log N)3/2/L), for each C € C(r,k) we have

> (10X — AE))| < L25V/N(log NY*/* . (4.104)

i<N

It would be easy to control the left-hand side if one considered only curves
with a simple pattern, such as boundaries of rectangles. The point however
is that the curves we consider can be very complicated, and the longer we
allow them to be, the more so. Before we discuss Proposition 4.7.3 further,
we show that it implies Theorem 4.7.2.

7 that is, T is an end vertex of an edge which belongs to the curve.
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Proof of Theorem 4.7.2. Since there are at most (2 + 1)2 < LN choices for
the vertex 7, we can assume with probability at least

1— L(2% +1)%(201 + 4) exp(—(log N)*2 /L) > 1 — L' exp(—(log N)*/? /L)
(4.105)
that (4.104) occurs for all choices of C' € C(1,k), for any 7 and any k with
0 <k</l;+2
Consider a simple curve C traced on G. Bounding the length of C' by the
total length of the edges of G, we have 274 < £(C) < 2(2% + 1) < 26+2,
Then the smallest integer &k for which ¢(C) < 2k satisfies —¢; < k < ¢y + 2.
Since 2% < 2¢(C) the proof is finished by (4.104). O

Exercise 4.7.4. Prove the second inequality in (4.105) in complete detail.

The main step to prove Proposition 4.7.3 is the following.

Proposition 4.7.5. Consider a vertex T of G and k € Z. Define C(1,k) as
in Proposition 4.7.3. Then, if —01 < k < /{1 + 2 we have

sup |3 (1 ) = A(C))| < L25V/N(log N)*/* . (4.106)
('6(' (1,k) z<N

Proof of Proposition 4.7.3. To prove Proposition 4.7.3 we have to go from
the control in expectation provided by (4.106) to the control in probability
of (4.104). There is powerful tool to do this: concentration of measure. The

function .
f(x1,...,xzNy) = sup 1o(x;) — AC)
CEC(T,k)’iSZN( ch )‘
of points x1,...,zy € [0,1]? has the property that changing the value of a

given variable x; can change the value of f by at most one. One of the earliest
“concentration of measure” results (for which we refer to [74]) asserts that for

such a function the r.v. W = f(X,..., Xy) satisfies a deviation inequality
of the form )
P(W — EW| > u) < 2exp(_2“—N) . (4.107)

Using (4.106) to control EW and taking u = L2¥v/N(log N)3/* proves Propo-
sition 4.7.3 in the case k > 0. A little bit more work is needed when &k < 0.
In that case a curve of length 2* is entirely contained in the square V of
center 7 and side 2! and 1, (X ;) = 0 unless X; € V. To take advantage

of this, we work condltlonally on I = {i < N;X; € V} and we can then use
(4.107) with card I instead of N. This provides the desired inequality when
card I < L2%N. On the other hand, by (4.98) and since A\(V) = 22¢+2 we
have P(card I > L2?*N) < exp(—N2%¢) < Lexp(—(log N)*/2/L) because
k > —/¢; and the choice of ¢;. O

We start the proof of Proposition 4.7.5. We denote by Fj the class of
functions of the type 15, where C € C(7, k) so we can rewrite (4.106) as
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E sup | Y (f(X;) - / fdN)| < L2"VN(log N)*/* . (4.108)

J&Fk <N

The key point again is the control on the size of Fj with respect to the
distance of L2(\). The difficult part of this control is the following.

Proposition 4.7.6. We have
Yo (Fi, da) < L2F(log N')3/4. (4.109)

Another much easier fact is the following.

Proposition 4.7.7. We have

M (Fiy o) < L25VN (4.110)

Proof of (4.108) and of Proposition 4.7.5. Combine Proposition 4.7.6, Propo-
sition 4.7.7 and Theorem 4.5.16. a

Let us first prove the easy Proposition 4.7.7.
Lemma 4.7.8. We have cardC(7,k) < g2ttt Nty +1-

Proof. A curve C € C(7,k) consists of at most 28741 edges of G. If we move
through C| at each vertex of G we have at most 4 choices for the next edge,
so card C(7, k) < 428 Nitoy+1- O

Proof of Proposition 4.7.7. Generally speaking, a set T of cardinality < N,,
and diameter A satisfies v1(T,d) < LA2™, as is shown by taking A, = {T'}
for n < m and A,,(t) = {t}. We use this for T' = Fi, so that cardT =
cardC(7, k) < Njj¢,+1 by Lemma 4.7.8, and 2k+01+1 < [9k\/N. O

We now attack the difficult part, the proof of Proposition 4.7.6. The ex-
ponent 3/4 occurs through the following general principle, where we recall
that if d is a distance, so is V/d.

Lemma 4.7.9. Consider a finite metric space (T,d) with cardT < N,,.
Then
Yo (T, Vd) < m®*y o(T,d)"/? . (4.111)

Proof. Since T is finite there exists an admissible sequence (A,,) of T' such
that
VteT, Y (2"A(An(t),d)* < ma(T.d)*. (4.112)
n>0
Without loss of generality we can assume that A,,(t) = {t} for each t, so
that in (4.112) the sum is over n < m — 1. Now

A(A,Vd) = A(4,d)/?
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so that, using Holder’s inequality,

Y AN VD) = Y (2PAA(), )

0<n<m-—1 0<n<m-—1
1/4
< ¥ (3 (2 A (), 0)°)
n>0
< m3/4’\//172(T7 d)1/2 ’
which concludes the proof. a

Let us denote by AAB the symmetric difference (A\ B)U(B\ A) between
two sets A and B. On the set of closed simple curves traced on G, we define

the distance d; by d; (C,C") = )\(CO’ A CO") and the distance

5(C1,Ca) =15 —1g ||, = MC1AC))? = (dy(Cy,C) ", (4.113)

so that
Y2 (F»d2) = v2(C(1,k),0) = v2(C(7, k), /d1) ,

and using Lemma 4.7.8 and (4.111) for m := k + ¢; + 1 we obtain
Y2(Fk,d2) < L(log N)*/ "1 5(C(, k), di)'/?

because m < Llog N for k < ¢1 + 2.
Therefore it remains only to prove the following.

Proposition 4.7.10. We have
M2(C(r k), di) < L2%* . (4.114)

The reason why this is true is that the metric space (£,dz) of Proposi-
tion 4.1.8 satisfies v1 2(L, d2) < oo, while (C(7,k),d1) is a Lipschitz image of
a subset of this metric space (£, ds). The elementary proof of the following
may be found in Section B.2.

Lemma 4.7.11. There exists a map W from a subset T of L onto C(t,k)
which for any fo, f1 € T satisfies

di(W(fo), W(f1)) < L2%*|fo — fillz - (4.115)

To conclude the proof of Proposition 4.7.10 we check that the functionals
Ya,3 behave as expected under Lipschitz maps.

Lemma 4.7.12. Consider two metric spaces (T,d) and (U,d’") and a map
f:(T,d) — (U,d") which is onto and satisfies

Yo,y e T, d'(f(x), f(y) < Ad(z,y)

for a certain constant A. Then

Ya,8(U.d") < K(a, B)Ava,5(T,d).
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Proof. This is really obvious when f is one-to-one. We reduce to that case by
considering a map ¢ : U — T with f(p(z)) = x and replacing T by p(U). O

F

Fig. 4.3. A union A of little squares, and the boundary of A’.

It remains to deduce Theorem 4.7.1 from Theorem 4.7.2. The argument
is purely deterministic and unrelated to any other material in the present
book. The basic idea is very simple, and to keep it simple we describe it in
slightly imprecise terms. Consider a union A of little squares of side length
2741 and the union A’ of all the little squares that touch A, see Figure 4.3.

We want to prove that A’ contains as many points Y; as A contains points
X, so that by Hall’s Marriage Lemma each point X; can be matched to a
point Y; in the same little square, or in a neighbor of it. Since the points Y;
are evenly spread the number of such points in A’ is very nearly NA(A').
There may be more than NA(A) points X; in A, but (4.103) tells us that the
excess number of points cannot be more than a proportion of the length ¢
of the boundary of A. The marvelous fact is that we may also expect that
A(A") — A(A) is also proportional to ¢, so that we may hope that the excess
number of points X; in A should not exceed N(A(A") — A(A)), proving the
result. The proportionality constant is not quite right to make the argument
work, but this difficulty is bypassed simply by applying the same argument
to a slightly coarser grid.

When one tries to describe precisely what is meant by the previous ar-
gument, one has to check a number of details. This elementary task which
requires patience is performed in Appendix B.3.
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4.8 Lower Bound for the Leighton-Shor Theorem

Theorem 4.8.1. If the points (X;)i<n are i.i.d. uniform over [0,1]* and the
points (Yi)i<n are evenly spread, then

loe N 3/4
Einf max d(X,, Vo)) > (log N)™"

nf ma i (4.116)

We consider the class of functions
1
C={f:[0,1] = 1[0,1]; f(0) = f(1)=0; / fP(r)de <1} . (4.117)
0

For f € C we counsider its subgraph

S(f) =={(z.y) €[0,1; y < f(2)} . (4.118)

To prove (4.116) the key step will be to show that with high probability we
may find f € C with

card{i < N ; X; € S(f)} > NA(S(f)) + %\/ﬁ(log N)3/4 . (4.119)

With a little more work, we could actually prove that we can find such a
function f which moreover satisfies |f’| < 1. This extra work is not needed.
The key property of f here is that its graph has a bounded length and this
is already implied by the condition || f’||2 < 1, since the length of this graph

is fol V14 f2(x)dr < 2.

Lemma 4.8.2. The set of points within distance € > 0 of the graph of f has
an area < Le. The set of points within distance € > 0 of S(f) has an area

< A(S(f)) + Le.

Proof. The graph of f € C has length < 2. One can find a subset of the graph
of f of cardinality < L/e such that each point of the graph is within distance
€ of this set'® A point within distance € of the graph then belongs to one of
L/e balls of radius 2¢. This proves the first assertion. The second assertion
follows from the fact that a point which is within distance e of S(f) either
belongs to S(f) or is within distance € of the graph of f. a

Proof of Theorem 4.8.1. We prove that when there exists a function f satisfy-
ing (4.119) then inf, max;<n d(X;, Y(;)) > (log N)3/4/L\/N. Let us denote
by S(f)c the e-neighborhood!® of S(f) in [0,1]2. We first observe that for
any f € C we have

8 This is true for any curve of length 2. If one consider a parameterization ¢(t)
0 <t < 2 of the curve by arc length, the points ¢(ke) for k < 2/¢ have this
property.

19 That is, the set of points within distance < € of a point of S(f).
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card{i < N ; Y; € S(f)e} < NA(S(f)) 4+ LeN + LVN . (4.120)

This is because, by definition of an evenly spread family, each point Y; be-
longs to a small rectangle R; of area 1/N and of diameter < 10/v/N, and
a pessimistic upper bound for the left-hand side of (4.120) is the number of
such rectangles that intersect S(f).. These rectangles are entirely contained
in the set of points within distance L/v/N of S(f)., i.e. in the set of points
within distance < ¢ + L/v/N of S(f) and by Lemma 4.8.2 this set has area
< A(S(f)) + Le + L/V/'N, hence the bound (4.120).

Consequently (and since we may assume that N is large enough) (4.119)
implies that for € = (log N)3/*/(L\/N) it holds that

card{i < N; Y, € S(f)e} <card{i <N ; X; € S(f)},

and therefore any matching must pair at least one point X; € S(f) with a
point Y; & S(f)e, so that max;<n d(X;, Yr(5)) > €. O

Recalling the functions f . of (4.82), we consider now an integer ¢ > 2
which will be determined later. The purpose of ¢ is to give us room. Thus,
by (4.87),

1
/ foro(z)da = 272k=2 (4.121)
0
Let us set 1
fre = chk,é .
Consider the functions of the type
F=Y fawith fi= > axefue. (4.122)
k<r 1<e<2¢ek

where xy 0 € {0,1}. Then f(0) = f(1) = 0.
Lemma 4.8.3. A function f of the type (4.122) satisfies

/1 fl(x)?de <1. (4.123)
0

Proof. Using (4.83) and (4.84) we obtain
! / 2 x%,f, 2 x%,ﬂ —ck
[ reras=3 % -y 3 Botkcr o
0 kS’r‘ZSZC’“ ]CST‘ESZC’“

Consequently each function of the type (4.122) belongs the class C of (4.117).

Proof of (4.119). Given N large we choose r as the largest integer for which
ocr < NV 100 5o that r < logN /Lc. The construction of the functions fy
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is inductive. Assume that we have already constructed fi,..., f;, and let
g =2 j<q [ For £ < 2¢(a+1) et us consider the region

Ry = 5(g+ for1.0) \ S(9)

so that by (4.121)

2—20(q+1)
4r

These regions are disjoint because the functions fq+1’e have disjoint sup-

port. Furthermore if we choose fo41 = > ycgew+1) Tgt+1,0fq+1, where zg11¢ €
{0,1} then we have

A(Ry) = (4.124)

(g+fq+l \S URia

Led

where
J={r<2cat g =1},

and thus
A(S(g+ fa+1) \ S(9) ZA (Re) . (4.125)

Since our goal is to construct functions such that there is an excess of points
X; in their subgraph, we do the obvious thing, we take 411, = 1 if there is
an excess of points X; in Ry, that if

d¢ :=card{i < N; X, € R;} — NX(R¢) >0, (4.126)

and otherwise we set ;41,0 = 0. We have, recalling (4.125),

card{i < N ; X; € S(g+ fg+1)\ S(9)} = anrd{i <N; X; € R}
7

=) 60+ NA(S(g+ for1) \ S(g) - (4.127)
7

We will show that with high probability we have >, 8, > /N /(Lr'/4).
Recalling that g = Zk<q fr and g + fg41 = Zk<q+1 fr, summation of the
inequalities (4.127) over ¢ < r then proves (4.119), where f is the function

Zkgr f k-
Let us say that the region Ry is favorable if

0 > VNA(R)/L* = 27DV N /(L)) |

where the universal constant L* will be determined later. The idea underlying
this definition is that given a subset A of the square, with 1/N < A(4) <1/2,
the number of points X; which belong to A has typical fluctuations of order
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v/ NA(A). Since 6, > 0 for £ € J, and since by construction ¢ € J when Ry is
favorable, we have

Z 8¢ > card{¢; R, favorable} x 27t/ N /(Lr1/*) |
7

To conclude the proof it then suffices to show that with overwhelming
probability at least a fixed proportion of the regions R, for £ < 2¢(a+1) are
favorable. One has to be cautious that the r.v.s X; are not independent of
the function g and of the regions Ry because in particular the construction
of g uses the values of the Xj.

One simple way around that difficulty is to proceed as follows. There are
at most J], - q 22" < 22" possibilities for g. To each of these possibilities

corresponds a family of 927ty regions Ry. If we can ensure that with over-
whelming probability for each of these families a least a fixed Proportion of
the R, are favorable we are done. Since there are at most 22 ! families, it
suffices to prove that for a given family this fails with probability < 9-2"7
To achieve this we proceed as follows. By normal approximation of the tails
of the binomial law, there exists a constant L* and a number Ny > 0 such
that given any set A C [0,1]? with 1/2 > X\(A) and NA(A) > Ny we have

P(card{i < N; X; € A} — NX(A) > \/NX(A)/L*) > 1/4. (4.128)

Since c is a universal constant and 2"¢ < N'/100(4.124) shows that NA(R;)
becomes large with N. In particular (4.128) shows that the probability that
a given region Ry is favorable is > 1/4. Now, using Poissonization, we can
pretend that these probabilities are independent as ¢ varies. As noted in
(4.98), given M independent r.v.s Z; € {0,1} with P(Z; = 1) > 1/4, then
P> ,car Zi < M/8) < exp(—BM) for some universal constant . Since here
we have M = 2¢04+1) then exp(—BM) = exp(—B2°22¢9+2), This is < g—2e1t?
as required provided we have chosen c large enough that 272 > 1. O

4.9 For the Expert Only

Having proved both the Ajtai-Komlds-Tusnady and the Leighton-Shor match-
ing theorems, we should not fall under the illusion that we understand ev-
erything about matchings. The most important problem left is arguably the
ultimate matching conjecture, stated later as Problem 17.1.2. A first step in
that direction would be to answer the following question.?®

Question 4.9.1 Can we find a matching which achieves simultaneously both
(4.836) and (4.101)%

20 The difference between a Problem and a Question is that a Question is permitted
to sound less central.
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The existence of such a matching does not seem to be of any particular im-
portance, but the challenge is that the Ajtai-Koml6s-Tusnady (AKT) theo-
rem and the Leighton-Shor matching theorems are proved by rather different
routes and it is far from obvious to find a common proof.

In the rest of the section, we discuss a special matching result. Consider
the space T' = {0, 1} provided with the distance d(t,t') = 277, where j =
min{i > 1;¢; # t/} for t = (¢;);>1. This space somewhat resembles the
unit interval, in the sense that N(7T',d,e) < Le ! for ¢ < 1. The space of
Exercise 4.5.23 is essentially the space T'xT. The AKT theorem tells us what
happens for matchings in [0, 1] and Exercise 4.5.23 tells us what happens for
matchings in 7. But what happens in the space U := [0,1] x T'? It does not
really matter which specific sensible distance we use on U, let us say that we
define d((z,t), (¢',t")) = |z — 2’| + d(¢t,1').

Theorem 4.9.2. The expected cost of the optimal matching of N random
i.i.d uniformly distributed®' points in U with N evenly spread points is exactly
of order /N (log N)3/%.

The appealing part of this special result is of course the fractional power
of log. This result is as pretty as almost anything found in this book, but its
special nature makes it appropriate to guide the (expert) reader to the proof
through exercises.

Let us start with a finite approximation of T. We consider the space
Ty, = {0,1}™ provided with the distance defined for t # t' by d(t,t') = 277,
where j = min{i > 1;t; # t}} for t = (¢;)i<m. We set Uy, = [0,1] x T, and
we denote by 8,, the uniform measure on U,,. Surely the reader who has
reached this stage knows how to deduce®? the upper bound of Theorem 4.9.2
from the following.

Theorem 4.9.3. The set L of 1-Lipschitz functions f on Uy, which satisfies
If| <1 satisfy vo(L,dy) < Lm?/*.

Here of course L is seen as a subset of L?(U,,, 0,,). The proof of Theorem 4.9.3
will use expansion of the elements of £ on a suitable basis. Using the same
method as in Lemma 4.5.12 one can assume furthermore that the functions of
L are zero on {0} x Ty, and {1} x T},,. For 0 < n < m we consider the natural
partition C,, of T}, into 2" sets obtained by fixing the first n coordinates of
t € T),. Denoting by p,, the uniform measure on T,,, for C' € C,, we have
tm(C) =27". A set C € C,, with n < m is the union of two sets C; and Cy
in C,+1. We denote by h¢ a function on 7, which equals 27/2 on one of these
sets and —2"/2 on the other. Consider also the function hy on Tj,, constant
equal to 1. In this manner we obtain an orthogonal basis (hc) of L2(Th,, i )-
For f € L we consider the coefficients of f on this basis.

21 Tt should be obvious what is meant by “uniform probability on UU”.
22 By following the scheme of proof of (4.43).
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wo(f)i= [ exp(Ripmahe(t)f(e, Didudpn ).
Un
There and always, p € Z, n > 0,C € C,, or p € Z and C = (). We will lighten
notation by writing simply > ~ sums over all possible values of (p,C) as
above.

Exercise 4.9.4. (a) Prove that

> pPlapcl> < L. (4.129)

Hint: just use that |0f/0z| < 1.
(b) Prove that for each n and each C € C,, we have

> lapcl* < L2 (4.130)
PEL

Hint: prove that | [ ho(t) f(x, t)dpm, (t)] < L2732,

We have just shown that £ is isometric to a subset of the set .4 of sequences
(ap,c) which satisty (4.129) and (4.130).

Exercise 4.9.5. We will now show that v (A) < Lm?/4.
(a) Prove that A is contained in an ellipsoid of the type

E = {acc Zapc|apc| <1}

where ai’C (p* + 22 /m)/L if C € Cpyn > 0 and a =p*/L.
(b) Conclude using (2.155). (The reader must be careful for the unfortunate
clash of notation.)

The goal of the next exercise is to prove the lower bound in Theorem
4.9.2. This lower bound is obtained by a non-trivial twist on the proof of the
lower bound for the AKT theorem, so you must fully master that argument
to have a chance.

Exercise 4.9.6. Let us recall the functions f; ¢ of (4.82) where we take r ~
(log N)/100. For n > 0 we still consider the natural partition C,, of T" into 2"
sets obtained by fixing the first n coordinates of t € T'. We consider an integer
p with 277 ~ 1//r. For each ¢, each £ < 27 and C € Cyy, we consider the
function f,0.c on U given by fysc(z,t) =27P729f, ;(2)1c(t). We consider
functions of the type f; = EK% (CE€Cy1p 20t . fqr.c where zg oo € {0,1, —1}.
Copy the proof of the lower bound of the AKT theorem to prove that with
high probability one can construct these functions such that 3, p fr is 1-
Lipschitz and for each q, >, - n (f4(Xi)— [ f,d0) > VN /(Lr'/4), where X; are
i.i.d uniform on U and 6 is the uniform probability measure on U. Summation
over g < r yields the desired result.
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While making futile attempts in the direction of Theorem 4.9.2, arose further
questions which we cannot answer. We describe one of these now. We recall
the functionals v4,g of (4.5) and the uniform measure p,, on Tr,.

Question 4.9.7 Is it true that for any metric space (T,d) the space U of
1-Lipschitz maps f from T, to T, provided with the distance D given by

D(f, f)2 = [y, d(f(s), f'(5))*dpm(s) satisfies v2(U, D) < Lm®/*y1 5(T)?

The motivation for this result is that if 1" is the set of Lipschitz functions on
[0,1]) then 1 2(T) < L (using Fourier transform to compare with an ellipsoids)
and with minimal effort this would provide an alternate and more conceptual
proof for the upper bound of Theorem 4.9.2.

Exercise 4.9.8. In the setting of Question 4.9.7 assume that e, (7. d) <
27", Prove that es,(U,D) < L2™" (and better if n > m). Conclude that
> n>0 2"/2¢,, (U, D) < Lm. Prove that v2(U, D) < Lmy; o(T).

Key ideas to remember

e Ellipsoids in a Hilbert space are in a sense smaller than their entropy
numbers indicate. This is true more generally for sufficiently convex sets
in a Banach space. This phenomenon explains the fractional powers of
logarithms occurring in the most famous matching theorems.

e The size of ellipsoids in sometimes accurately described by using proper
generalizations vo,5(7T, d) of the basic functional v, (T, d).

e Matching theorems are typically proved through a discrepancy bound,
which evaluates the supremum of the empirical process over a class F
of functions.

e Bernstein’s inequality is a convenient tool to prove discrepancy bounds. It
involves the control of F both for the L? and the supremum distance.

e Using two different distances reveals the power of approaching chaining
through sequences of partitions.

4.10 Notes and Comments

The original proof of the Leighton-Shor theorem amounts basically to per-
form by hand a kind of generic chaining in this highly non-trivial case, an
incredible tour de force.?® A first attempt was made in [124] to relate (an im-
portant consequence of) the Leighton-Shor theorem to general methods for
bounding stochastic processes, but runs into technical complications. Coff-
man and Shor [36] then introduced the use of Fourier transforms and brought
to light the role of ellipsoids, after which it became clear that the structure

2% There is a simple explanation as to why this was possible: as you can check
through Wikipedia, both authors are geniuses.
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of these ellipsoids plays a central part in these matching results, a point of
view systematically expounded in [153].

Chapter 17 is a continuation of the present chapter. The more difficult
material it contains is presented later for fear of scaring readers at this early
stage. A notable feature of the result presented there is that ellipsoids do not
suffice, a considerable source of complication. The material of Appendix A is
closely related to the Leighton-Shor theorem.

The original results of [5] are proved using an interesting technique called
the transportation method. A version of this method, which avoids many of
the technical difficulties of the original approach. is presented in [173]. With
the notation of Theorem 4.5.1, it is proved in [173] (a stronger version of the
fact) that with probability > 9/10 one has

Nd Xiayﬂ' i 2
M) <2. (4.131)

1
inf — Z exp(
- N = Llog N
Since expx > x, (4.131) implies that ZiSN d(X;, Y,T(i))z < Llog N and hence
using the Cauchy-Schwarz inequality Ez‘g ~ A(Xi,Yri)) < Ly/Nlog N. More-
over (4.131) also implies max;<y d(X;, Yz ;) < Llog N/+/N. This unfortu-
nately fails to bring a positive answer to Question 4.9.1.

For results about matching for unbounded distributions, see the work of
J. Yukich [186] as well as the non-standard results of [172].



