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Preface

This book had a previous edition [132]. The changes between the two editions are
not only cosmetic or pedagogical, and the degree of improvement in the mathemat-
ics themselves is almost embarrassing at times. Besides significant simplifications in
the arguments, several of the main conjectures of [132] have been solved and a new
direction came to fruition. It would have been more appropriate to publish this text
as a brand new book, but the improvements occurred gradually and the bureaucratic
constraints of the editor did not allow a change at a late stage without further delay
and uncertainty.

We first explain in broad terms the contents of this book, and then we detail some
of the changes from [132].

What is the maximum level a certain river is likely to reach over the next 25
years? What is the likely magnitude of the strongest earthquake to occur during
the life of a planned nuclear plant? These fundamental practical questions have
motivated (arguably also fundamental) mathematics, some of which are the object
of this book. The value Xt of the quantity of interest at time t is modeled by a
random variable. What can be said about the maximum value of Xt over a certain
range of t? How can we guarantee that, with probability close to one, this maximum
will not exceed a given threshold?

A collection of random variables (Xt)t∈T , where t belongs to a certain index
set T , is called a stochastic process, and the topic of this book is the study of the
suprema of certain stochastic processes, and more precisely the search for upper and
lower bounds for these suprema. The keyword of the book is

INEQUALITIES.

The “classical theory of processes” deals mostly with the case where T is a subset
of the real line or of Rn. We do not focus on that case, and the book does not really
expand on the most basic and robust results which are important in this situation.
Our most important index sets are “high-dimensional”: the large sets of data which
are currently the focus of so much attention consist of data which usually depend on
many parameters. Our specific goal is to demonstrate the impact and the range of

vii



viii Preface

modern abstract methods, in particular through their treatment of several classical
questions which are not accessible to “classical methods.”

Andrey Kolmogorov invented the most important idea to bound stochastic
processes: chaining. This wonderfully efficient method answers with little effort
a number of basic questions but fails to provide a complete understanding, even in
natural situations. This is best discussed in the case of Gaussian processes, where the
family (Xt)t∈T consists of centered jointly Gaussian random variables (r.v.s). These
are arguably the most important of all. A Gaussian process defines in a canonical
manner a distance d on its index set T by the formula

d(s, t) = (E(Xs − Xt)
2)1/2 . (0.1)

Probably the single most important conceptual progress about Gaussian processes
was the gradual realization that the metric space (T , d) is the key object to
understand them, even if T happens to be an interval of the real line. This led
Richard Dudley to develop in 1967 an abstract version of Kolmgorov’s chaining
argument adapted to this situation. The resulting very efficient bound for Gaussian
processes is unfortunately not always tight. Roughly speaking, “there sometimes
remains a parasitic logarithmic factor in the estimates”.

The discovery around 1985 (by Xavier Fernique and the author) of a precise (and
in a sense, exact) relationship between the “size” of a Gaussian process and the
“size” of this metric space provided the missing understanding in the case of these
processes. Attempts to extend this result to other processes spanned a body of work
that forms the core of this book.

A significant part of the book is devoted to situations where skill is required to
“remove the last parasitic logarithm in the estimates”. These situations occur with
unexpected frequency in all kinds of problems. A particularly striking example is
as follows. Consider n2 independent uniform random points (Xi)i≤n2 , which are
uniformly distributed in the unit square [0, 1]2. How far is a typical sample from
being very uniformly spread on the unit square? To measure this we construct a
one-to-one map π from {1, . . . , n2} to the vertices v1, . . . , vn2 of a uniform n × n

grid in the unit square. If we try to minimize the average distance between Xi and
vπ(i), we can do as well as about

√
logn/n but no better. If we try to minimize the

maximum distance between Xi and vπ(i), we can do as well as about (logn)3/4/n

but no better. The factor 1/n is just due to scaling, but the fractional powers of logn
require a surprising amount of work.

The book is largely self-contained, but it mostly deals with rather subtle questions
such as the previous one. It also devotes considerable energy to the problem of
finding lower bounds for certain processes, a topic far more difficult and less
developed than the search for upper bounds. Even though some of the main ideas
of at least Chap. 2 could (and should!) be taught at an elementary level, this is an
advanced text.

This book is in a sense a continuation of the monograph [53], or at least of part of
it. I made no attempt to cover again all the relevant material of [53], but familiarity
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with [53] is certainly not a prerequisite and maybe not even helpful. The way certain
results are presented there is arguably obsolete, and, more importantly, many of the
problems considered in [53] (in particular, limit theorems) are no longer the focus
of much interest.

One of my main goals is to communicate as much as possible of my experience
from working on stochastic processes, and I have covered most of my results in this
area. A number of these results were proved many years ago. I still like them, but
some seem to be waiting for their first reader. The odds of these results meeting
this first reader while staying buried in the original papers seemed nil, but they
might increase in the present book form. In order to present a somewhat coherent
body of work, I have also included rather recent results by others in the same
general direction.1 I find these results deep and very beautiful. They are sometimes
difficult to access for the non-specialist. Explaining them here in a unified and often
simplified presentation could serve a useful purpose. Still, the choice of topics is
highly personal and does not represent a systematic effort to cover all the important
directions. I can only hope that the book contains enough state-of-art knowledge
about sufficiently many fundamental questions to be useful.

Let me now try to outline the progress since the previous edition.2 While
attempting to explain better my results to others, I ended up understanding them
much better myself. The material of the previous edition was reduced by about
100 pages due to better proofs.3 More importantly, reexamination of the material
resulted in new methods, and a new direction came to fruition, that of

DECOMPOSITION THEOREMS.

The basic idea is that there are two fundamentally different ways to control the size
of a sum

∑
i≤N Xi . One may take advantage of cancellations between terms, or one

may bound the sum by the sum of the absolute values. One may also interpolate
between the two methods, which in that case means writing a decomposition Xi =
X′i + X′′i and controlling the size of the sum

∑
i≤N X′i by taking advantage of the

cancellations between terms, but controlling the sum
∑

i≤N X′′i by the sum of the
absolute values. The same schoolboy idea, in the setting of stochastic processes, is
that a process can be bounded on the one hand using chaining, and on the other
hand can often be bounded by cruder methods, involving replacing certain sums by
the sums of the absolute values. The amazing fact is that many processes can be
controlled by interpolating between these two methods, that is can be decomposed
into the sum of two pieces, each of which can be controlled by one of these methods.

1 With one single exception I did not include results by others proved after the first edition of this
book.
2 A precise comparison between the two editions may be found in Appendix G.
3 A limited quantity of material of secondary importance was also removed. The current edition
is not shorter than the previous one because many details have been added, as well as an entire
chapter on the new results, and a sketch of proof for many exercises.
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Such is the nature of the landmark result of Bednorz and Latała [16], the proof of the
Bernoulli conjecture, which is the towering result of this book. Several conjectures
of [132] in the same general directions have been solved4 concerning in particular
empirical processes and random series of functions.

Despite the considerable progress represented by the solution of these con-
jectures, a number of seemingly important questions remain open, and one of
my main goals is to popularize these. Opinions differ as to what constitutes a
really important problem, but I like those I explain here because they deal with
fundamental structures. These problems might be challenging. At least, I tried my
best to make progress on them, but they have seen little progress and received little
attention.

I would like to express my infinite gratitude to Shahar Mendelson. While he
was donating his time to help another of my projects, it became clear through
our interactions that, while I had produced great efforts toward the quality of the
mathematics contained in my books, I certainly had not put enough efforts into
the exposition of this material. I concluded that there should be real room for
improvement in the text of [132], and this is why I started to revise it, and this
led to the major advances presented here.

While preparing the current text I have been helped by a number of people. I
would like to thank some of them here (and to apologize to all those whom I do not
mention). Ramon van Handel suggested a few almost embarrassing simplifications.
Hengrui Luo and Zhenyuan Zhang suggested literately hundreds of improvements,
and Rafał Meller’s comments had a great impact too. Further luck had it that, almost
at the last minute, my text attracted the attention of Kevin Tanguy whose efforts
resulted in a higher level of detail and a gentler pace of exposition. In particular, his
and Zhang’s efforts gave me the energy to make a fresh attempt at explaining and
detailing the proof of the Bernoulli conjecture obtained by Bednorz and Latała in
[16]. This proof is the most stupendously beautiful piece of mathematics I have met
in my entire life. I wish the power of this result and the beauty of this proof become
better understood.

I dedicate this work to the memory of Xavier Fernique. Fernique was a
deeply original thinker. His groundbreaking contributions to the theory of Gaussian
processes were viewed as exotic by mainstream probabilists, and he never got the
recognition he deserved. I owe a great debt to Fernique: it is his work on Gaussian
processes which made my own work possible, first on Gaussian processes, and then
on all the situations beyond this case. This work occupied many of my most fruitful
years. A large part of it is presented in the present volume. It would not have existed
without Fernique’s breakthroughs.

Paris, France Michel Talagrand

4 After another crucial contribution of Bednorz and Martynek [18].
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Chapter 1
What Is This Book About?

This short chapter describes the philosophy underlying this book and some of its
highlights. This description, often using words rather than formulas, is necessarily
imprecise and is only intended to provide some insight into our point of view.

1.1 Philosophy

The practitioner of stochastic processes is likely to be struggling at any given time
with his favorite model of the moment, a model which typically involves a rich
and complicated structure. There is a near infinite supply of such models. The
importance with which we view any one of them is likely to vary over time.

The first advice I received from my advisor Gustave Choquet was as follows:
always consider a problem under the minimum structure in which it makes sense.
This advice has literally shaped my mathematical life. It will probably be as fruitful
in the future as it has been in the past. By following it, one is naturally led to study
problems with a kind of minimal and intrinsic structure. Not so many structures are
really basic, and one may hope that these will remain of interest for a very long time.
This book is devoted to the study of such structures which arise when one tries to
estimate the suprema of stochastic processes.

The feeling, real or imaginary, that one is studying objects of intrinsic importance
is enjoyable, but the success of the approach of studying “minimal structures” has
ultimately to be judged by its results. As we shall demonstrate, the tools arising from
this approach provide the final words on a number of classical problems.
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1.2 What Is Chaining?

A stochastic process is a collection of random variables (r.v.s) (Xt )t∈T indexed by
a set T . To study it, Kolmogorov invented chaining, the main tool of this book.
The fundamental idea of chaining is to replace the index set T by a sequence of
finite approximationsTn and to study the r.v.s Xt through successive approximations
Xπn(t) where πn(t) ∈ Tn. The first approximation consists of a single point t0 so
T0 = {t0}. The fundamental relation is then

Xt −Xt0 =
∑

n≥1

(Xπn(t) −Xπn−1(t)) . (1.1)

When T is finite, the only case we really need, the sum on the right is finite. This
relation gives its name to the method: the chain of approximationsπn(t) links t0 and
t . To control the differences Xt − Xt0 , it suffices then to control all the differences
|Xπn(t) −Xπn−1(t)|.

1.3 The Kolmogorov Conditions

Kolmogorov stated the “Kolmogorov conditions”, which robustly ensure the good
behavior of a stochastic process indexed by a subset of Rm. These conditions are
studied in any advanced probability course. If you have taken such a course, this
section will refresh your memory about these conditions, and the next few sections
will present the natural generalization of the chaining method in an abstract metric
space, as it was understood in, say, 1970. Learning in detail about these historical
developments now makes sense only if you have already heard of them, because the
modern chaining method, which is presented in Chap. 2, is in a sense far simpler
than the classical method. For this reason, the material up to Sect. 1.4 included is
directed toward a reader who is already fluent in probability theory. If, on the other
hand, you have never heard of these things and if you find this material too difficult,
you should start directly with Chap. 2, which is written at a far greater level of detail
and assumes minimal familiarity with even basic probability theory.

We say that a process (Xt)t∈T , where T = [0, 1]m, satisfies the Kolmogorov
conditions if

∀ s, t ∈ [0, 1]m , E|Xs −Xt |p ≤ d(s, t)α . (1.2)

where d(s, t) denotes the Euclidean distance and p > 0, α > m. Here E denotes
mathematical expectation. In our notation, the operator E applies to whatever
expression is placed behind it, so that E|Y |p stands for E(|Y |p) and not for (E|Y |)p.
This convention is in force throughout the book.
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Let us apply the idea of chaining to processes satisfying the Kolmogorov
conditions. The most obvious candidate for the approximating set Tn is the set Gn

of points x in [0, 1[m such that the coordinates of 2nx are positive integers.1 Thus,
cardGn = 2nm. It is completely natural to choose πn(u) ∈ Gn as close to u as
possible, so that d(u, πn(u)) ≤ √

m2−n and d(πn(u), πn−1(u)) ≤ d(πn(u), u) +
d(u, πn−1(u)) ≤ 3

√
m2−n.

For n ≥ 1, let us then define

Un = {(s, t) ; s ∈ Gn , t ∈ Gn , d(s, t) ≤ 3
√
m2−n} . (1.3)

Given s = (s1, . . . , sm) ∈ Gn, the number of points t = (t1, . . . , tm) ∈ Gn with
d(s, t) ≤ 3

√
m2−n is bounded independently of s and n because |ti − si | ≤ d(s, t)

for each i ≤ m, so that we have the crucial property

cardUn ≤ K(m)2nm , (1.4)

where K(m) denotes a number depending only on m, which need not be the same
on each occurrence. Consider then the r.v.

Yn = max{|Xs −Xt | ; (s, t) ∈ Un} , (1.5)

so that (and since Gn−1 ⊂ Gn) for each u,

|Xπn(u) −Xπn−1(u)| ≤ Yn . (1.6)

To avoid having to explain what is “a version of the process” and since we care only
about inequalities, we will consider only the r.v.s Xt for t ∈ G =: ⋃n≥0 Gn. We
first claim that

sup
s,t∈G ; d(s,t)≤2−k

|Xs −Xt | ≤ 3
∑

n≥k
Yn . (1.7)

To prove this, consider n ≥ k such that s, t ∈ Gn, so that s = πn(s) and t =
πn(t). Assuming d(s, t) ≤ 2−k, we have

d(πk(s), πk(t)) ≤ d(s, πk(s))+ d(s, t)+ d(t, πk(t)) ≤ 3
√
m2−k ,

so that (πk(s), πk(t)) ∈ Uk and thus

|Xπk(s) − Xπk(t)| ≤ Yk .

1 There is no other reason for using the points x in [0, 1[m such that the coordinates of 2nx are
positive integers rather than the points x in [0, 1]m with the same property than the fact that there
are 2nm such points rather than the typographically unpleasant number (2n + 1)m.
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Next, for u ∈ {s, t},

Xu −Xπk(u) = Xπn(u) −Xπk(u) =
∑

k≤�<n

Xπ�+1(u) −Xπ�(u) ,

and since |Xπ�+1(u) − Xπ�(u)| ≤ Y�+1, we obtain |Xu − Xπk(u)| ≤
∑

�≥k Y�+1. To
obtain (1.7), we then use the previous inequalities and the identity

Xs −Xt = Xs −Xπk(s) +Xπk(s) − Xπk(t) +Xπk(t) −Xt .

Let us now draw some consequences of (1.7). For a finite family of numbers
Vi ≥ 0, we have

(max
i

Vi)
p ≤

∑

i

V
p
i , (1.8)

and thus

EYp
n ≤ E

∑

(s,t)∈Un

|Xs − Xt |p ≤ K(m, α)2n(m−α) ,

since E|Xs − Xt |p ≤ K(m, α)2−nα for (s, t) ∈ Un by (1.2) and using (1.4). To
proceed, one needs to distinguish whether or not p ≥ 1. For specificity, we assume
p ≥ 1. Since, as we just proved, ‖Yn‖p := (E|Yn|p)1/p ≤ K(m,p, α)2n(m−α)/p,
the triangle inequality in Lp yields2

∥
∥
∑

n≥k
Yn
∥
∥
p
≤
∑

n≥k
K(m,p, α)2n(m−α)/p ≤ K(m,p, α)2k(m−α)/p . (1.9)

Combining with (1.7), we then obtain

∥
∥
∥ sup
s,t∈G;d(s,t)≤2−k

|Xs −Xt |
∥
∥
∥
p
≤ K(m,p, α)2k(m−α)/p , (1.10)

a sharp inequality from which it is then simple to prove (with some loss of
sharpness) results such as the fact that for 0 < β < α −m, one has

E sup
s,t∈G

|Xs −Xt |p
d(s, t)β

<∞ . (1.11)

2 There of course the two occurrences of the constant K(m,p, α) are not the same.
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Exercise 1.3.1 Prove (1.11). Hint: Prove that

∑

k≥0

E sup
s,t∈G;d(s,t)≤2−k

2kβ |Xs −Xt |p <∞ . (1.12)

Thus, chaining not only proves that the process (Xt)t∈T has a continuous version;
it also provides the very good estimate (1.10). One reason for which everything is
so easy in this case is that the size of the terms Xπn+1(u) − Xπn(u) decreases like a
geometric series.

Let us then pause for a moment and reflect on what we have been doing.

• The Euclidean metric structure of T is not really intrinsic to the problem. Far
more intrinsic is the (quasi) distance on T given by δ(s, t) = ‖Xs − Xt‖p. The
condition (1.2), which we may now write as δ(s, t) ≤ d(s, t)α/p , simply enforces
a kind of “smallness condition” on the metric space (T , δ).

• The use of the bound (1.6) is rather pessimistic, as it bounds each of the
increments along the chain by the worst possible case among each increment.

These two remarks contain in germ much of the future progress we will make.
Following the first remark, we will learn, starting with the next section, to look at
problems in a more intrinsic manner. And our sharp chaining methods will avoid the
crude bound of each increment by the worst possible case.

There are many variations on the previous ideas. The next two exercises explore
one.

Exercise 1.3.2 Consider a convex function ϕ ≥ 0 with ϕ(0) = 0. Prove that for
r.v.s Vi ≥ 0 one has

Emax
i

Vi ≤ ϕ−1
(∑

i

Eϕ(Vi)
)
. (1.13)

Exercise 1.3.3 Consider the function ϕ as above, and consider positive numbers
cn, dn. Assume that the process (Xt)t∈T satisfies

∀ n ≥ 0 , ∀ s, t ∈ T , d(s, t) ≤ 3
√
m2−n ⇒ Eϕ

( |Xs − Xt |
cn

)
≤ dn . (1.14)

Prove that

E sup
s,t∈G,d(s,t)≤2−k

|Xs −Xt | ≤ 3
∑

n≥k
cnϕ

−1(K(m)2nmdn) . (1.15)
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The series in (1.15) has no reason to converge like a geometric series, so we already
are being more sophisticated than in the case of the Kolmogorov conditions.3

1.4 Chaining in a Metric Space: Dudley’s Bound

Suppose now that we want to study the uniform convergence on [0, 1] of a random
Fourier series Xt = ∑

k≥1 akgk cos(2πikt) where ak are numbers and (gk) are
independent standard Gaussian r.v.s. The Euclidean structure of [0, 1] is not intrinsic
to the problem. Far more relevant is the distance d given by

d(s, t)2 = E(Xs −Xt)
2 =

∑

k

a2
k (cos(2iπks)− cos(2iπkt))2 . (1.16)

This simple idea took a very long time to emerge. Once one thinks about the distance
d , then in turn the fact that the index set T is [0, 1] is no longer very relevant
because this particular structure does not connect very well with the distance d .
One is then led to consider Gaussian processes indexed by an abstract set T .4 We
say that (Xt )t∈T is a Gaussian process when the family (Xt)t∈T is jointly Gaussian
and centered.5 Then, just as in (1.16), the process induces a canonical distance d on
T given by d(s, t) = (E(Xs − Xt)

2)1/2. We will express that Gaussian r.v.s have
small tails by the inequality

∀ s, t ∈ T , Eϕ
( |Xs −Xt |

d(s, t)

)
≤ 1 , (1.17)

where ϕ(x) = exp(x2/4) − 1. This inequality holds because if g is a standard
Gaussian r.v., then E exp(g2/4) ≤ 2.6

To perform chaining for such a process, in the absence of further structure on our
metric space (T , d), how do we choose the approximating sets Tn? Thinking back to
the Kolmogorov conditions, it is very natural to introduce the following definition:

3 In the left-hand side of (1.15), we would like to do better than controlling the expectation, but one
really needs some regularity of the function ϕ for this. It suffices here to say that when ϕ(x) = |x|p
for p ≥ 1, we may replace the expectation by the norm of Lp, proceeding exactly as we did in the
case of the Kolmogorov conditions.
4 Let us stress the point. Even though the index set is a subset of Rm, we have no chance to really
understand the process unless we forget this irrelevant structure.
5 Centered means that EXt = 0 for each t .
6 Starting with the next chapter, we will control the r.v.s |Xs − Xt | through their tail properties,
and (1.17) is just another way to present the same situation.
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Definition 1.4.1 For ε > 0, the covering number N(T , d, ε) of a metric space
(T , d) is the smallest integer N such that T can be covered by N balls of radius ε.7

Equivalently,N(T , d, ε) is the smallest number N such that there exists a set V ⊂ T

with cardV ≤ N and such that each point of T is within distance ε of V .
Let us denote by Δ(T ) = sups,t∈T d(s, t) the diameter of T and observe that

N(T , d,Δ(T )) = 1. We construct our approximating sets Tn as follows: Consider
the largest integer n0 with Δ(T ) ≤ 2−n0 . For n ≥ n0, consider a set Tn ⊂ T with
card Tn = N(T , d, 2−n) such that each point of T is within distance 2−n of a point
of Tn.8 In particular T0 consists of a single point.

We then perform the chaining as in the case of the Kolmogorov conditions, using
for πn(t) a point in Tn with d(t, πn(t)) ≤ 2−n. Consider

Un = {(s, t) ; s, t ∈ Tn , d(s, t) ≤ 3 · 2−n} ,

so that

cardUn ≤ (card Tn)
2 = N(T , d, 2−n)2 .

This crude bound is hard to improve in general and should be compared to (1.4). We
now apply (1.13) to the r.v.s Vi = |Xs − Xt |/(3 · 2−n) for i = (s, t) ∈ Un. Since
Eϕ(Vi) ≤ 1, we obtain that the r.v.

Yn = max{|Xs −Xt | ; (s, t) ∈ Un}

satisfies

EYn ≤ 3 · 2−nϕ−1(N(T , d, 2−n)2) ,

and exactly as in the case of the Kolmogorov conditions, we obtain

E sup
d(s,t)≤2−k

|Xs −Xt | ≤ L
∑

n≥k
2−nϕ−1(N(T , d, 2−n)2) ,

where L is a number (which may change between occurrences). We delay the
exercise of writing this inequality in integral form as

E sup
d(s,t)≤δ

|Xs −Xt | ≤ L

∫ δ

0
ϕ−1(N(T , d, ε)2)dε . (1.18)

7 Here our balls are closed balls. One could also use open balls in this definition. There seems to
be no universal agreement about this. For our purpose, it makes no difference whatsoever.
8 We do not require that Tn ⊂ Tn+1. In Sect. 1.3, it does happen that Gn ⊂ Gn+1, but this was not
really used in the arguments.
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In the case of the function ϕ(x) = exp(x2/4) − 1, so that ϕ−1(x) =
2
√

log(1+ x), inequality (1.18) is easily shown to be equivalent to the following
more elegant formulation:

Theorem 1.4.2 (Dudley’s Bound) If (Xt)t∈T is a Gaussian process with natural
distance d , then

E sup
d(s,t)≤δ

|Xs − Xt | ≤ L

∫ δ

0

√
logN(T , d, ε)dε . (1.19)

This very general inequality is by far the most useful result on continuity of Gaussian
processes.

Exercise 1.4.3 Prove that the previous bound gives the correct uniform modulus of
continuity for Brownian motion on [0, 1]: for δ ≤ 1,

E sup
|s−t |≤δ

|Bs − Bt | ≤ L
√
δ log(2/δ) .

The message of Chap. 2 is simple:

• However useful, Dudley’s bound is not optimal in a number of fundamentally
important situations.

• It requires no more work to obtain a better bound which is optimal in every
situation.

1.5 Overall Plan of the Book

A specific feature of the index set T = [0, 1]m (provided with the Euclidean dis-
tance) occurring in the Kolmogorov conditions is that it is really “m-dimensional”
and “the same around each point”. This is not the case for index sets which occur in
a great many natural situations. If one had to summarize in one sentence the content
of the upper bounds presented in this book, it would be that they develop methods
which are optimal even when this feature does not occur.

The main tools are built in Parts I and II. Part I is devoted to the most important
situation we consider in the book, the study of Gaussian processes, and we learn the
basic concepts on how to measure the “size” of a metric space. The effectiveness
of the corresponding tools is then demonstrated by proving classical results on
matchings.

The goal of Part II is to extend the results of the Gaussian case to other more
general processes. This program of building the proper tools to go beyond the
Gaussian case was started by the author soon after he obtained his results on
Gaussian processes (which are presented in Chap. 2). It is a significant endeavor
which requires a number of new concepts. The most important of these is the idea
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of families of distances. We can no longer entirely describe the situation using a
single distance on the index set (as is the case for Gaussian processes). In some
sense, this program has been completed. Most of the results which were dreamed
by the author9 between 1985 and 1990 are now proved in Chap. 11.

Part III explores situations which belong to the same circle of ideas but in diverse
directions. The dependence chart between the chapters is given in Fig. 1.1.

1.6 Does This Book Contain any Ideas?

At this stage, it is not really possible to precisely describe any of the new ideas
which will be presented, but if the following statements are not crystal clear to you,
you may have something to learn from this book:

Idea 1 It is possible to organize chaining optimally using increasing sequences of
partitions.

9 Including some which sounded like crazily optimistic conjectures!
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Idea 2 There is an automatic device to construct such sequences of partitions, using
“functionals”, quantities which measure the size of the subsets of the index set. This
yields a complete understanding of boundedness of Gaussian processes.

Idea 3 Ellipsoids are much smaller than one would think, because they (and, more
generally, sufficiently convex bodies) are thin around the edges. This explains the
funny fractional powers of logarithms in certain matching theorems.

Idea 4 One may witness that a metric space is large by the fact that it contains large
trees or equivalently that it supports an extremely scattered probability measure.

Idea 5 Consider a set T on which you are given a distance d and a random distance
dω such that, given s, t ∈ T , it is rare that the distance dω(s, t) is much smaller
than d(s, t). Then if in the appropriate sense (T , d) is large, it must be the case
that (T , dω) is typically large. This principle enormously constrains the structure of
many bounded processes built on random series.

Idea 6 There are different ways a random series might converge. It might converge
because chaining witnesses that there is cancellation between terms, or it might
converge because the sum of the absolute values of its terms already converges.
Many processes built on random series can be split in two parts, each one converging
according to one of the previous phenomena.

The book contains many more ideas, but you will have to read more to discover
them.

1.7 Overview by Chapters

1.7.1 Gaussian Processes and the Generic Chaining

This subsection gives an overview of Chap. 2. More generally, Sect. 1.7.n gives the
overview for Chapter n+ 1.

The most important question considered in this book is the boundedness of
Gaussian processes. The key object is the metric space (T , d) where T is the index
set and d the intrinsic distance (0.1). As investigated in Sect. 2.11, this metric space
is far from being arbitrary: it is isometric to a subset of a Hilbert space. It is, however,
a deadly trap to try to use this specific property of the metric space (T , d). The
proper approach is to just think of it as a general metric space.

After reviewing some elementary facts, in Sect. 2.4, we explain the basic idea of
the “generic chaining”, one of the key ideas of this work. Chaining is a succession
of steps that provide successive approximations of the index space (T , d). In the
Kolmogorov chaining, for each n, the difference between the n-th and the (n+1)-th
approximation of the process, which we call here “the variation of the process during
the n-th chaining step”, is “controlled uniformly over all possible chains”. Generic
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chaining allows that the variation of the process during the n-th chaining step “may
depend on which chain we follow”. Once the argument is properly organized, it is
not any more complicated than the classical argument. It is in fact exactly the same.
Yet, while Dudley’s classical bound is not always sharp, the bound obtained through
the generic chaining is optimal. Entropy numbers are reviewed in Sect. 2.5.

It is technically convenient to formulate the generic chaining bound using special
sequences of partitions of the metric space (T , d), that we shall call admissible
sequences throughout the book. The key to make the generic chaining bound useful
is then to be able to construct admissible sequences. These admissible sequences
measure an aspect of the “size” of the metric space and are introduced in Sect. 2.7.
In Sect. 2.8, we introduce another method to measure the “size” of the metric space,
through the behavior of certain “functionals”, which are simply numbers attached
to each subset of the entire space. The fundamental fact is that the two measures
of the size of the metric space one obtains either through admissible sequences or
through functionals are equivalent in full generality. This is proved in Sect. 2.8 for
the easy part (that the admissible sequence approach provides a larger measure of
size than the functional approach) and in Sect. 2.9 for the converse. This converse is,
in effect, an algorithm to construct sequences of partitions in a metric space given a
functional. Functionals are of considerable use throughout the book.

In Sect. 2.10, we prove that the generic bound can be reversed for Gaussian
processes, therefore providing a characterization of their sample-boundedness.
Generic chaining entirely explains the size of Gaussian processes, and the dream
of Sect. 2.12 is that a similar situation will occur for many processes.

In Sect. 2.11, we explain why a Gaussian process in a sense is nothing but a subset
of Hilbert space. Remarkably, a number of basic questions remain unanswered, such
as how to relate through geometry the size of a subset of Hilbert space seen as a
Gaussian process with the corresponding size of its convex hull.

Dudley’s bound fails to explain the size of the Gaussian processes indexed by
ellipsoids in Hilbert space. This is investigated in Sect. 2.13. Ellipsoids will play a
basic role in Chap. 4.

1.7.2 Trees and Other Measures of Size

We describe different notions of trees and show how one can measure the “size” of a
metric space by the size of the largest trees it contains, in a way which is equivalent
to the measures of size introduced in Chap. 2. This idea played an important part in
the history of Gaussian processes. Its appeal is mostly that trees are easy to visualize.
Building a large tree in a metric space is an efficient method to bound its size from
below. We then learn a method of Fernique to measure the size of a metric space
through certain properties of the probability measures on it. It will be amenable to
vast generalizations.
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1.7.3 Matching Theorems

Chapter 4 makes the point that the generic chaining (or some equivalent form of it) is
already required to really understand the irregularities occurring in the distribution
of N points (Xi)i≤N independently and uniformly distributed in the unit square.
These irregularities are measured by the “cost” of pairing (=matching) these points
with N fixed points that are very uniformly spread, for various notions of cost.

These optimal results involve mysterious powers of logN . We are able to trace
them back to the geometry of ellipsoids in Hilbert space, so we start the chapter with
an investigation of these ellipsoids in Sect. 4.1. The philosophy of the main result,
the ellipsoid theorem, is that an ellipsoid is in some sense somewhat smaller than it
appears at first. This is due to convexity: an ellipsoid gets “thinner” when one gets
away from its center. The ellipsoid theorem is a special case of a more general result
(with the same proof) about the structure of sufficiently convex bodies, one that will
have important applications in Chap. 19.

In Sect. 4.3, we provide general background on matchings. In Sect. 4.5, we
investigate the case where the cost of a matching is measured by the average distance
between paired points. We prove the result of Ajtai, Komlós and Tusnády that the
expected cost of an optimal matching is at most L

√
logN/

√
N whereL is a number.

The factor 1/
√
N is simply a scaling factor, but the fractional power of log is

optimal as shown in Sect. 4.6. In Sect. 4.7, we investigate the case where the cost
of a matching is measured instead by the maximal distance between paired points.
We prove the theorem of Leighton and Shor that the expected cost of a matching is
at most L(logN)3/4/

√
N , and the power of log is shown to be optimal in Sect. 4.8.

With the exception of Sect. 4.1, the results of Chap. 4 are not connected to any
subsequent material before Chap. 17.

1.7.4 Warming Up with p-Stable Processes

With this chapter, we start the program of vastly extending the results of Chap. 2
concerning Gaussian processes. We outline several of the fruitful methods on the
class of p-stable processes, based on their property of being conditionally Gaussian.

1.7.5 Bernoulli Processes

Random signs are obviously important r.v.s and occur frequently in connection
with “symmetrization procedures”, a very useful tool. In a Bernoulli process, the
individual random variables Xt are linear combinations of independent random
signs. Each Bernoulli process is associated with a Gaussian process in a canonical
manner, when one replaces the random signs by independent standard Gaussian
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r.v.s. The Bernoulli process has better tails than the corresponding Gaussian process
(it is “sub-Gaussian”) and is bounded whenever the corresponding Gaussian process
is bounded. There is, however, a completely different reason for which a Bernoulli
process might be bounded, namely, that the sum of the absolute values of the
coefficients of the random signs remain bounded independently of the index t . A
natural question is then to decide whether these two extreme situations are the only
fundamental reasons why a Bernoulli process can be bounded, in the sense that a
suitable “mixture” of them occurs in every bounded Bernoulli process. This was
the “Bernoulli conjecture” (to be stated formally on page 179), which has been so
brilliantly solved by W. Bednorz and R. Latała.

It is a long road to the solution of the Bernoulli conjecture, and we start to build
the main tools bearing on Bernoulli processes. A linear combination of independent
random signs looks like a Gaussian r.v. when the coefficients of the random signs
are small. We can expect that a Bernoulli process will look like a Gaussian process
when these coefficients are suitably small. This is a fundamental idea: the key to
understanding Bernoulli processes is to reduce to situations where these coefficients
are small.

The Bernoulli conjecture, on which the author worked so many years, greatly
influenced the way he looked at various processes. In the case of empirical
processes, this is explained in Sect. 6.8.

1.7.6 Random Fourier Series and Trigonometric Sums

The basic example of a random Fourier series is

Xt =
∑

k≥1

ξk exp(2πikt) , (1.20)

where i2 = −1, where t ∈ [0, 1] and the r.v.s ξk are independent symmetric. In this
chapter, we provide a final answer to the question of the convergence of such series.

The fundamental case where ξk = akgk for numbers ak and independent
Gaussian r.v.s (gk) is of great historical importance. There is, however, another
motivation for the study of such series. The generic chaining and related methods
are well adapted to the case of a “nonhomogeneous index space”. The study of
certain of the processes we will consider in the next chapters is already subtle even
in the absence of the extra difficulty due to this lack of homogeneity. The setting of
random Fourier series allows us to put aside the issue of lack of homogeneity and to
concentrate on the other difficulties and played a great part in the development of the
theory. It provides an ideal setting to understand a basic fact: many processes can be
exactly controlled, not by using one or two distances, but by using an entire family
of distances. This concept of “family of distances” will play a major role later. It is
also while analyzing the lower bounds discovered in the setting of random Fourier
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series that the author discovered the method which allows to extend these bounds
to general random series as explained in Chap. 11. In this chapter, we also meet our
first “decomposition theorem”: there are two distinct reasons which explain the size
of a random trigonometric sum. First, there can be a lot of cancellation between
the terms. Second, it may happen that the sum of the absolute values of the terms
is already small. We show that every random trigonometric sum is the sum of two
such pieces, one of each type.

1.7.7 Partition Scheme for Families of Distances

Once one has survived the initial surprise of the new idea that many processes are
naturally associated with an entire family of distances, it is very pleasant to realize
that the tools of Sect. 2.9 can be extended to this setting with essentially the same
proof. This is the purpose of Sect. 8.1.

In Sect. 8.3, we apply these tools to the situation of “canonical processes” where
the r.v.s Xt are linear combinations of independent copies of symmetric r.v.s with
density proportional to exp(−|x|α) where α ≥ 1 (and to considerably more general
situations as discovered by R. Latała). In these situations, the size of the process
can be completely described from the geometry of the index space, a far-reaching
extension of the Gaussian case.

1.7.8 Peaky Parts of Functions

We learn how to measure the size of sets of functions on a measured space using an
appropriate family of distances. We show that when we control this size, for each
function of the set, we can distinguish its “peaky part” in a coherent way over the
whole set of functions which then has in a sense a simple structure, as it is built from
simpler pieces.

1.7.9 Proof of the Bernoulli Conjecture

Having learned how to manipulate “families of distances”, we are now better
prepared to prove the Bernoulli conjecture. This is the (overwhelmingly important)
Latała-Bednorz theorem. The challenging proof occupies most of Chap. 10.10 In the
last section, we investigate how to get lower bounds on Bernoulli processes using
“witnessing measures”.

10 It is a good research program to discover a more intuitive approach to this result.
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1.7.10 Random Series of Functions

For a large class of random series of functions, we prove in full generality that
chaining explains all the part of the boundedness of these processes created by
cancellations, in the spirit of the Bernoulli conjecture. This covers the cases both
of empirical processes and of the closely related class of selector processes. Our
main tool is to reduce to processes which are conditionally Bernoulli processes and
to use the Latała-Bednorz theorem and its consequences.

1.7.11 Infinitely Divisible Processes

The infinitely divisible processes we study are indexed by a general set and are
to Lévy processes what a general Gaussian process (index by an arbitrary index
set) is to Brownian motion (a Gaussian process indexed by R with stationary
increments). We extend to these processes our results on random series of functions:
chaining explains all the part of the boundedness of these processes which is due to
cancellations. The results are described in complete detail with all definitions in
Sect. 12.3.

1.7.12 Unfulfilled Dreams

Having proved in several general settings that “chaining explains all the part of
the boundedness which is due to cancellation”, we concentrate on the problem of
describing the “part of the boundedness which owes nothing to cancellation”. We
propose sweeping conjectures. The underlying hope behind these conjectures is that,
ultimately, a bound for a selector process always arises from the use of the “union
bound” P(∪nAn) ≤ ∑

n P(An) in a simple situation, the use of basic principles
such as linearity and positivity, or combinations of these.

1.7.13 Empirical Processes

We focus on a special yet fundamental topic: the control of the supremum of the
empirical process over a class of functions.

We demonstrate again the power of the chaining scheme of Sect. 9.4 by providing
a sharper version of Ossiander’s bracketing theorem with a very simple proof. We
then illustrate various techniques by presenting proofs of two deep recent results.
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1.7.14 Gaussian Chaos

Our satisfactory understanding of the properties of Gaussian processes should
bring information about processes that are, in various senses, related to Gaussian
processes. Such is the case of an order 2 Gaussian chaos (which is essentially a
family of second-degree polynomials of Gaussian random variables). It seems at
present a hopelessly difficult task to give lower and upper bounds of the same order
for these processes, but in Sect. 15.1, we obtain a number of results in this direction.
Chaos processes are very instructive because there exist other methods than chaining
to control their size (a situation which we do not expect to occur for processes
defined as sums of a random series).

In Sect. 15.2, we study the tails of a single multiple-order Gaussian chaos and
present (yet another) deep result of R. Latała which provides a rather complete
description of the size of these tails.

1.7.15 Convergence of Orthogonal Series: Majorizing
Measures

The old problem of characterizing the sequences (am) such that for each orthonor-
mal sequence (ϕm) the series

∑
m≥1 amϕm converges a.s. was solved by A.

Paszkiewicz. Using a more abstract point of view, we present a very much simplified
proof of his results (due essentially to W. Bednorz). This leads us to the question
of discussing when a certain condition on the “increments” of a process implies
its boundedness. When the increment condition is of “polynomial type”, this is
more difficult than in the case of Gaussian processes and requires the notion of
“majorizing measure”. We present several elegant results of this theory, in their
seemingly final forms recently obtained by W. Bednorz.

1.7.16 Shor’s Matching Theorem

This chapter continues Chap. 4. We prove a deep improvement of the Ajtai-
Komlós-Tusnády theorem due to P. Shor. Unfortunately, due mostly to our lack of
geometrical understanding, the best conceivable matching theorem, which would
encompass this result as well as those of Chap. 4, and much more, remains as a
challenging problem, “the ultimate matching conjecture” (a conjecture which is
solved in the next chapter in dimension≥3).
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1.7.17 The Ultimate Matching Theorem in Dimension Three

In this case, which is easier than the case of dimension two (but still apparently
rather non-trivial), we are able to obtain the seemingly final result about matchings,
a strong version of “the ultimate matching conjecture”. There are no more fractional
powers of logN here, but in a random sample of N points uniformly distributed in
[0, 1]3, local irregularities occur at all scales between N−1/3 and (logN)1/3N−1/3,
and our result can be seen as a precise global description of these irregularities.

1.7.18 Applications to Banach Space Theory

Chapter 19 gives applications to Banach space theory. As interest in this theory
has decreased in recent years, we have not reproduced many of the results of
[132], and we urge the interested reader to consult this earlier edition. We have
kept only the results which make direct use of results presented elsewhere in
the book (rather than including results based on the methods of the book). In
Sect. 19.1.2, we study the cotype of operators from �∞N into a Banach space. In
Sect. 19.1.3, we prove a comparison principle between Rademacher (=Bernoulli)
and Gaussian averages of vectors in a finite-dimensional Banach space, and we use
it to compute the Rademacher cotype-2 of a finite-dimensional space using only a
few vectors. In Sect. 19.2.1 we discover how to classify the elements of the unit
ball of L1 “according to the size of the level sets”. In Sect. 19.2.3 we explain, given
a 1-unconditional sequence (ei)i≤N in a Banach space E how to “compute” the
quantity E‖∑i giei‖ when gi are independent Gaussian r.v.s, a further variation
on the fundamental theme of the interplay between the L1, L2 and L∞ norms.
In Sect. 19.3.1 we study the norm of the restriction of an operator from �

q
N to

the subspace generated by a randomly chosen small proportion of the coordinate
vectors, and in Sect. 19.3.2 we use these results to deduce the celebrated results of J.
Bourgain on the Λp problem. Recent results of Gilles Pisier on Sidon sets conclude
this chapter in Sect. 19.4.
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Chapter 2
Gaussian Processes and the Generic
Chaining

2.1 Overview

The overview of this chapter is given in Chap. 1, Sect. 1.7.1. More generally,
Sect. 1.7.n is the overview of Chapter n+ 1.

2.2 Measuring the Size of the Supremum

In this section, we consider a metric space (T , d) and a process (Xt)t∈T . Unless
explicitly specified otherwise (and even when we forget to repeat it), we will always
assume that the process is centered, i.e.,

∀t ∈ T , EXt = 0 . (2.1)

We will measure the “size of the process (Xt )t∈T ” by the quantity E supt∈T Xt .
Why this quantity is a good measure of the “size of the process” is explained in
Lemma 2.2.1.

When T is uncountable, it is not obvious what the quantity E supt∈T Xt means.1

We define it by the following formula

E sup
t∈T

Xt = sup
{
E sup

t∈F
Xt ; F ⊂ T , F finite

}
, (2.2)

where the right-hand side makes sense as soon as each r.v. Xt is integrable. This will
be the case in almost all the situations considered in this book.

1 Such questions are treated in detail, for example, in [53] pages 42–43.
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Let us say that a process (Xt )t∈T is symmetric if it has the same law as the process
(−Xt)t∈T . Almost all the processes we shall consider are symmetric (although this
hypothesis is not necessary for some of our results). The following lemma justifies
using the quantity E supt Xt to measure “the size of a symmetric process”:

Lemma 2.2.1 If the process (Xt)t∈T is symmetric, then

E sup
s,t∈T

|Xs − Xt | = 2E sup
t∈T

Xt .

Proof We note that

sup
s,t∈T

|Xs −Xt | = sup
s,t∈T

(Xs −Xt) = sup
s∈T

Xs + sup
t∈T

(−Xt) ,

and we take expectations.2 �
Exercise 2.2.2 Consider a symmetric process (Xt)t∈T . Given any t0 in T , prove
that

E sup
t∈T

|Xt | ≤ 2E sup
t∈T

Xt + E|Xt0 | ≤ 3E sup
t∈T

|Xt | . (2.3)

The previous exercise is easy, but this need not be always the case. The author
has never taught this material in a classroom, and cannot really evaluate the level of
difficulty of the exercises for a beginner. So please do not feel discouraged if most
of the exercises feel like research problems.3 A sketch of a solution is provided for
almost every exercise. For the exercises which are too difficult, understanding this
very concise sketch is in itself a good exercise. Just try to peek at the solution one
line at a time.

In this book, we often state inequalities about the supremum of a symmetric
process using the quantity E supt∈T Xt simply because this quantity looks typo-
graphically more elegant than the equivalent4 quantity E sups,t∈T |Xs − Xt |. It is
good to remember that when Xt0 = 0 for some t0 ∈ T , (2.3) shows that there is not
so much difference between E supt∈T Xt and E supt∈T |Xt |.

We actually often need to control the tails of the r.v. sups,t∈T |Xs −Xt |, not only
its first moment. Emphasis is given to the first moment because this is the difficult

2 To be really rigorous, we should first consider the case where T is finite and then appeal to (2.2),
but it is better to skip this kind of tedious detail.
3 I had feedback from talented readers who felt that way. Consequently, I did not shy away to state
as “exercises” rather non-trivial material complementing the text while being fully aware that one
has to have achieved a rather complete understanding of the concepts as well as a mastery of the
techniques to solve them.
4 Equivalent does not mean equal; we have been dropping a factor 2 here. Generally speaking,
the methods of this book are not appropriate to find sharp numerical constants, and all the crucial
inequalities are “sharp within a multiplicative constant”.
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part, and once this is achieved, control of higher moments is often provided by the
same arguments.

2.3 The Union Bound and Other Basic Facts

From now on, we assume that the process (Xt )t∈T satisfies the increment condition:

∀u > 0 , P(|Xs − Xt | ≥ u) ≤ 2 exp
(
− u2

2d(s, t)2

)
, (2.4)

where d is a distance on T . In particular this is the case when (Xt )t∈T is a Gaussian
process and d(s, t)2 = E(Xs − Xt)

2. Our goal is to find bounds on E supt∈T Xt

depending on the structure of the metric space (T , d). We will assume that T is
finite, which, as shown by (2.2), does not decrease generality.

Given any t0 in T , the centering hypothesis (2.1) implies

E sup
t∈T

Xt = E sup
t∈T

(Xt −Xt0) . (2.5)

The latter form has the advantage that we now seek estimates for the expectation of
the nonnegative r.v. Y = supt∈T (Xt−Xt0). For such a variable, we have the formula

EY =
∫ ∞

0
P(Y ≥ u) du . (2.6)

Let us note that since the function u �→ P(Y ≥ u) is non-increasing, for any u > 0,
we have the following:

EY ≥ uP(Y ≥ u) . (2.7)

In particular P(Y ≥ u) ≤ EY/u, a very important fact known as Markov’s
inequality. Arguments such as the following one will be of constant use:

Exercise 2.3.1 Consider a r.v. Y ≥ 0 and a > 0. Prove that P(Y ≤ aEY ) ≥
1− 1/a.

Let us stress a consequence of Markov’s inequality: when Y is a kind a random
error, of very small expectation, EY = b2 where b is small. Then most of time Y is
small: P(Y ≤ b) ≥ 1− b.

According to (2.6), it is natural to look for bounds of

P
(

sup
t∈T

(Xt −Xt0) ≥ u
)
. (2.8)
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The first bound that comes to mind is the “union bound”

P
(

sup
t∈T

(Xt −Xt0) ≥ u
)
≤
∑

t∈T
P(Xt −Xt0 ≥ u) . (2.9)

It seems worthwhile to immediately draw some consequences from this bound and
to discuss at leisure a number of other simple, yet fundamental facts. This will take
a bit over three pages, after which we will come back to the main story of bounding
Y . Throughout this work, Δ(T ) denotes the diameter of T ,

Δ(T ) = sup
t1,t2∈T

d(t1, t2) . (2.10)

When we need to make clear which distance we use in the definition of the diameter,
we will write Δ(T , d) rather than Δ(T ). Consequently (2.4) and (2.9) imply

P
(

sup
t∈T

(Xt −Xt0) ≥ u
)
≤ 2 cardT exp

(
− u2

2Δ(T )2

)
. (2.11)

Let us now record a simple yet important computation, which will allow us to use
the information (2.11).

Lemma 2.3.2 Consider a r.v. Y ≥ 0 which satisfies

∀ u > 0 , P(Y ≥ u) ≤ A exp
(
− u2

B2

)
(2.12)

for certain numbers A ≥ 2 and B > 0. Then

EY ≤ LB
√

logA . (2.13)

Here, as in the entire book, L denotes a universal constant.5 We make the
convention that this constant is not necessarily the same on each occurrence (even
in the same equation). This should be remembered at all times. One of the benefits
of the convention (as opposed to writing explicit constants) is to make clear that
one is not interested in getting sharp constants. Getting sharp constants might be
useful for certain applications, but it is a different game.6 The convention is very
convenient, but one needs to get used to it. Now is the time for this, so we urge the
reader to pay the greatest attention to the next exercise.

5 When meeting an unknown notation such as this previous L, the reader might try to look at the
index, where some of the most common notation is recorded.
6 Our methods here are not appropriate for this.
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Exercise 2.3.3

(a) Prove that for x, y ∈ R
+ we have xy − Lx3 ≤ Ly3/2. (Please understand this

statement as follows: given a number L1, there exist a number L2 such that for
all x, y ∈ R we have xy − L1x

1/3 ≤ L2y
3/2.)

(b) Consider a function p(u) ≤ 1 for u ≥ 0. Assume that for u > L, we have
p(u) ≤ L exp(−u2/L). Prove that for all u > 0 we have p(Lu) ≤ 2 exp(−u2).
(Of course, this has to be understood as follows: assume that for a certain
number L1, for u > L1, we have p(u) ≤ L1 exp(−u2/L1). Prove that there
exist a number L2 such that for all u > 0 we have p(L2u) ≤ exp(−u2).)

(c) Consider an integer N ≥ 1. Prove that

NL exp(−(logN)3/2/L) ≤ L exp(−(logN)3/2/L) .

Proof of Lemma 2.3.2 We use (2.6), and we observe that since P(Y ≥ u) ≤ 1, for
any number u0, we have

EY =
∫ ∞

0
P(Y ≥ u)du =

∫ u0

0
P(Y ≥ u)du+

∫ ∞

u0

P(Y ≥ u)du

≤ u0 +
∫ ∞

u0

A exp
(
− u2

B2

)
du

≤ u0 + 1

u0

∫ ∞

u0

uA exp
(
− u2

B2

)
du

= u0 + AB2

2u0
exp

(
− u2

0

B2

)
. (2.14)

The choice of u0 = B
√

logA gives the bound

B
√

logA+ B

2
√

logA
≤ LB

√
logA

since A ≥ 2. �
Next, recalling that the process (Xt)t∈T is assumed to satisfy (2.4) throughout

the section, we claim that

E sup
t∈T

Xt ≤ LΔ(T )
√

log card T . (2.15)

Indeed, this is obvious if cardT = 1. If cardT ≥ 2, it follows from (2.11) that (2.12)
holds for Y = supt∈T (Xt − Xt0) with A = 2 cardT and B = Δ(T ), and the result
follows from (2.13) since log(2 cardT ) ≤ 2 log cardT and EY = E supt∈T Xt .
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The following special case is fundamental:

Lemma 2.3.4 If (gk)k≥1 are standard Gaussian r.v.s, then

E sup
k≤N

gk ≤ L
√

logN . (2.16)

Exercise 2.3.5

(a) Prove that (2.16) holds for any r.v.s gk which satisfy

P(gk ≥ u) ≤ 2 exp
(
− u2

2

)
(2.17)

for u > 0.
(b) For N ≥ 2, construct N centered r.v.s (gk)k≤N satisfying (2.17) and taking only

the values 0,±√logN and for which E supk≤N gk ≥ √
logN/L. (You are not

yet asked to make these r.v.s independent.)
(c) After learning (2.18), solve (b) with the further requirement that the r.v.s gk are

independent. If this is too hard, look at Exercise 2.3.7 (b).

This is taking us a bit ahead, but an equally fundamental fact is that when the r.v.s
(gk) are jointly Gaussian and “significantly different from each other”, i.e., E(gk −
g�)

2 ≥ a2 > 0 for k �= �, the bound (2.16) can be reversed, i.e., E supk≤N gk ≥
a
√

logN/L, a fact known as Sudakov’s minoration. Sudakov’s minoration is a non-
trivial fact, and to understand it, it should be really useful to solve Exercise 2.3.7.
However, before that, let us point out a simple fact, which will be used many times.

Exercise 2.3.6 Consider independent events (Ak)k≥1. Prove that

P
( ⋃

k≤N
Ak

)
≥ 1− exp

(
−
∑

k≤N
P(Ak)

)
. (2.18)

In words, independent events such that the sum of their probabilities is small are
basically disjoint.

Exercise 2.3.7

(a) Consider independent r.v.s Yk ≥ 0 and u > 0 with

∑

k≤N
P(Yk ≥ u) ≥ 1 . (2.19)

Prove that

E sup
k≤N

Yk ≥ u

L
.

Hint: Use (2.18) to prove that P(supk≤N Yk ≥ u) ≥ 1/L.
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(b) We assume (2.19), but now Yk need not be ≥ 0. Prove that

E sup
k≤N

Yk ≥ u

L
− E|Y1| .

Hint: Observe that for each event Ω , we have E1Ω supk Yk ≥ −E|Y1|.
(c) Prove that if (gk)k≥1 are independent standard Gaussian r.v.s, then

E supk≤N gk ≥ √logN/L.

Before we go back to our main story, we consider in detail the consequences
of an “exponential decay of tails” such as in (2.12). This is the point of the next
exercise.

Exercise 2.3.8

(a) Assume that for a certain B > 0, the r.v. Y ≥ 0 satisfies

∀ u > 0 , P(Y ≥ u) ≤ 2 exp
(
− u

B

)
. (2.20)

Prove that

E exp
( Y

2B

)
≤ L . (2.21)

Prove that for x, a > 0 one has (x/a)a ≤ exp x. Use this for a = p and
x = Y/2B to deduce from (2.21) that for p ≥ 1 one has

(EYp)1/p ≤ LpB . (2.22)

(b) Assuming now that for a certain B > 0 one has

∀ u > 0 , P(Y ≥ u) ≤ 2 exp
(
− u2

B2

)
, (2.23)

prove similarly (or deduce from (a)) that E exp(Y 2/2B2) ≤ L and that for
p ≥ 1 one has

(EYp)1/p ≤ LB
√
p . (2.24)

(c) Consider a r.v. Y ≥ 0 and a number B > 0. Assuming that for p ≥ 1 we have
(EYp)1/p ≤ Bp, prove that for u > 0 we have P(Y > u) ≤ 2 exp(−u/(LB)).
Assuming that for each p ≥ 1 we have (EYp)1/p ≤ B

√
p, prove that for u > 0

we have P(Y > u) ≤ 2 exp(−u2/(LB2)).

In words, (2.22) states that “as p increases, the Lp norm of an exponentially
integrable r.v. does not grow faster than p”, and (2.24) asserts that if the square
of the r.v. is exponentially integrable, then its Lp norm does not grow faster than
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√
p. These two statements are closely related. More generally, it is very classical to

relate the size of the tails of a r.v. with the rate of growth of its Lp norm. This is not
explicitly used in the sequel, but is good to know as background information. As the
following shows, (2.24) provides the correct rate of growth in the case of Gaussian
r.v.s.

Exercise 2.3.9 If g is a standard Gaussian r.v., it follows from (2.24) that for p ≥ 1,
one has (E|g|p)1/p ≤ L

√
p. Prove one has also

(E|g|p)1/p ≥
√
p

L
. (2.25)

One knows how to compute exactly E|g|p, from which one can deduce (2.25). You
are, however, asked to provide a proof in the spirit of this work by deducing (2.25)
solely from the information that, say, for u > 0, we have (choosing on purpose
crude constants) P(|g| ≥ u) ≥ exp(−u2/3)/100.

You will find basically no exact computations in this book. The aim is different.
We study quantities which are far too complicated to be computed exactly, and we
try to bound them from above and sometimes from below by simpler quantities with
as little a gap as possible between the upper and the lower bounds. Ideally the gap
is only a (universal) multiplicative constant.

2.4 The Generic Chaining

We go back to our main story. The bound (2.9) (and hence (2.15)) will be effective
if the variables Xt − Xt0 are rather uncorrelated (and if there are not too many of
them). But it will be a disaster if many of the variables (Xt )t∈T are nearly identical.
Thus, it seems a good idea to gather those variables Xt which are nearly identical.
To do this, we consider a subset T1 of T , and for t in T , we consider a point π1(t)

in T1, which we think of as a (first) approximation of t . The elements of T which
correspond to the same point π1(t) are, at this level of approximation, considered as
identical. We then write

Xt −Xt0 = Xt −Xπ1(t) +Xπ1(t) −Xt0 . (2.26)

The idea is that it will be effective to use (2.9) for the variables Xπ1(t)−Xt0 , because
there are not too many of them and, if we have done a good job at finding π1(t), they
are rather different from each other (at least in some global sense). On the other
hand, since π1(t) is an approximation of t , the variables Xt − Xπ1(t) are “smaller”
than the original variables Xt − Xt0 , so that their supremum should be easier to
handle. The procedure will then be iterated.

Let us set up the general procedure. For n ≥ 0, we consider a subset Tn of T , and
for t ∈ T , we consider πn(t) in Tn. (The idea is that the points πn(t) are successive
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approximations of t .) We assume that T0 consists of a single element t0, so that
π0(t) = t0 for each t in T . The fundamental relation is

Xt − Xt0 =
∑

n≥1

(
Xπn(t) −Xπn−1(t)

)
, (2.27)

which holds provided we arrange that πn(t) = t for n large enough, in which case
the series is actually a finite sum. Relation (2.27) decomposes the increments of the
process Xt −Xt0 along the “chain” (πn(t))n≥0 (and this is why this method is called
“chaining”).

It will be convenient to control the set Tn through its cardinality with the
condition

cardTn ≤ Nn (2.28)

where

N0 = 1 ; Nn = 22n if n ≥ 1 . (2.29)

Notation (2.29) will be used throughout the book. It is at this stage that the procedure
to control Tn differs from the traditional one, and it is the crucial point of the generic
chaining method.

It is good to notice right away that
√

logNn is about 2n/2, which will explain
the ubiquity of this latter quantity. The occurrence of the function

√
log x itself is

related to the fact that it is the inverse of the function exp(x2) and that the function
exp(−x2) governs the size of the tails of a Gaussian r.v. Let us also observe the
fundamental inequality

N2
n ≤ Nn+1 ,

which makes it very convenient to work with this sequence.
Since πn(t) approximates t , it is natural to assume that7

d(t, πn(t)) = d(t, Tn) := inf
s∈Tn

d(t, s) . (2.30)

For u > 0, (2.4) implies

P
(|Xπn(t) −Xπn−1(t)| ≥ u2n/2d(πn(t), πn−1(t))

) ≤ 2 exp(−u22n−1) .

7 The notation := below stresses that this is a definition, so that you should not worry that your
memory failed and that you did not see this before.



30 2 Gaussian Processes and the Generic Chaining

The number of possible pairs (πn(t), πn−1(t)) is bounded by

card Tn · card Tn−1 ≤ NnNn−1 ≤ Nn+1 = 22n+1
.

We define the (favorable) event Ωu,n by

∀t , |Xπn(t) −Xπn−1(t)| ≤ u2n/2d(πn(t), πn−1(t)) . (2.31)

and we define Ωu =⋂n≥1 Ωu,n. Then

p(u) := P(Ωc
u) ≤

∑

n≥1

P(Ωc
u,n) ≤

∑

n≥1

2 · 22n+1
exp(−u22n−1) . (2.32)

Here again, at the crucial step, we have used the union bound P(Ωc
u) ≤∑

n≥1 P(Ω
c
u,n). When Ωu occurs, (2.27) yields

|Xt −Xt0 | ≤ u
∑

n≥1

2n/2d(πn(t), πn−1(t)) ,

so that

sup
t∈T

|Xt −Xt0 | ≤ uS

where

S := sup
t∈T

∑

n≥1

2n/2d(πn(t), πn−1(t)) .

Thus

P
(

sup
t∈T

|Xt −Xt0 | > uS
)
≤ p(u) .

For n ≥ 1 and u ≥ 3, we have

u22n−1 ≥ u2

2
+ u22n−2 ≥ u2

2
+ 2n+1 ,

from which it follows that

p(u) ≤ L exp
(
− u2

2

)
.

We observe here that since p(u) ≤ 1, the previous inequality holds not only for
u ≥ 3 but also for u > 0, because 1 ≤ exp(9/2) exp(−u2/2) for u ≤ 3. This type
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of argument (i.e., changing the universal constant in front of the exponential, cf.
Exercise (2.3.3)(b)) will be used repeatedly. Therefore,

P
(

sup
t∈T

|Xt − Xt0| > uS
)
≤ L exp

(
− u2

2

)
. (2.33)

In particular (2.33) implies

E sup
t∈T

Xt ≤ LS .

The triangle inequality yields

d(πn(t), πn−1(t)) ≤ d(t, πn(t))+ d(t, πn−1(t)) = d(t, Tn)+ d(t, Tn−1) ,

so that (making the change of variable n = n′ + 1 in the second sum below)

S ≤ sup
t∈T

∑

n≥1

2n/2d(t, Tn)+ sup
t∈T

∑

n≥1

2n/2d(t, Tn−1) ≤ 3 sup
t∈T

∑

n≥0

2n/2d(t, Tn) ,

and we have proved the fundamental bound

E sup
t∈T

Xt ≤ L sup
t∈T

∑

n≥0

2n/2d(t, Tn) . (2.34)

Now, how do we construct the sets Tn? It is obvious that we should try to make
the right-hand side of (2.34) small, but this is obvious only because we have used
an approach which naturally leads to this bound. In the next section, we investigate
how this was traditionally done. Before this, we urge the reader to fully understand
the next exercise. It will be crucial to understand a typical case where the traditional
methods are not effective.

Exercise 2.4.1 Consider a countable metric space, T = {t1, t2, . . .}. Assume that
for each i ≥ 2, we have d(t1, ti ) ≤ 1/

√
log i. Prove that if Tn = {t1, t2, . . . , tNn},

then for each t ∈ T , we have
∑

n≥0 2n/2d(t, Tn) ≤ L.

We end this section by reviewing at a high level the scheme of the previous proof
(which will be used again and again). The goal is to bound EY where Y is a r.v.≥ 0
(here Y = supt (Xt − Xt0).) The method consists of two steps:

• Given a parameter u ≥ 0, one identifies a “good set” Ωu, where some undesirable
events do not happen. As u becomes large, P(Ωc

u) becomes small.
• When Ωu occurs, we bound Y , say Y ≤ f (u) where f is an increasing function

on R
+.
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One then obtains the bound

EY =
∫ ∞

0
P(Y ≥ u)du ≤ f (0)+

∫ ∞

f (0)
P(Y ≥ u)du

= f (0)+
∫ ∞

0
f ′(u)P(Y ≥ f (u))du , (2.35)

where we have used a change of variable in the last equality. Now, since Y ≤ f (u)

on Ωu, we have P(Y ≥ f (u)) ≤ P(Ωc
u) and finally

EY ≤ f (0)+
∫ ∞

0
f ′(u)P(Ωc

u)du .

In practice, we will always have P(Ωc
u) ≤ L exp(−u/L) and f (u) = A+ uαB,

yielding the bound EY ≤ A+K(α)B.

2.5 Entropy Numbers

For a number of years, chaining was systematically performed (as in Sect. 1.4) by
choosing the sets Tn so that supt∈T d(t, Tn) is as small as possible for card Tn ≤ Nn.
We define

en(T ) = en(T , d) = inf
Tn⊂T ,card Tn≤Nn

sup
t∈T

d(t, Tn) , (2.36)

where the infimum is taken over all subsets Tn of T with card Tn ≤ Nn. (Since
here T is finite, the infimum is actually a minimum.) We call the numbers en(T ) the
entropy numbers.

Let us recall that in a metric space, a (closed) ball is a set of the type B(t, r) =
{s ∈ T ; d(s, t) ≤ r}. Balls are basic sets in a metric space and will be of constant
use. It should be obvious to reformulate (2.36) as follows: en(T ) is the infimum of
the set of numbers r ≥ 0 such that T can be covered by ≤ Nn balls of radius ≤ r

(the set Tn in (2.36) being the set of centers of these balls).
Definition (2.36) is not consistent with the conventions of operator theory, which

uses e2n to denote what we call en.8 When T is infinite, the numbers en(T ) are also
defined by (2.36) but are not always finite (e.g., when T = R).

Let us note that since N0 = 1,

Δ(T )

2
≤ e0(T ) ≤ Δ(T ) . (2.37)

8 We can’t help it if operator theory gets it wrong.
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Recalling that T is finite, let us then choose for each n a subset Tn of T with
card Tn ≤ Nn and en(T ) = supt∈T d(t, Tn). Since d(t, Tn) ≤ en(T ) for each
t , (2.34) implies the following:

Proposition 2.5.1 (Dudley’s Entropy Bound [29]) Under the increment condi-
tion (2.4), it holds that

E sup
t∈T

Xt ≤ L
∑

n≥0

2n/2en(T ) . (2.38)

We proved this bound only when T is finite, but using (2.2), it also extends to the
case where T is infinite, as is shown by the following easy fact:

Lemma 2.5.2 If U is a subset of T , we have en(U) ≤ 2en(T ).

The point here is that in the definition of en(U), we insist that the balls are centered
in U , not in T .

Proof Indeed, if a > en(T ), by definition one can cover T by Nn balls (for the
distance d) with radius a, and the intersections of these balls with U are of diameter
≤ 2a, so U can be covered by Nn balls in U with radius 2a. �
Exercise 2.5.3 Prove that the factor 2 in the inequality en(U) ≤ 2en(T ) cannot be
improved even if n = 0.

Dudley’s entropy bound is usually formulated using the covering numbers of
Definition 1.4.1. These relate to the entropy numbers by the formula

en(T ) = inf{ε ; N(T , d, ε) ≤ Nn} .

Indeed, it is obvious by definition of en(T ) that for ε > en(T ), we have
N(T , d, ε) ≤ Nn and that if N(T , d, ε) ≤ Nn, we have en(T ) ≤ ε. Consequently,

ε < en(T ) ⇒ N(T , d, ε) > Nn

⇒ N(T , d, ε) ≥ 1+Nn .

Therefore,

√
log(1+Nn)(en(T )− en+1(T )) ≤

∫ en(T )

en+1(T )

√
logN(T , d, ε) dε .

Since log(1+Nn) ≥ 2n log 2 for n ≥ 0, summation over n ≥ 0 yields

√
log 2

∑

n≥0

2n/2(en(T )− en+1(T )) ≤
∫ e0(T )

0

√
logN(T , d, ε) dε . (2.39)
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Now,

∑

n≥0

2n/2(en(T )− en+1(T )) =
∑

n≥0

2n/2en(T )−
∑

n≥1

2(n−1)/2en(T )

≥
(

1− 1√
2

)∑

n≥0

2n/2en(T ) ,

so (2.39) yields

∑

n≥0

2n/2en(T ) ≤ L

∫ e0(T )

0

√
logN(T , d, ε) dε . (2.40)

Hence Dudley’s bound now appears in the familiar form

E sup
t∈T

Xt ≤ L

∫ ∞

0

√
logN(T , d, ε) dε . (2.41)

Here, since log 1 = 0, the integral takes place in fact over 0 ≤ ε ≤ e0(T ). The
right-hand side is often called Dudley’s entropy integral.

Exercise 2.5.4 Prove that
∫ ∞

0

√
logN(T , d, ε) dε ≤ L

∑

n≥0

2n/2en(T ) ,

showing that (2.38) is not an improvement over (2.41).

Exercise 2.5.5 Assume that for each 0 < ε < A and some α > 0, we have
logN(T , d, ε) ≤ (A/ε)α . Prove that en(T ) ≤ K(α)A2−n/α.

Here K(α) is a number depending only on α.9 This and similar notation are used
throughout the book. It is understood that such numbers need not be the same on
every occurrence, and it would help to remember this at all times. The difference
between the notations K and L is that L is a universal constant, i.e., a number that
do not depend on anything, while K might depend on some parameters, such as α
here.

When writing a bound such as (2.41), the immediate question is how sharp is
it? The word “sharp” is commonly used, even though people do not agree on what
it means exactly. Let us say that a bound of the type A ≤ LB can be reversed
if it is true that B ≤ LA. We are not concerned with the value of the universal

9 It just happens that in this particular case K(α) = 1 works, but we typically do not care about the
precise dependence of K(α) on α.
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constants.10 Inequalities which can be reversed are our best possible goal. Then, in
any circumstance, A and B are of the same order.

We give now a simple (and classical) example that illustrates well the difference
between Dudley’s bound (2.38) and the bound (2.34) and which shows in particular
that Dudley’s bound cannot be reversed. Consider an independent sequence (gi)i≥1
of standard Gaussian r.v.s. Set X1 = 0, and for i ≥ 2, set

Xi = gi√
log i

. (2.42)

Consider an integer s ≥ 3 and the process (Xi)1≤i≤Ns so the index set is T =
{1, 2, . . . , Ns}. The distance d associated with the process, given by d(i, j)2 =
E(Xs −Xt)

2, satisfies for i, j ≥ 2, i �= j ,

1
√

log(min(i, j))
≤ d(i, j) ≤ 2

√
log(min(i, j))

. (2.43)

Consider 1 ≤ n ≤ s−1 and Tn ⊂ T with card Tn = Nn. There exists i ≤ Nn+1
with i /∈ Tn. Then (2.43) implies that d(i, j) ≥ 2−n/2/L for j ∈ Tn. This proves that
the balls of radius 2−n/2/L centered on Tn do not cover T , so that en(T ) ≥ 2−n/2/L.
Therefore,

∑

n

2n/2en(T ) ≥ s − 1

L
. (2.44)

In the reverse direction, since for i ≥ 1 we have d(1, i) ≤ 1/
√

log i, Exercise
2.4.1 proves that the bound (2.34) is ≤ L. Thus, the bound (2.38) is worse than the
bound (2.34) by a factor about s.

Exercise 2.5.6 Prove that when T is finite, the bound (2.41) cannot be worse
than (2.34) by a factor greater than about log log card T . This shows that the previous
example is in a sense extremal. Hint: Use 2n/2en(T ) ≤ L supt∈T

∑
n≥0 2n/2d(t, Tn)

and en(T ) = 0 if Nn ≥ cardT .

How does one estimate covering numbers (or, equivalently, entropy numbers)?
Let us first stress a trivial but nonetheless fundamental fact.

Lemma 2.5.7 Consider a number ε > 0 and a subset W of T maximal with respect
to the property

s, t ∈ W ⇒ d(s, t) > ε .

Then, N(T , d, ε) ≤ cardW .

10 Not that these values are unimportant, but our methods are not appropriate for this.
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Proof Since W is maximum, the balls of radius a centered at the points of W

cover T . �
Exercise 2.5.8 Consider a probability measure μ on T , a number ε > 0 and a
number a. Let U = {t ∈ T ;μ(B(t, ε)) ≥ a}. Prove that N(U, d, 2ε) ≤ 1/a.

The next exercise introduces the reader to “volume estimates”, a simple yet
fundamental method for this purpose. It deserves to be fully understood. If this
exercise is too hard, you can find all the details below in the proof of Lemma 2.13.7.

Exercise 2.5.9

(a) If (T , d) is a metric space, define the packing number N∗(T , d, ε) as the largest
integer N such that T contains N points with mutual distances ≥ ε. Prove
that N(T , d, ε) ≤ N∗(T , d, ε). Prove that if ε′ > 2ε, then N∗(T , d, ε′) ≤
N(T , d, ε).

(b) Consider a distance d on R
k which arises from a norm ‖ · ‖, d(x, y) = ‖x −

y‖ and denote by B the unit ball of center 0. Let us denote by Vol(A) the k-
dimensional volume of a subset A of Rk . By comparing volumes, prove that for
any subset A of Rk ,

N(A, d, ε) ≥ Vol(A)

Vol(εB)
(2.45)

and

N(A, d, 2ε) ≤ N∗(A, d, 2ε) ≤ Vol(A+ εB)

Vol(εB)
. (2.46)

(c) Conclude that

(1

ε

)k ≤ N(B, d, ε) ≤
(2+ ε

ε

)k
. (2.47)

(d) Use (c) to find estimates of en(B) of the correct order for each value of n.
Hint: en(B) is about 2−2n/k . This decreases very fast as n increases. Estimate
Dudley’s bound for B provided with the distance d .

(e) Prove that if T is a subset of Rk and if n0 is any integer, then for n ≥ n0, one
has en+1(T ) ≤ L2−2n/ken0(T ). Hint: Cover T by Nn0 balls of radius 2en0(T ),
and cover each of these by balls of smaller radius using (d).

(f) This part provides a generalization of (2.45) and (2.46) to a more abstract setting
but with the same proofs. Consider a metric space (T , d) and a positive measure
μ on T such that all balls of a given radius have the same measure, μ(B(t, ε)) =
ϕ(ε) for each ε > 0 and each t ∈ T . For a subset A of T and ε > 0, let
Aε = {t ∈ T ; d(t, A) ≤ ε}, where d(t, A) = infs∈A d(t, s). Prove that

μ(A)

ϕ(2ε)
≤ N(A, d, 2ε) ≤ μ(Aε)

ϕ(ε)
.
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There are many simple situations where Dudley’s bound is not of the correct
order. We gave a first example on page 35. We give such another example in
Exercise 2.5.11. There the set T is particularly appealing: it is a simplex in R

m.
Yet other examples based on fundamental geometry (ellipsoids in R

k) are explained
in Sect. 2.13.

The result of the following exercise is very useful in all kinds of examples.

Exercise 2.5.10 Consider two integers k,m with k ≤ m/4. Assume for simplicity
that k is even.

(a) Prove that

∑

0≤�≤k/2

(
m

�

)

≤ 2
(2k

m

)k/2
(
m

k

)

. (2.48)

(b) Denote by I the class of subsets of {1, . . . ,m} of cardinality k. Prove that you
can find in I a familyF such that for I, J ∈ F one has card(I\J )∪(J\I) ≥ k/2
and cardF ≥ (m/(2k))k/2/2. Hint: Use (a) and part (f) of Exercise 2.5.9 for μ
the counting measure on I. Warning: This is not so easy.

Exercise 2.5.11 Consider an integer m and an i.i.d. standard Gaussian sequence
(gi)i≤m. For t = (ti)i≤m ∈ R

m, let Xt = ∑
i≤m tigi . This is called the canonical

Gaussian process on R
m. Its associated distance is the Euclidean distance on R

m. It
will be much used later. Consider the set

T =
{
(ti)i≤m ∈ R

m ; ti ≥ 0 ,
∑

i≤m
ti = 1

}
, (2.49)

the convex hull of the canonical basis. By (2.16), we have E supt∈T Xt =
E supi≤m gi ≤ L

√
logm. Prove, however, that the right-hand side of (2.41) is

≥ (logm)3/2/L. (Hint: For an integer k ≤ m, consider the subset Tk of T consisting
of sequences t = (ti )i≤m ∈ T for which ti ∈ {0, 1/k}, so that t ∈ Tk is determined
by the set I = {i ≤ m ; ti = 1/k} and card I = k. Using Exercise 2.5.10, prove
that logN(Tk, d, 1/(L

√
k)) ≥ k log(em/k)/L and conclude.11) Thus, in this case,

Dudley’s bound is off by a multiplicative factor of about logm. Exercise 2.7.9 will
show that in R

m the situation cannot be worse than this.

11 In case you wonder why e occurs in this formula, it is just to take care of the case where k is
nearly m. This term is not needed here, but is important in upper bounds of the same nature that
we will use below.
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2.6 Rolling Up Our Sleeves: Chaining in the Simplex

The bound (2.34) seems to be genuinely better than the bound (2.38) because when
going from (2.34) to (2.38) we have used the somewhat brutal inequality:

sup
t∈T

∑

n≥0

2n/2d(t, Tn) ≤
∑

n≥0

2n/2 sup
t∈T

d(t, Tn) .

The method leading to the bound (2.34) is probably the most important idea
of this work. The fact that it appears now so naturally does not reflect the history
of the subject, but rather that the proper approach is being used. When using this
bound, we will choose the sets Tn in order to minimize the right-hand side of (2.34)
instead of choosing them as in (2.36). As we will demonstrate later, this provides
essentially the best possible bound for E supt∈T Xt . It is remarkable that despite the
fact that this result holds in complete generality, it is a non-trivial task to find sets Tn
witnessing this, even in very simple situations. In the present situation, we perform
this task by an explicit construction for the set T of (2.49).

Proposition 2.6.1 There exist sets Tn ⊂ R
m with cardTn ≤ Nn such that

sup
t∈T

∑

n≥0

2n/2d(t, Tn) ≤ L
√

logm (= LE sup
t∈T

Xt ).

Of course here d is the Euclidean distance in R
m. The reader may try to find these

sets herself before reading the rest of this section, as there seems to be no better way
to get convinced of the depth of the present theory. The sets Tn are not subsets of T .
Please figure out by yourself how to correct this.12

Lemma 2.6.2 For each t ∈ T , we can find a sequence (p(n, t))n≥0 of integers
0 ≤ p(n, t) ≤ 2n with the following properties:

∑

n≥0

2n−p(n,t) ≤ L , (2.50)

∀n ≥ 0 , p(n+ 1, t) ≤ p(n, t) + 2 , (2.51)

card
{
i ≤ m ; ti ≥ 2−p(n,t)

}
< 2n . (2.52)

Proof There is no loss of generality to assume that the sequence (ti)i≤m is non-
increasing. We set ti = 0 for i > m. Then for any n ≥ 1 and 2n−1 < i ≤ 2n,
we have ti ≥ t2n , so that 2n−1t2n ≤ ∑

2n−1<i≤2n ti . By summation over n ≥ 1,
we obtain

∑
n≥1 2nt2n ≤ 2, and thus

∑
n≥0 2nt2n ≤ 3. For n ≥ 0, consider the

12 The argument can be found in Sect. 2.14.
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largest integer q(n, t) ≤ 2n such that 2−q(n,t) > t2n . Thus, 2−q(n,t)−1 ≤ t2n when
q < 2n. In any case, 2−q(n,t) ≤ 2t2n + 2−2n, and thus

∑
n≥0 2n−q(n,t) ≤ L. Also

if ti ≥ 2−q(n,t) > t2n , then i < 2n. In particular card{i ≤ m; ti ≥ 2−q(t,n)} < 2n.
Finally we define

p(n, t) = min
{
q(k, t)+ 2(n− k); 0 ≤ k ≤ n

}
.

Taking k = n shows that p(n, t) ≤ q(n, t) ≤ 2n, implying (2.52). If k ≤ n is
such that p(n, t) = q(k, t) + 2(n − k), then p(n + 1, t) ≤ q(k, t) + 2(n + 1 −
k) = p(n, t) + 2, proving (2.51). Also, since 2n−p(n,t) ≤∑k≤n 2n−2(n−k)−q(k,t) =
∑

k≤n 2k−n+(k−q(k,t)), we have

∑

n≥0

2n−p(n,t) ≤
∑

k≥0

2k−q(k,t)
∑

n≥k
2k−n ≤ L . �

Given a set I ⊂ {1, . . . ,m} and a integer p, we denote by VI,p the set of elements
u = (ui)i≤m ∈ R

m such that ui = 0 if i �∈ I and ui = ri2−p if i ∈ I , where ri
is an integer 0 ≤ ri ≤ 3. Then cardVI,p ≤ 4card I . For n ≥ 1, we denote by Vn

the union of all the sets VI,p for card I ≤ 2n and 0 ≤ p ≤ 2n. Crudely we have
cardVn ≤ mL2n . We set V0 = {0} and for n ≥ 1 we denote by Un the set of all sums∑

0≤k≤n xk where xk ∈ Vk . Then cardUn ≤ mL2n .13

Lemma 2.6.3 Consider t ∈ T and the sequence (p(n, t))n≥0 constructed in
Lemma 2.6.2. Then for each n, we can write t = u(n) + v(n) where u(n) ∈ Un

and where v(n) = (v(n)i)i≤m satisfies 0 ≤ v(n)i ≤ min(ti, 2−p(n,t)).

Proof The proof is by induction over n. For n = 0, we set u(0) = 0, v(0) = t . For
the induction from n to n + 1, consider the set I = {i ≤ m; v(n)i > 2−p(n+1,t )}.
Since v(n)i ≤ ti , it follows from (2.52) that card I < 2n+1. For each i ∈ I , let
ri be the largest integer with ri2−p(n+1,t ) < v(n)i so that v(n)i − ri2−p(n+1,t ) ≤
2−p(n+1,t ). Since v(n)i ≤ 2−p(n,t) by induction and since p(n+ 1, t) ≤ p(n, t)+ 2
by (2.51), we have ri ≤ 3. Define u = (ui)i≤m ∈ R

m by ui = ri2−p(n+1,t ) if i ∈ I

and ui = 0 otherwise. Then, u ∈ VI,p(n+1,t ) ⊂ Vn. Thus, t = u(n+ 1)+ v(n + 1)
where u(n+ 1) := u(n)+u ∈ Un+1 and v(n+ 1) := v(n)−u satisfies v(n+ 1)i ≤
min(ti, 2−p(n+1,t )). �
Lemma 2.6.4 For each t ∈ T , we have

∑
n≥0 2n/2d(t, Un) ≤ L.

Proof Consider the sequence (v(n))n≥0 constructed in Lemma 2.6.3, so that
d(t, Un) ≤ ‖v(n)‖2 since t = u(n) + v(n). Let In = {i ≤ m; ti ≥ 2−p(n,t)}
so that by (2.52) we have card In < 2n. For n ≥ 1, set Jn = In \ In−1 so
that for i ∈ Jn, we have ti < 2−p(n−1,t ). Then, ‖v(n)‖2

2 = ∑
i≤m v(n)2

i =
∑

i∈In v(n)
2
i +

∑
k>n

∑
i∈Jk v(n)

2
i . Since v(n)i ≤ 2−p(n,t) and card In ≤ 2n, the

13 Controlling the cardinality of Un is the key point.
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first sum is≤ 2n−2p(n,t). Since v(n)i ≤ ti ≤ 2−p(k−1,t ) for i ∈ Jk and card Jk ≤ 2k ,
we have

∑
i∈Jk v(n)

2
i ≤ 2k−2p(k−1,t ). Thus, ‖v(n)‖2

2 ≤
∑

k≥n 2k−2p(k−1,t ) so that

‖v(n)‖2 ≤∑k≥n 2k/2−p(k−1,t ) and

∑

n≥1

2n/2‖v(n)‖2 ≤
∑

n≥1

∑

k≥n
2n/2+k/2−p(k−1,t ) =

∑

k≥1

2k/2−p(k−1,t )
∑

n≤k
2n/2

≤ L
∑

k≥1

2k−p(k−1,t ) ≤ L , (2.53)

where we have used (2.50) in the last inequality. �
Proof of Proposition 2.6.1 Consider the smallest integer k0 with m ≤ Nk0 so that

2k0/2 ≤ L
√

logm. Observe also that m2n ≤ (22k0 )2n = 22k0+n = Nk0+n. Thus,
cardUn ≤ mL2n ≤ Nk0+n+k1 where k1 is a universal constant. For n ≥ k0 + k1 + 1,
we set Tn = Un−n0−k1 , so that card Tn ≤ Nn. For n ≤ k0 + k1, we set Tn = {0}.
Finally, given t ∈ T (and keeping in mind that k1 is a universal constant), we have

∑

n≥0

2n/2d(t, Tn) ≤ L2k0/2 +
∑

n≥k0+k1+1

2n/2d(t, Tn)

and, using Lemma 2.6.4 in the last inequality,

∑

n≥k0+k1+1

2n/2d(t, Tn) =
∑

n≥k0+k1+1

2n/2d(t, Un−k0−k1)

=
∑

n≥1

2(n+k0+k1)/2d(t, Un) ≤ L2k0/2 . �

2.7 Admissible Sequences of Partitions

The idea behind the bound (2.34) admits a technically more convenient formula-
tion.14

Definition 2.7.1 Given a set T , an admissible sequence is an increasing sequence
(An)n≥0 of partitions of T such that cardAn ≤ Nn, i.e., cardA0 = 1 and cardAn ≤
22n for n ≥ 1.

14 We will demonstrate why this is the case only later, in Theorem 4.5.13.
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By an increasing sequence of partitions, we mean that every set of An+1 is
contained in a set of An. Admissible sequences of partitions will be constructed
recursively, by breaking each element C of An into at most Nn pieces, obtaining
then a partition An+1 of T consisting of at most N2

n ≤ Nn+1 pieces.
Throughout the book, we denote by An(t) the unique element of An which

contains t . The double exponential in the definition of Nn (see (2.29)) occurs
simply since for our purposes the proper measure of the “size” of a partition A
is log cardA. This double exponential ensures that “the size of the partition An

doubles at every step”. This offers a number of technical advantages which will
become clear gradually.

Theorem 2.7.2 (The Generic Chaining Bound) Under the increment condi-
tion (2.4) (and if EXt = 0 for each t), then for each admissible sequence (An)

we have

E sup
t∈T

Xt ≤ L sup
t∈T

∑

n≥0

2n/2Δ(An(t)) . (2.54)

Here as always, Δ(An(t)) denotes the diameter of An(t) for d . One could think
that (2.54) could be much worse than (2.34), but it will turn out that this is not the
case when the sequence (An) is appropriately chosen.

Proof We may assume T to be finite. We construct a subset Tn of T by taking
exactly one point in each set A of An. Then for t ∈ T and n ≥ 0, we have d(t, Tn) ≤
Δ(An(t)) and the result follows from (2.34). �
Definition 2.7.3 Given α > 0 and a metric space (T , d) (that need not be finite),
we define

γα(T , d) = inf sup
t∈T

∑

n≥0

2n/αΔ(An(t)) ,

where the infimum is taken over all admissible sequences.

It is useful to observe that since A0(t) = T , we have γα(T , d) ≥ Δ(T ). The most
important cases by far are α = 2 and α = 1. For the time being, we need only the
case α = 2. The case α = 1 is first met in Theorem 4.5.13, although more general
functionals occur first in Definition 4.5.

Exercise 2.7.4 Prove that if d ≤ Bd ′, then γ2(T , d) ≤ Bγ2(T , d
′).

Exercise 2.7.5 Prove that γα(T , d) ≤ K(α)Δ(T )(log cardT )1/α when T is finite.
Hint: Ensure that Δ(An(t)) = 0 if Nn ≥ card T .

A large part of our arguments will take place in abstract metric spaces, and this
may represent an obstacle to the reader who has never thought about this. Therefore,
we cannot recommend too highly the following exercise:
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Exercise 2.7.6

(a) Consider a metric space (T , d), and assume that for each n ≥ 0, you are given a
coveringBn of T with cardBn ≤ Nn. Prove that you can construct an admissible
sequence (An) of partitions of T with the following property:

∀n ≥ 1 , ∀A ∈ An , ∃B ∈ Bn−1 , A ⊂ B . (2.55)

(b) Prove that for any metric space (T , d), we have

γ2(T , d) ≤ L
∑

n≥0

2n/2en(T ) . (2.56)

The following exercise explains one of the reasons admissible sequences of sets are
so convenient: given two such sequences, we can construct a third sequence which
merges the good properties of the two sequences.

Exercise 2.7.7 Consider a set T and two admissible sequences (Bn) and (Cn).
Prove that there is an admissible sequence (An) such that

∀n ≥ 1 , ∀A ∈ An , ∃B ∈ Bn−1 , A ⊂ B , ∃C ∈ Cn−1, A ⊂ C .

The following simple property should be clear in the reader’s mind:

Exercise 2.7.8

(a) Prove that for n ≥ 0, we have

2n/2en(T ) ≤ Lγ2(T , d) . (2.57)

Hint: Observe that 2n/2 max{Δ(A);A ∈ An} ≤ supt∈T
∑

n≥0 2n/2Δ(An(t)).
(b) Prove that, equivalently, for ε > 0, we have

ε
√

logN(T , d, ε) ≤ Lγ2(T , d) .

The reader should compare (2.57) with (2.56).

Exercise 2.7.9 Use (2.57) and Exercise 2.5.9 (e) to prove that if T ⊂ R
m, then

∑

n≥0

2n/2en(T ) ≤ L log(m+ 1)γ2(T , d) . (2.58)

In words, Dudley’s bound is never off by more than a factor of about log(m+ 1)
in R

m.15

15 And we have shown in Exercise 2.5.6 that it is never off by a factor more than about
log log card T either.
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Exercise 2.7.10 Prove that the estimate (2.58) is essentially optimal. Warning: This
requires some skill.

Combining Theorem 2.7.2 with Definition 2.7.3 yields the following very
important result:

Theorem 2.7.11 Under (2.4) and (2.1), we have

E sup
t∈T

Xt ≤ Lγ2(T , d) . (2.59)

To make (2.59) of interest, we must be able to control γ2(T , d), i.e., we must learn
how to construct admissible sequences, a topic we shall first address in Sect. 2.9.

Exercise 2.7.12 When the process (Xt)t∈T satisfies (2.4) but is no longer assumed
to be centered, prove that

E sup
s,t∈T

|Xs −Xt | ≤ Lγ2(T , d) . (2.60)

We now turn to the control of the tails of the process, which will follow by a
small variation of the same argument.

Theorem 2.7.13 Under (2.4) and (2.1), we have

P
(

sup
s,t∈T

|Xs −Xt | ≥ Lγ2(T , d)+ LuΔ(T )
)
≤ L exp(−u2) . (2.61)

Proof We use the notation of the proof of (2.34). We may assume u ≥ 1. Let us
consider the smallest integer k ≥ 0 such that u2 ≤ 2k so that 2k ≤ 2u2. Consider
the event Ω1 defined by

∀t ∈ Tk , |Xt −Xt0 | ≤ 4uΔ(T ) , (2.62)

so that by the union bound,

P(Ωc
1) ≤ 22k · 2 exp(−8u2) ≤ 2 exp(2u2 − 8u2) ≤ exp(−u2) . (2.63)

Consider the event Ω2 given by

∀n ≥ k , ∀t ∈ T , |Xπn(t) −Xπn+1(t)| ≤ 2n/2+2Δ(An(t)) , (2.64)

so that by the union bound again,

P(Ωc
2) ≤

∑

n≥k
22n+1 · 2 exp(−2n+3) ≤

∑

n≥k
2 exp(−2n+2) ≤ 4 exp(−u2) , (2.65)
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using, for example, in the last inequality that 2n+2 ≥ 2k+2 + n− k ≥ 4u2 + n− k.
Consequently, P(Ω1 ∪Ω2) ≥ 1− 5 exp(−u2), and on this event, we have

|Xt −Xπk(t)| ≤
∑

n≥k
2n/2+2Δ(An(t)) ≤ Lγ2(T , d) ,

so that |Xt − Xt0| ≤ |Xt −Xπk(t)| + |Xπk(t) −Xt0 | ≤ Lγ2(T , d)+ LuΔ(T ). �
Let us note in particular that using (2.24),

(
E sup

s,t∈T
|Xs −Xt |p

)1/p ≤ L
√
pγ2(T , d) . (2.66)

Needless to say that we will look for extensions of Theorem 2.7.13. We can prove
right away a particularly elegant result (due independently to R. Latała and S.
Mendelson). Let us consider a process (Xt)t∈T , which is assumed to be centered
but need not to be symmetric. For n ≥ 1, consider the distance δn on T given by
δn(s, t) = ‖Xs − Xt‖2n . Denote by Δn(A), the diameter of a subset A of T for the
distance δn.

Theorem 2.7.14 Consider an admissible sequence (An)n≥0 of partitions of T .
Then,

E sup
s,t∈T

|Xs −Xt | ≤ L sup
t∈T

∑

n≥0

Δn(An(t)) . (2.67)

Moreover, given u > 0 and the largest integer k with 2k ≤ u2, we have

P
(

sup
s,t∈T

|Xs −Xt | ≥ LΔk(T )+ sup
t∈T

∑

n≥0

Δn(An(t))
)
≤ L exp(−u2) . (2.68)

Proof The increment condition (2.4) will be replaced by the following: For a r.v. Y
and p ≥ 1, we have

P(|Y | ≥ u) ≤ P(|Y |p ≥ up) ≤
(‖Y‖p

u

)p
. (2.69)

Let us then consider the points πn(t) as usual. For u ≥ 1, let us consider the event
Ωu defined by16

∀n ≥ 1 , |Xπn(t) − Xπn+1(t)| ≤ uΔn(An(t)) , (2.70)

16 We are following here the general method outlined at the end of Sect. 2.4.
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so that by the union bound and (2.69) for u ≥ 4, we have

P(Ωc
u) ≤

∑

n≥1

(2

u

)2n ≤
∑

k≥2

( 2

u

)k ≤ L

u2 . (2.71)

On Ωu, summation of the inequalities (2.70) for n ≥ 1 yields supt∈T |Xt−Xπ1(t)| ≤
Lu
∑

n≥1 Δn(An(t)). Combining with (2.71), we obtain

E sup
t∈T

|Xt −Xπ1(t)| ≤ L
∑

n≥1

Δn(An(t)) .

Since E supt∈T |Xπ1(t) − Xπ0(t)| ≤ LΔ0(T ), we have E supt∈T |Xt − Xπ0(t)| ≤
L
∑

n≥0 Δn(An(t)), and (2.67) follows. The proof of (2.68) is nearly identical to
the proof of (2.61) and is left to the reader. �

2.8 Functionals

Given a metric space (T , d), how do we calculate γ2(T , d)? Of course there is no
free lunch. The quantity γ2(T , d) reflects a highly non-trivial geometric character-
istic of the metric space. This geometry must be understood in order to compute
γ2(T , d). There are unsolved problems in this book (such as Conjecture 17.1.4)
which boil down to estimating γ2(T , d) for a certain metric space.

In this section, we introduce functionals, which are an efficient way to bring
up the geometry of a metric space and to build competent admissible sequences,
providing upper bounds for γ2(T , d). We will say that a map F is a functional on
a set T if to each subset H of T it associates a number F(H) ≥ 0 and if it is
increasing, i.e.,

H ⊂ H ′ ⊂ T ⇒ F(H) ≤ F(H ′) . (2.72)

Intuitively a functional is a measure of “size” for the subsets of T . It allows to
identify which subsets of T are “large” for our purposes. A first example is given by
F(H) = Δ(H). In the same direction, a fundamental example of a functional is

F(H) = γ2(H, d) . (2.73)

A second example, equally important, is the quantity

F(H) = E sup
t∈H

Xt (2.74)

where (Xt )t∈T is a given process indexed by T and satisfying (2.4).
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For our purposes, the relevant property of functionals is by no means intuitively
obvious yet (but we shall soon see that the functional (2.73) does enjoy this
property). Let us first try to explain it in words: if a set is the union of many small
pieces far enough from each other, then this set is significantly larger (as measured
by the functional) than the smallest of its pieces. “Significantly larger” depends on
the scale of the pieces and on their number. This property will be called a “growth
condition”.

Let us address a secondary point before we give definitions. We denote by B(t, r)

the ball centered at t of radius r , and we note that

Δ(B(t, r)) ≤ 2r .

This factor 2 is a nuisance. It is qualitatively the same to say that a set is contained in
a ball of small radius or has small diameter, but quantitatively we have to account for
this factor 2. In countless constructions, we will produce sets A which are “small”
because they are contained in a ball of small radius r . Either we keep track of this
property, which is cumbersome, or we control the size of A through its diameter and
we deal with this inelegant factor 2. We have chosen here the second method.17

What do we mean by “small pieces far from each other”? There is a scale a > 0
at which this happens and a parameter r ≥ 8 which gives us some room. The pieces
are small at that scale: they are contained in balls with radius 2a/r .18 The balls are
far from each other: any two centers of such balls are at mutual distance ≥ a. The
reason why we require r ≥ 8 is that we want the following: Two points taken in
different balls with radius 2a/r whose centers are at distance ≥ a cannot be too
close to each other. This would not be true for, say, r = 4, so we give ourselves
some room and take r ≥ 8. Here is the formal definition.

Definition 2.8.1 Given a > 0 and an integer r ≥ 8, we say that subsets H1, . . . , Hm

of T are (a, r)-separated if

∀� ≤ m , H� ⊂ B(t�, 2a/r) , (2.75)

where the points t1, t2, . . . , tm in T satisfy

∀� , �′ ≤ m , � �= �′ ⇒ a ≤ d(t�, t�′) ≤ 2ar . (2.76)

A secondary feature of this definition is that the small pieces H� are not only well
separated (on a scale a), but they are in the “same region of T ” (on the larger scale
ra). This is the content of the last inequality in condition (2.76).

Exercise 2.8.2 Find interesting examples of metric spaces for which there are no
points t1, . . . , tm as in (2.76), for all large enough values of m.

17 The opposite choice was made in [132].
18 This coefficient 2 is motivated by the considerations of the previous paragraph.
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Now, what does “the union of the pieces is significantly larger than the smallest of
these pieces” mean? This is an “additive property”, not a multiplicative one. In this
first version of the growth condition, it means that the size of this union is larger
than the size of the smallest piece by a quantity a

√
logN where N is the number of

pieces.19 Well, sometimes it will only be larger by a quantity of say a
√

logN/100.
This is how the parameter c∗ below comes into the picture. One could also multiply
the functionals by a suitable constant (i.e., 1/c∗) to always reduce to the case c∗ = 1,
but this is a matter of taste.

Another feature is that we do not need to consider the case with N pieces for a
general value of N , but only for the case where N = Nn for some n. This is because
we care about the value of logN only within, say, a factor of 2, and this is precisely
what motivated the definition of Nn. In order to understand the definition below, one
should also recall that

√
logNn is about 2n/2.

Definition 2.8.3 We say that the functional F satisfies the growth condition with
parameters r ≥ 8 and c∗ > 0 if for any integer n ≥ 1 and any a > 0 the following
holds true, where m = Nn: For each collection of subsets H1, . . . , Hm of T that are
(a, r)-separated, we have

F
( ⋃

�≤m
H�

)
≥ c∗a2n/2 +min

�≤mF(H�) . (2.77)

This definition is motivated by the fundamental fact that when (Xt )t∈T is a
Gaussian process, the functional (2.74) satisfies a form of the growth condition (see
Proposition 2.10.8).

The following illustrates how we might use the first part of (2.76):

Exercise 2.8.4 Let (T , d) be isometric to a subset of Rk provided with the distance
induced by a norm. Prove that in order to check that a functional satisfies the growth
condition of Definition 2.8.3, it suffices to consider the values of n for whichNn+1 ≤
(1+ 2r)k. Hint: It follows from (2.47) that for larger values of n and m = Nn, there
are no points t1, . . . , tm as in (2.76).

You may find it hard to give simple examples of functionals which satisfy
the growth condition (2.77). It will become gradually apparent that this condition
imposes strong restrictions on the metric space (T , d) and in particular a control
from above of the quantity γ2(T , d). It bears repeating that γ2(T , d) reflects the
geometry of the space (T , d). Once this geometry is understood, it is usually
possible to guess a good choice for the functional F . Many examples will be given
in subsequent chapters.

As we show now, we really have no choice. Functionals with the growth property
are intimately connected with the quantity γ2(T , d).

19 We remind the reader that the function
√

log y arises from the fact that it is the inverse of the
function exp(x2).
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Proposition 2.8.5 Assume r ≥ 16. Then the functional F(H) = γ2(H, d) satisfies
the growth condition with parameters r and c∗ = 1/8.

Proof Let m = Nn and consider points (t�)�≤m of T with d(t�, t�′) ≥ a if � �= �′.
Consider sets H� ⊂ B(t�, a/8) and the set H =⋃�≤m H�. We have to prove that

γ2(H, d) ≥ 1

8
a2n/2 +min

�≤m γ2(H�, d) . (2.78)

Consider an admissible sequence of partitions (An) of H , and consider the set

In = {� ≤ m ; ∃A ∈ An−1 ; A ⊂ H�} .

Picking for � ∈ In an arbitrary element A ∈ An−1 with A ⊂ H� defines a one-to-
one map from In to An−1. Thus, card In ≤ cardAn−1 ≤ Nn−1 < m = Nn. Hence,
there exists �0 �∈ In. Next, we prove that for t ∈ H�0 , we have

Δ(An−1(t)) ≥ Δ(An−1(t) ∩H�0)+
1

4
a . (2.79)

Since �0 �∈ In, we have An−1(t) �⊂ H�0 , so that since An−1(t) ⊂ H , the set An−1(t)

must intersect a set H� �= H�0 , and consequently it intersects the ball B(t�, a/8).
Since t ∈ H�0 , we have d(t, B(t�, a/8)) ≥ a/2. Since t ∈ An−1(t), this implies that
Δ(An−1(t)) ≥ a/2. This proves (2.79) since Δ(An−1(t) ∩H�0) ≤ Δ(H�0) ≤ a/4.

Now, since for each k ≥ 0 we have Δ(Ak(t)) ≥ Δ(Ak(t) ∩H�0), we have

∑

k≥0

2k/2(Δ(Ak(t))−Δ(Ak(t) ∩H�0)))

≥ 2(n−1)/2(Δ(An−1(t))−Δ(An−1(t) ∩H�0))

≥ 1

4
a2(n−1)/2 ,

where we have used (2.79) in the last inequality, and, consequently,

∑

k≥0

2k/2Δ(Ak(t)) ≥ 1

4
a2(n−1)/2 +

∑

k≥0

2k/2Δ(Ak(t) ∩H�0) . (2.80)

Next, consider the admissible sequence (A′
n) of H�0 given by A′

n = {A ∩
H�0;A ∈ An}. We have by definition

sup
t∈H�0

∑

k≥0

2k/2Δ(Ak(t) ∩H�0) ≥ γ2(H�0, d) .
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Hence, taking the supremum over t in H�0 in (2.80), we get

sup
t∈H�0

∑

k≥0

2k/2Δ(Ak(t)) ≥ 1

4
a2(n−1)/2 + γ2(H�0, d) ≥

1

8
a2n/2 +min

�≤m γ2(H�, d) .

Since the admissible sequence (An) is arbitrary, we have proved (2.78). �

2.9 Partitioning Schemes

In this section, we use functionals satisfying the growth condition to construct
admissible sequences of partitions. The basic result is as follows:

Theorem 2.9.1 Assume that there exists on T a functional F which satisfies the
growth condition of Definition 2.8.3 with parameters r and c∗. Then20

γ2(T , d) ≤ Lr

c∗
F(T )+ LrΔ(T ) . (2.81)

This theorem and its generalizations form the backbone of this book. The essence
of this theorem is that it produces (by actually constructing them) a sequence of
partitions that witnesses the inequality (2.81). For this reason, it could be called
“the fundamental partitioning theorem”.

Exercise 2.9.2 Consider a metric space T consisting of exactly two points. Prove
that the functional given by F(H) = 0 for each H ⊂ T satisfies the growth
condition of Definition 2.8.3 for r = 8 and any c∗ > 0. Explain why we cannot
replace (2.81) by the inequality γ2(T , d) ≤ LrF(T )/c∗.

Let us first stress the following trivial fact (connected to Exercise 2.5.9 (a)). It
will be used many times. The last statement of (a) is particularly useful.

Lemma 2.9.3

(a) Consider an integer N . If we cannot cover T by at most N − 1 balls of radius
a, then there exist points (t�)�≤N with d(t�, t�′) ≥ a for � �= �′. In particular if
en(T ) > a, we can find points (t�)�≤Nn with d(t�, t�′) ≥ a for � �= �′.

(b) Assume that any sequence (t�)�≤m with d(t�, t�′) ≥ a for � �= �′ satisfies m ≤
N . Then, T can be covered by N balls of radius a.

(c) Consider points (t�)�≤Nn+1 such that d(t�, t�′) ≥ a for � �= �′. Then, en(T ) ≥
a/2.

20 It is certain that as r grows, we must obtain a weaker result. The dependence of the right-hand
side of (2.81) on r is not optimal. It may be improved with further work.
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Proof

(a) We pick the points t� recursively with d(t�, t�′) ≥ a for �′ < �. By hypothesis,
the balls of radius a centered on the previously constructed points do not cover
the space if there are < N of them so that the construction continues until we
have constructed N points.

(b) You can either view this as a reformulation of (a) or argue directly that when m

is taken as large as possible the balls B(t�, a) cover T .
(c) If T is covered by sets (B�′)�′≤Nn

, by the pigeon hole principle, at least two of
the points t� must fall into one of these sets, which therefore cannot be a ball of
radius < a/2. �

The admissible sequence of partitions witnessing (2.81) will be constructed by
recursive application of the following basic principle:

Lemma 2.9.4 Under the conditions of Theorem 2.9.1, consider B ⊂ T with
Δ(B) ≤ 2r−j for a certain j ∈ Z, and consider any n ≥ 0. Let m = Nn. Then
we can find a partition (A�)�≤m of B into sets which have either of the following
properties:

Δ(A�) ≤ 2r−j−1 , (2.82)

or else

t ∈ A� ⇒ F(B ∩ B(t, 2r−j−2)) ≤ F(B)− c∗2n/2r−j−1 . (2.83)

In words, the piece of the partitions have two further properties. Either (case (2.82))
we have reduced the bound on their diameter from 2r−j for B to 2r−j−1, or
else we have no new information on the diameter, but we have gathered the
information (2.83).

Proof Consider the set

C = {t ∈ B ; F(B ∩ B(t, 2r−j−2)) > F(B)− c∗2n/2r−j−1} .

Consider points (t�)�≤m′ in C such that d(t�, t�′) ≥ r−j−1 for � �= �′. We prove
that m′ < m. For otherwise, using (2.77) for a = r−j−1 and for the sets H� :=
B ∩ B(t�, 2r−j−2) shows that

F(B) ≥ F
( ⋃

�≤m
H�

)
≥ c∗r−j−12n/2 +min

�≤mF(H�) > F(B) .

This contradiction proves that m′ < m. Consequently, using Lemma 2.9.3 (b) for
N = m − 1, we may cover C by m′ < m balls (B�)�≤m′ of radius ≤ r−j−1. We
then set A� = C ∩ (B� \ ∪�′<�B�′) for � ≤ m′, A� = ∅ for m′ < � < m and
Am = B \ C. �
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So, in picturesque terms, Lemma 2.9.4 produces many small pieces and (possi-
bly) a large one (on which one has further information).

Before we start the proof of Theorem 2.9.1, we need the following technical fact
which will be used many times: The sum of a geometric series is basically of the
size of either its first or its last term.

Lemma 2.9.5 Consider numbers (an)n≥0, an > 0, and assume supn an < ∞.
Consider α > 1, and define

I = {n ≥ 0 ; ∀k ≥ 0 , k �= n , ak < anα
|n−k|} . (2.84)

Then I �= ∅, and we have

∑

k≥0

ak ≤ 2α

α − 1

∑

n∈I
an . (2.85)

Proof Let us write k ≺ n when ak ≤ anα
−|n−k|. This relation is a partial order: if

k ≺ n and n ≺ p, then ak ≤ apα
−|n−k|−|n−p| ≤ apα

−|k−p|, so that k ≺ p. We can
then restate the definition of I :

I = {n ≥ 0 ; ∀k ≥ 0 , n ≺ k ⇒ n = k
}
.

In words, I is the set of elements n of N that are maximal for the partial order ≺.
Next, we prove that for each k in N, there exists n ∈ I with k ≺ n. Indeed

otherwise we can recursively construct an infinite sequence n1 = n ≺ n2 ≺ · · · ,
and this is absurd because an�+1 ≥ αan� and we assume that the sequence (an) is
bounded.

Thus, for each k in N, there exists n ∈ I with k ≺ n. Then ak ≤ anα
−|n−k|, and

therefore

∑

k≥0

ak ≤
∑

n∈I

∑

k≥0

anα
−|k−n| ≤ 2

1− α−1

∑

n∈I
an . �

Proof of Theorem 2.9.1 There is no question that this proof is the most demanding
up to this point. The result is, however, absolutely central, on its own and also
because several of our main results will follow the same overall scheme of proof.

We have to construct an admissible sequence of partitions which witnesses the
inequality (2.81). The construction of this sequence is as simple as it could be: we
recursively use Lemma 2.9.4. More precisely, we construct an admissible sequence
of partitions An, and for A ∈ An, we construct an integer jn(A) ∈ Z with

Δ(A) ≤ 2r−jn(A) . (2.86)
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We start with A0 = {T } and j0(T ) the largest integer j0 ∈ Z with Δ(T ) ≤ 2r−j0 ,
so that 2r−j0 ≤ rΔ(T ). Having constructed An, we construct An+1 as follows: for
each B ∈ An, we use Lemma 2.9.4 with j = jn(B) to split B into sets (A�)�≤Nn .
If A� satisfies (2.82), we set jn+1(A�) = jn(B) + 1, and otherwise (since we have
no new information on the diameter) we set jn+1(A�) = jn(B). Thus, in words,
jn+1(A�) = jn(B) + 1 if A� is a small piece of B and jn+1(A�) = jn(B) if A� is
the large piece of B.

The sequence thus constructed is admissible, since each set B in An is split into
at most Nn sets and since N2

n ≤ Nn+1. We note also by construction that if B ∈ An

and A ⊂ B, A ∈ An+1, then

• Either jn+1(A) = jn(B)+ 1
• Or else jn+1(A) = jn(B) and

t ∈ A⇒ F(B ∩ B(t, 2r−jn+1(A)−2)) ≤ F(B)− c∗2n/2r−jn+1(A)−1 . (2.87)

Now we start the hard part of the proof, proving that the sequence of partitions we
just constructed witnesses (2.81). For this, we fix t ∈ T . We want to prove that

∑

n≥0

2n/2Δ(An(t)) ≤ Lr

c∗
F(T )+ LrΔ(T ) .

We set j (n) = jn(An(t)), so that j (n) ≤ j (n + 1) ≤ j (n) + 1. We set a(n) =
2n/2r−j (n). Since 2n/2Δ(An(t)) ≤ 2a(n), it suffices to show that

∑

n≥0

a(n) ≤ Lr

c∗
F(T )+ LrΔ(T ) . (2.88)

First, we prove a side result, that for n ≥ 0 we have

a(n) ≤ Lr

c∗
F(T )+ LΔ(T ) . (2.89)

If n ≥ 1 and j (n−1) = j (n), then using (2.87) for n−1 rather than n yields (2.89).
Next, if n ≥ 1 and j (n− 1) = j (n)− 1, then a(n) = √

2r−1a(n− 1) ≤ a(n− 1)
since r ≥ 8, and iterating this relation until we reach an integer n′ with either
j (n′ − 1) = j (n′) or n′ = 0 proves (2.89) since a(0) ≤ LΔ(T ).

In particular the sequence (a(n)) is bounded. Consider then the set I as provided
by Lemma 2.9.5 for α = √

2 and an = a(n), that is,

I = {n ≥ 0 ; ∀k ≥ 0 , n �= k , a(k) < a(n)2|k−n|/2} .
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Recalling that a(0) = r−j0 ≤ rΔ(T )/2, it suffices to prove that

∑

n∈I\{0}
a(n) ≤ Lr

c∗
F(T ) . (2.90)

For n ∈ I, n ≥ 1, we have a(n + 1) <
√

2a(n) and a(n − 1) <
√

2a(n). Since
a(n+ 1) = √

2rj (n)−j (n+1)a(n), this implies

j (n+ 1) = j (n)+ 1 ; j (n− 1) = j (n) . (2.91)

Proving (2.90) is the difficult part. Assuming first that I is infinite (the important
case), let us enumerate the elements of I \ {0} as n1 < n2 < . . . so that (2.91)
implies

j (nk + 1) = j (nk)+ 1 ; j (nk − 1) = j (nk) . (2.92)

In words, nk is at the end of a sequence of partition steps in which A�+1(t) was the
large piece of A�(t) and Ank+1(t) is a small piece of Ank(t). Let us note that as a
consequence of (2.92), we have

jnk+1 ≥ jnk+1 ≥ jnk + 1 .

The key to the proof is to show that for k ≥ 1, we have

a(nk) ≤ Lr

c∗
(f (nk − 1)− f (nk+2)) (2.93)

where f (n) = F(An(t)). Now the sequence (f (n)) is decreasing because An(t) ⊂
An−1(t) and f (0) = F(T ). When k ≥ 2, then f (nk − 1) ≤ f (nk−1), so that (2.93)
implies

a(nk) ≤ Lr

c∗
(f (nk−1)− f (nk+2)) . (2.94)

Summation of the inequalities (2.94) for k ≥ 2 then yields

∑

k≥2

a(nk) ≤ Lr

c∗
F(T ) , (2.95)

and combining with (2.93) for k = 1 proves (2.90) and concludes the proof of the
theorem when I is infinite.
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We now prove (2.93). Since nk ≥ 1, we may define n∗ := nk − 1. By (2.92),
we have j (nk − 1) = j (nk), i.e., j (n∗) = j (n∗ + 1). We may then use (2.87) for
B = An∗(t), A = Ank(t) = An∗+1(t) to obtain that

F(B ∩ B(t, 2r−jn∗+1(A)−2)) ≤ F(B)− c∗2n
∗/2r−jn∗+1(A)−1 .

Recalling that n∗ = nk − 1, this means

F(B ∩ B(t, 2r−jnk (A)−2)) ≤ F(B)− c∗2(nk−1)/2r−jnk (A)−1 , (2.96)

so that

a(nk) ≤ Lr

c∗
(
F(B)− F(B ∩ B(t, 2r−jnk (A)−2))

)
. (2.97)

Furthermore, by (2.92),

j (nk+2) ≥ j (nk+1)+ 1 ≥ j (nk)+ 2 . (2.98)

Since j (nk+2) = jnk+2(Ank+2(t)), (2.86) implies Δ(Ank+2(t)) ≤ 2r−j (nk+2) ≤
2r−j (nk)−2 so that

Ank+2(t) ⊂ B ∩ B(t, 2r−j (nk)−2) , (2.99)

and thus f (nk+2) = F(Ank+2(t)) ≤ F(B ∩ B(t, 2r−jnk (A)−2)). Combining
with (2.97) and since F(B) = f (nk − 1), we have proved (2.93).

Assuming now that I is finite, it has a largest element nk̄ . We use the previous
argument to control a(nk) when k+ 2 ≤ k̄, and for k = k̄− 1 and k = k̄, we simply
use (2.89). �

It is important for the sequel that you fully master the previous argument.

Exercise 2.9.6 We say that a sequence (Fn)n≥0 of functionals on (T , d) satisfies
the growth condition with parameters r ≥ 8 and c∗ > 0 if

∀n ≥ 0 , Fn+1 ≤ Fn

and if for any integer n ≥ 0 and any a > 0 the following holds true, where m = Nn:
For each collection of subsets H1, . . . , Hm of T that are (a, r)-separated, we have

Fn

( ⋃

�≤m
H�

)
≥ c∗a2n/2 +min

�≤mFn+1(H�) . (2.100)
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Prove that then

γ2(T , d) ≤ Lr

c∗
F0(T )+ LrΔ(T ) . (2.101)

Hint: Copy the previous arguments by replacing everywhere F(A) by Fn(A) when
A ∈ An.

Proposition 2.9.7 Consider a metric space (T , d), and for n ≥ 0, consider subsets
Tn of T with card T0 = 1 and cardTn ≤ Nn for n ≥ 1. Consider a number S, and
let

U =
{
t ∈ T ;

∑

n≥0

2n/2d(t, Tn) ≤ S
}
.

Then γ2(U, d) ≤ LS.

Proof For H ⊂ U , we define F(H) = inf supt∈H
∑

n≥0 2n/2d(t, Vn) where
the infimum is taken over all choices of Vn ⊂ T with cardVn ≤ Nn. It is
important here not to assume that Vn ⊂ H to ensure that F is increasing. We then
prove that F satisfies the growth condition by an argument very similar to that of
Proposition 2.8.5. The proof follows from Theorem 2.9.1 since Δ(U, d) ≤ 2S, as
each point of U is within distance S of the unique point of T0. �

A slightly different partitioning scheme has recently been discovered by R. van
Handel [141], and we describe a variant of it now. We consider a metric space (T , d)
and an integer r ≥ 8. We assume that for j ∈ Z, we are given a function sj (t) ≥ 0
on T .

Theorem 2.9.8 Assume that the following holds:

For each subset A of T , for each j ∈ Z with Δ(A) ≤ 2r−j and for each

n ≥ 1, then either en(A) ≤ r−j−1 or else there exists t ∈ A

with sj (t) ≥ 2n/2r−j−1 . (2.102)

Then,

γ2(T , d) ≤ Lr
(
Δ(T )+ sup

t∈T

∑

j∈Z
sj (t)

)
. (2.103)

We will show later how to construct functions sj (t) satisfying (2.102) using a
functional which satisfies the growth condition.21

21 See [141] for other constructions.
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The right-hand side of (2.103) is the supremum over t of a sum of terms. It need
not always be the same terms which will contribute the most for different values of
t , and the bound is definitely better than if the supremum and the summation were
exchanged.

Proof of Theorem 2.9.8 Consider the largest j0 ∈ Z with Δ(T ) ≤ 2r−j0 , so that
2r−j0 ≤ rΔ(T ). We construct by induction an increasing sequence of partitions
An with cardAn ≤ Nn, and for A ∈ An, we construct an integer jn(A) ∈ Z with
Δ(A) ≤ 2r−jn(A). We start with A0 = A1 = {T } and j0(T ) = j1(T ) = j0.

Once An has been constructed (n ≥ 1), we further split every element B ∈ An.
The idea is to first split B into sets which are basically level sets for the function
sj (t) in order to achieve the crucial relation (2.107) and then to further split each
of these sets according to its metric entropy. More precisely, we may assume that
S = supt∈T

∑
j∈Z sj (t) < ∞, for there is nothing to prove otherwise. Let us set

j = jn(B), and define the sets Ak for 1 ≤ k ≤ n by setting for k < n

Ak = {t ∈ B ; 2−kS < sj (t) ≤ 2−k+1S} , (2.104)

and

An = {t ∈ B ; sj (t) ≤ 2−n+1S} . (2.105)

The purpose of this construction is to ensure the following:

k ≤ n ; t, t ′ ∈ Ak ⇒ sj (t
′) ≤ 2(sj (t)+ 2−nS) . (2.106)

This is obvious since sj (t
′) ≤ 2sj (t) for k < n and sj (t

′) ≤ 2−n+1S if k = n. For
each set Ak, k ≤ n, we use the following procedure:

• If en−1(Ak) ≤ r−j−1, we may cover Ak by at most Nn−1 balls of radius 2r−j−1,
so we may split Ak into Nn−1 pieces of diameter≤ 4r−j−1. We decide that each
of these pieces A is an element of An+1, for which we set jn+1(A) = j + 1.
Thus, Δ(A) ≤ 4r−j−1 = 4r−jn+1(A).

• Otherwise we decide that Ak ∈ An+1 and we set jn+1(Ak) = j . Thus,
Δ(Ak) ≤ 2r−j = 2r−jn+1(A). From (2.102), there exists t ′ ∈ Ak for which
sj (t

′) ≥ 2(n−1)/2r−j−1. Then by (2.106), we have

∀t ∈ Ak ; 2(n−1)/2r−j−1 ≤ 2(sj (t)+ 2−nS) . (2.107)

In summary, if B ∈ An and A ∈ An+1, A ⊂ B, then

• Either jn+1(A) = jn(B)+ 1
• Or else jn+1(A) = jn(B) and, from (2.107),

∀t ∈ A ; 2(n−1)/2r−jn+1(A)−1 ≤ 2(sjn(B)(t)+ 2−nS) . (2.108)
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This completes the construction. Now for n ≥ 1, we have n ≤ Nn−1 so that
cardAn+1 ≤ nNn−1Nn ≤ Nn+1 and the sequence (An) is admissible. Next,
we fix t ∈ T . We set jn = jn(An(t)), and we observe that by construction
jn ≤ jn+1 ≤ jn + 1. Since Δ(An(t)) ≤ 4r−jn(t), we have 2n/2Δ(An(t)) ≤ 4a(n)
where a(n) := 2n/2r−jn(t). To complete the argument, we prove that

∑

n≥0

a(n) ≤ Lr(S +Δ(T )) . (2.109)

For this, consider the set I provided by Lemma 2.9.5 for α = √
2, so that since

r−j0 ≤ 2rΔ(T ) it suffices to prove that

∑

n∈I\{0}
a(n) ≤ LrS . (2.110)

For n ∈ I \ {0}, it holds that jn−1 = jn < jn+1 (since otherwise this contradicts
the definition of I ). In particular, the integers jn for n ∈ I are all different so that∑

n≥0 sjn(t) ≤ S. Using (2.108) for n − 1 instead of n yields 2(n−2)/2r−jn−1 ≤
2(sjn−1(t)+ 2−n+1S). Since jn−1 = jn, we get

a(n) ≤ Lr(sjn(t)+ 2−nS) ,

and summing these relations, we obtain the desired result. �
The following connects Theorems 2.9.1 and 2.9.8:

Proposition 2.9.9 Assume that the functional F satisfies the growth condition with
parameters r and c∗. Then the functions

sj (t) = 1

c∗
(
F(B(t, 2r−j+1))− F(B(t, 2r−j−2))

)

satisfy (2.102).

Proof Consider a subset A of T , j ∈ Z with Δ(A) ≤ 2r−j and n ≥ 1. Let m = Nn.
If en(A) > r−j−1, then by Lemma 2.9.3, we may find (t�)�≤m in A with d(t�, t�′) ≥
r−j−1 for � �= �′. Consider the set H� = B(t�, 2r−j−2) so that by (2.77) used for
a = r−j−1, it holds that

F
( ⋃

�≤m
H�

)
≥ c∗r−j−12n/2 +min

�≤mF(H�) . (2.111)

Let us now consider �0 ≤ m such that F(H�0) achieves the minimum in the
right-hand side, so that min�≤m F(H�) = F(B(t�0 , 2r−j−2)). The crude inequality
2r−j−2 + 2r−j ≤ 2r−j+1 implies that H� ⊂ B(t�0 , 2r−j+1) for each �, so that
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F(
⋃

�≤mH�) ≤ F(B(t�0 , 2r−j+1)). Then (2.111) implies

F(B(t�0 , 2r−j+1)) ≥ c∗r−j−12n/2 + F(B(t�0 , 2r−j−2))

i.e., sj (t�0) ≥ 2n/2r−j−1. �
Despite the fact that the proof of Theorem 2.9.8 is a few lines shorter than the

proof of Theorem 2.9.1, in the various generalizations of this principle, we will
mostly follow the scheme of proof of Theorem 2.9.1. The reason for this choice
is simple: it should help the reader that our various partition theorems follow a
common pattern. The most difficult partition theorem we present is Theorem 6.2.8
(the Latała-Bednorz theorem), which is one of the highlights of this work, and it is
not clear at this point whether the method of Theorem 2.9.8 can be adapted to the
proof of this theorem.

The following simple observation allows us to construct a sequence which is
admissible from one which is slightly too large. It will be used several times.

Lemma 2.9.10 Consider α > 0, an integer τ ≥ 0, and an increasing sequence of
partitions (Bn)n≥0 with cardBn ≤ Nn+τ . Let

S := sup
t∈T

∑

n≥0

2n/αΔ(Bn(t)) .

Then we can find an admissible sequence of partitions (An)n≥0 such that

sup
t∈T

∑

n≥0

2n/αΔ(An(t)) ≤ 2τ/α(S +K(α)Δ(T )) . (2.112)

Of course (for the last time) here K(α) denotes a number depending on α only
(that need not be the same at each occurrence).

Proof We set An = {T } if n < τ and An = Bn−τ if n ≥ τ so that cardAn ≤ Nn

and

∑

n≥τ
2n/αΔ(An(t)) = 2τ/α

∑

n≥0

2n/αΔ(Bn(t)) .

Using the bound Δ(An(t)) ≤ Δ(T ), we obtain

∑

n<τ

2n/αΔ(An(t)) ≤ K(α)2τ/αΔ(T ) . �

Exercise 2.9.11 Prove that (2.112) might fail if one replaces the right-hand side by
K(α, τ)S. Hint: S does not control Δ(T ).
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2.10 Gaussian Processes: The Majorizing Measure Theorem

Consider a Gaussian process (Xt )t∈T , that is, a jointly Gaussian family of centered
r.v.s indexed by T . We provide T with the canonical distance

d(s, t) = (E(Xs − Xt)
2)1/2

. (2.113)

Recall the functional γ2 of Definition 2.7.3.

Theorem 2.10.1 (The Majorizing Measure Theorem) For a universal constant
L, it holds that

1

L
γ2(T , d) ≤ E sup

t∈T
Xt ≤ Lγ2(T , d) . (2.114)

The reason for the name is explained in Sect. 3.1. We will meditate on this
statement in Sect. 2.12. We will spend much time trying to generalize this theorem to
other classes of processes. To link the statements of these generalizations with that
of (2.114), it may be good to reformulate the lower bound γ2(T , d) ≤ LE supt∈T Xt

in the following general terms:

The control from above of E sup
t∈T

Xt implies the existence of a

“small ” sequence of admissible partitions of T .

The right-hand side inequality in (2.114) is Theorem 2.7.11. To prove the lower
bound, we will use Theorem 2.9.1 and the functional

F(H) = E sup
t∈H

Xt := sup
H ∗⊂H,H ∗finite

E sup
t∈H ∗

Xt . (2.115)

For this, we need to prove that this functional satisfies the growth condition with
c∗ a universal constant and to bound Δ(T ). We strive to give a proof that relies on
general principles and lends itself to generalizations.

Lemma 2.10.2 (Sudakov Minoration) Assume that

∀p, q ≤ m , p �= q ⇒ d(tp, tq ) ≥ a .

Then we have

E sup
p≤m

Xtp ≥
a

L1

√
logm . (2.116)

Here and below L1, L2, . . . are specific universal constants. Their values remain the
same, at least within the same section.
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The proof of the Sudakov minoration is given just after Lemma 15.2.7.

Exercise 2.10.3 Prove that Lemma 2.10.2 is equivalent to the following statement:
If (Xt)t∈T is a Gaussian process and d is the canonical distance, then

en(T , d) ≤ L2−n/2E sup
t∈T

Xt . (2.117)

Compare with Exercise 2.7.8.

To understand the relevance of Sudakov minoration, let us consider the case
where EX2

tp
≤ 100a2 (say) for each p. Then (2.116) means that the bound (2.15) is

of the correct order in this situation.

Exercise 2.10.4 Prove (2.116) when the r.v.s Xtp are independent. That is, assume
that these variables are Gaussian independent centered. Hint: Use the method of
Exercise 2.3.7 (b).

Exercise 2.10.5 A natural approach (“the second moment method”) to prove that
P(supp≤m Xtp ≥ u) is at least 1/L for a certain value of u is as follows: consider the
r.v. Y =∑p 1{Xtp≥u}, prove that EY 2 ≤ L(EY )2, and then use the Paley-Zygmund

inequality (6.15) to prove that supp≤m Xtp ≥ a
√

logm/L1 with probability≥ 1/L.
Prove that this approach works when the r.v.s Xt� are independent, but find examples
showing that this naive approach does not work in general to prove (2.116).

The following is a very important property of Gaussian processes and one of the
keys to Theorem 2.10.1. It is a facet of the theory of concentration of measure, a
leading idea of modern probability theory. We refer the reader to [52] to learn about
this.

Lemma 2.10.6 Consider a Gaussian process (Xt)t∈U , where U is finite, and let
σ = supt∈U(EX2

t )
1/2. Then for u ≥ 0, we have

P
(∣
∣
∣ sup
t∈U

Xt − E sup
t∈U

Xt

∣
∣
∣ ≥ u

)
≤ 2 exp

(
− u2

2σ 2

)
. (2.118)

In words, the size of the fluctuations of supt∈U Xt are governed by the size of the
individual r.v.s Xt , rather than by the (typically much larger) quantity E supt∈U Xt .
It is essential that the cardinality of U does not appear in (2.118).

Exercise 2.10.7 Find an example of a Gaussian process for which

E sup
t∈T

Xt � σ = sup
t∈T

(EX2
t )

1/2 ,
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whereas the fluctuations of supt∈T Xt are of order σ , e.g., the variance of supt Xt

is about σ 2. Hint: T = {(ti)i≤n;∑i≤n t2
i ≤ 1} and Xt = ∑

i≤n tigi where gi are
independent standard Gaussian r.v.s

Proposition 2.10.8 Consider points (t�)�≤m in T . Assume that d(t�, t�′) ≥ a if � �=
�′. Consider σ > 0 and for � ≤ m a finite set H� ⊂ B(t�, σ ). Then if H =⋃�≤m H�,
we have

E sup
t∈H

Xt ≥ a

L1

√
logm− L2σ

√
logm+min

�≤mE sup
t∈H�

Xt . (2.119)

When σ ≤ a/(2L1L2), (2.119) implies

E sup
t∈H

Xt ≥ a

2L1

√
logm+min

�≤mE sup
t∈H�

Xt , (2.120)

which can be seen as a generalization of Sudakov’s minoration (2.116) by taking
H� = {t�}. When m = Nn, (2.120) proves that the functional F(H) = E supt∈T Xt

satisfies the growth condition (2.77).

Proof We can and do assume m ≥ 2. For � ≤ m, we consider the r.v.

Y� =
(

sup
t∈H�

Xt

)−Xt� = sup
t∈H�

(Xt −Xt�) .

For t ∈ H�, we set Zt = Xt−Xt� . Since H� ⊂ B(t�, σ ), we have EZ2
t = d(t, t�)

2 ≤
σ 2, and for u ≥ 0, Eq. (2.118) used for the process (Zt )t∈H� implies

P(|Y� − EY�| ≥ u) ≤ 2 exp
(
− u2

2σ 2

)
. (2.121)

Thus, if V = max�≤m |Y� − EY�|, then combining (2.121) and the union bound, we
get

P(V ≥ u) ≤ 2m exp
(
− u2

2σ 2

)
, (2.122)

and (2.13) implies

EV ≤ L2σ
√

logm . (2.123)

Now, for each � ≤ m,

Y� ≥ EY� − V ≥ min
�≤mEY� − V ,
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and thus

sup
t∈H�

Xt = Y� + Xt� ≥ Xt� +min
�≤mEY� − V

so that

sup
t∈H

Xt ≥ max
�≤m Xt� +min

�≤mEY� − V .

Taking expectations, we obtain

E sup
t∈H

Xt ≥ Emax
�≤m Xt� +min

�≤mEY� − EV ,

and we use (2.116) and (2.123). �
Exercise 2.10.9 Prove that (2.120) might fail if one allows σ = a. Hint: The
intersection of the balls B(t�, a) might contain a ball with positive radius.

Exercise 2.10.10 Consider subsets (H�)�≤m of B(0, a) and H = ∪�≤mH�. Prove
that

E sup
t∈H

Xt ≤ La
√

logm+max
�≤m E sup

t∈H�

Xt . (2.124)

Try to find improvements on this bound. Hint: Peek at (19.61).

Proof of Theorem 2.10.1 We fix r = max(8, 4L1L2), so that 2a/r ≤ a/2L1L2.
The growth condition for the functional F of (2.115) follows from (2.120), which
implies that (2.77) holds for c∗ = 1/L. Theorem 2.9.1 implies

γ2(T , d) ≤ LE sup
t∈T

Xt + LΔ(T ) .

To control the term Δ(T ), we write that for t1, t2 ∈ H ,

Emax(Xt1,Xt2) = Emax(Xt1 −Xt2, 0) = 1√
2π

d(t1, t2) ,

so that Δ(T ) ≤ √2πE supt∈T Xt . �
The proof of Theorem 2.10.1 displays an interesting feature. This theorem

aims at understanding E supt∈T Xt , and for this, we use functionals that are
based on precisely this quantity. This is not a circular argument. The content of
Theorem 2.10.1 is that there is simply no other way to bound a Gaussian process
than to control the quantity γ2(T , d). The miracle of this theorem is that it relates
in complete generality two quantities, namely, E supt∈T Xt and γ2(T , d) which are
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both very hard to estimate. Still, in concrete situations, to estimate these quantities,
we must in some way gain understanding of the underlying geometry.

The following is a noteworthy consequence of Theorem 2.10.1:

Theorem 2.10.11 Consider two processes (Yt )t∈T and (Xt)t∈T indexed by the
same set. Assume that the process (Xt)t∈T is Gaussian and that the process (Yt )t∈T
satisfies the increment condition

∀u > 0 , ∀s, t ∈ T , P(|Ys − Yt | ≥ u) ≤ 2 exp
(
− u2

d(s, t)2

)
, (2.125)

where d is the distance (2.113) associated with the process Xt . Then we have

E sup
s,t∈T

|Ys − Yt | ≤ LE sup
t∈T

Xt . (2.126)

Processes satisfying the condition (2.125) are sometimes called sub-Gaussian. We
will see many examples later (see (6.2)).

Proof We combine (2.60) with the left-hand side of (2.114). �
Let us also note the following consequence of (2.126) and Lemma 2.2.1:22

Corollary 2.10.12 Consider two Gaussian processes (Xt)t∈T and (Yt )t∈T . Assume
that

∀s, t ∈ T , E(Ys − Yt )
2 ≤ E(Xs −Xt)

2 .

Then,

E sup
t∈T

Yt ≤ LE sup
t∈T

Xt . (2.127)

2.11 Gaussian Processes as Subsets of a Hilbert Space

In this section, we learn to think of a Gaussian process as a subset of a Hilbert space.
This will reveal our lack of understanding of basic geometric questions.

First, consider a Gaussian process (Yt )t∈T , and assume (the only case which is of
interest to us) that there is a countable set T ′ ⊂ T which is dense in T . We view each
Yt as a point in the Hilbert space L2(Ω,P) where (Ω,P) is the basic probability
space. The closed linear span of the r.v.s (Yt )t∈T in L2(Ω,P) is a separable Hilbert
space, and the map t �→ Yt is an isometry from (T , d) to its image (by the very

22 It is known that (2.127) holds with L = 1, a result known as Slepian’s lemma. Please see the
comments at the end of Sect. 2.16.
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definition of the distance d). In this manner, we associate a subset of a Hilbert space
to each Gaussian process.

Conversely, consider a separable Hilbert space, which we may assume to be �2 =
�2(N).23 Consider an independent sequence (gi)i≥1 of standard Gaussian r.v.s. We
can then define the Gaussian process (Xt )t∈�2, where

Xt =
∑

i≥1

tigi (2.128)

(the series converges in L2(Ω)). Thus,

EX2
t =

∑

i≥1

t2
i = ‖t‖2 . (2.129)

In this manner, for each subset T of �2, we can consider the Gaussian process
(Xt)t∈T . The distance induced on T by the process coincides with the distance of
�2 by (2.129).

A subset T of �2 will always be provided with the distance induced by �2, so we
may also write γ2(T ) rather than γ2(T , d). We denote by convT the convex hull
of T .

Theorem 2.11.1 For a subset T of �2, we have

γ2(convT ) ≤ Lγ2(T ) . (2.130)

Of course we also have γ2(T ) ≤ γ2(convT ) since T ⊂ convT .

Proof To prove (2.130), we observe that since Xa1t1+a2t2 = a1Xt1+a2Xt2 , we have

sup
t∈convT

Xt = sup
t∈T

Xt . (2.131)

We then use (2.114) to write

1

L
γ2(convT ) ≤ E sup

t∈convT
Xt = E sup

t∈T
Xt ≤ Lγ2(T ) . �

A basic problem is that it is absolutely not obvious how to construct an admissible
sequence of partitions on convT witnessing (2.130).

Research Problem 2.11.2 Give a geometrical proof of (2.130).

23 Throughout the book, N is the set of natural numbers starting at 0, N = {0, 1, . . .}, whereas
N
∗ = N \ {0}.
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What we mean by geometrical proof is a proof that does not use Gaussian
processes but only the geometry of Hilbert space. The difficulty of the problem
is that the structure of an admissible sequence which witnesses that γ2(convT ) ≤
Lγ2(T ) must depend on the “geometry” of the set T . A really satisfactory argument
would give a proof that holds in Banach spaces more general than Hilbert space,
for example, by providing a positive answer to the following, where the concept of
q-smooth Banach space is explained in [57]:

Research Problem 2.11.3 Consider a 2-smooth Banach space and the distance d

induced by its norm. Is it true that for each subset T of its unit ball, one has
γ2(convT , d) ≤ K

√
log card T ? More generally, is it true that for each finite subset

T , one has γ2(convT , d) ≤ Kγ2(T , d)? (Here K may depend on the Banach space,
but not on T .)

Research Problem 2.11.4 Still more generally, is it true that for a finite subset T
of a q-smooth Banach space, one has γq(convT ) ≤ Kγq(T )?

Even when the Banach space is �p, I do not know the answer to these problems
(unless p = 2!). (The Banach space �p is 2-smooth for p ≥ 2 and q-smooth for
p < 2, where 1/p + 1/q = 1.) One concrete case is when the set T consists of
the first N vectors of the unit basis of �p. It is possible to show in this case that
γq(convT ) ≤ K(p)(logN)1/q , where 1/p+ 1/q = 1. We leave this as a challenge
to the reader. The proof here is pretty much the same as for the case p = q = 2
which was covered in Sect. 2.6.

Exercise 2.11.5 Prove that if a ≥ 2, we have
∑

k≥1(k + 1)−a ≤ L2−a .

We recall the �2 norm ‖ · ‖ of (2.129). Here is a simple fact.

Proposition 2.11.6 Consider a sequence (tk)k≥1 such that

∀ k ≥ 1 , ‖tk‖ ≤ 1/
√

log(k + 1) .

Let T = {±tk, k ≥ 1}. Then E supt∈T Xt ≤ L and thus E supt∈convT Xt ≤ L

by (2.131).

Proof We have

P
(

sup
k≥1

|Xtk | ≥ u
)
≤
∑

k≥1

P(|Xtk | ≥ u) ≤
∑

k≥1

2 exp
(
− u2

2
log(k + 1)

)
(2.132)

since Xtk is Gaussian with EX2
tk
≤ 1/ log(k + 1). For u ≥ 2, the right-hand side

of (2.132) is at most L exp(−u2/L) by the result of Exercise 2.11.5, and as usual
the conclusion follows from (2.6). �
Exercise 2.11.7 Deduce Proposition 2.11.6 from (2.34). Hint: Use Exercise 2.4.1.
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It is particularly frustrating not to be able to solve the following special instance of
Problem 2.11.2:

Research Problem 2.11.8 In the setting of Proposition 2.11.6, find a geometrical
proof that γ2(convT ) ≤ L.

The following shows that the situation of Proposition 2.11.6 is in a sense generic:

Theorem 2.11.9 Consider a countable set T ⊂ �2, with 0 ∈ T . Then we can find a
sequence (tk) with

∀ k ≥ 1 , ‖tk‖
√

log(k + 1) ≤ LE sup
t∈T

Xt

and

T ⊂ conv({tk ; k ≥ 1}) .

Furthermore, we may assume that each tk is a multiple of the difference of two
elements of T .24

Proof By Theorem 2.10.1, we can find an admissible sequence (An) of T with

∀t ∈ T ,
∑

n≥0

2n/2Δ(An(t)) ≤ LE sup
t∈T

Xt := S . (2.133)

We construct sets Tn ⊂ T , such that each A ∈ An contains exactly one element of
Tn. We ensure in the construction that T =⋃n≥0 Tn and that T0 = {0}. (To do this,
we simply enumerate the elements of T as (vn)n≥1 with v0 = 0, and we ensure that
vn is in Tn.) For n ≥ 1, consider the set Un that consists of all the points

2−n/2 t − v

‖t − v‖

where t ∈ Tn, v ∈ Tn−1, and t �= v. Thus, each element of Un has norm 2−n/2,
and Un has at most NnNn−1 ≤ Nn+1 elements. Let U = ⋃

n≥1 Un. Then since
∑

�≤n N�+1 ≤ Nn+2, U contains at most Nn+2 elements of norm ≥ 2−n/2. We
enumerate U as {zk; k = 1, . . .} where the sequence (‖zk‖) is non-increasing, so
that ‖zk‖ < 2−n/2 for k > Nn+2. Let us now prove that ‖zk‖ ≤ L/

√
log(k + 1). If

k ≤ N2, this holds because ‖zk‖ ≤ 1. Assume then that k > N2, and let n ≥ 0 be
the largest integer with k > Nn+2. Then by definition of n, we have k ≤ Nn+3 and
thus 2−n/2 ≤ L/

√
log k. But then ‖zk‖ ≤ 2−n/2 ≤ L/

√
log k, proving the required

inequality.

24 This information is of secondary importance and will be used only much later.
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Consider t ∈ T , so that t ∈ Tm for some m ≥ 0. Writing πn(t) for the unique
element of Tn ∩ An(t), since π0(t) = 0, we have

t =
∑

1≤n≤m
πn(t)− πn−1(t) =

∑

1≤n≤m
an(t)un(t) , (2.134)

with an(t) = 2n/2‖πn(t)− πn−1(t)‖ and

un(t) = 2−n/2 πn(t)− πn−1(t)

‖πn(t)− πn−1(t)‖ ∈ U .

Since
∑

1≤n≤m
an(t) ≤

∑

n≥1

2n/2Δ(An−1(t)) ≤ 2S

and since un(t) ∈ Un ⊂ U , we see from (2.134) that

t =
∑

1≤n≤m
an(t)un(t)+

(
2S −

∑

1≤n≤m
an(t)

)
× 0 ∈ 2S conv(U ∪ {0}) .

Thus, T ⊂ 2S conv(U ∪ {0}) = conv(2SU ∪ {0}), and it suffices to take tk = 2Szk .
�

Exercise 2.11.10 What is the purpose of the condition 0 ∈ T ?

Exercise 2.11.11 Prove that if T ⊂ �2 and 0 ∈ T , then (even when T is not
countable) we can find a sequence (tk) in �2, with ‖tk‖

√
log(k + 1) ≤ LE supt∈T Xt

for all k and

T ⊂ conv{tk ; k ≥ 1} ,

where conv denotes the closed convex hull. (Hint: Do the obvious thing – apply
Theorem 2.11.9 to a dense countable subset of T .) Denoting now by conv∗(A) the
set of infinite sums

∑
i αiai where

∑
i |αi | = 1 and ai ∈ A, prove that one can also

achieve

T ⊂ conv∗{tk ; k ≥ 1} .

Exercise 2.11.12 Consider a set T ⊂ �2 with 0 ∈ T ⊂ B(0, δ). Prove that we can
find a sequence (tk) in �2, with the following properties:

∀ k ≥ 1 , ‖tk‖
√

log(k + 1) ≤ LE sup
t∈T

Xt , (2.135)

‖tk‖ ≤ Lδ , (2.136)

T ⊂ conv{tk ; k ≥ 1} , (2.137)
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where conv denotes the closed convex hull. Hint: Copy the proof of Theorem 2.11.9,
observing that since T ⊂ B(0, δ) one may chose An = {T } and Tn = {0} for
n ≤ n0, where n0 is the smallest integer for which 2n0/2 ≥ δ−1E supt∈T Xt , and
thus Un = ∅ for n ≤ n0.

The following problems are closely related to Problem 2.11.2:

Research Problem 2.11.13 Give a geometric proof of the following fact: Given
subsets (Tk)k≤N of a Hilbert space and T = ∑

k≤N Tk = {x1 + . . . + xN ; ∀k ≤
N, xk ∈ Tk}, prove that γ2(T ) ≤ L

∑
k≤N γ2(Tk).

We do not even know how to solve the following special case:

Research Problem 2.11.14 Consider sets (Tk)k≤N in a Hilbert space, and assume
that each Tk consists of M vectors of length 1. Let T = ∑

k≤N Tk . Give a
geometrical proof of the fact that γ2(T ) ≤ LN

√
logM.

The next exercise is inspired by the paper [5] of S Artstein. It is more elaborate
and may be omitted on first reading. A Bernoulli r.v. ε is such that P(ε = ±1) =
1/2.25

Exercise 2.11.15 Consider a subset T ⊂ R
n, where R

n is provided with the
Euclidean distance. We assume that for some δ > 0, we have

0 ∈ T ⊂ B(0, δ) . (2.138)

Consider independent Bernoulli r.v.s (εi,p)i,p≥1. Given a number q ≤ n, consider
the operator Uq : Rn → R

q given by

Uq(x) =
(∑

i≤n
εi,pxi

)

p≤q .

(a) Prove that ‖Uq‖ ≥ √n.
We want to prove that despite (a), there exist a number L such that if
E supt∈T

∑
i≤n gi ti ≤ δ

√
q, then with high probability

Uq(T ) ⊂ B(0, Lδ
√
q) , (2.139)

whereas from (2.138) we would not expect better than Uq(T ) ⊂ B(0, δ
√
n).

(b) Use the sub-Gaussian inequality (6.1.1) to prove that if ‖x‖ = 1, then

E exp
(1

4

(∑

i≤n
εi,pxi

)2) ≤ L . (2.140)

25 One must distinguish Bernoulli r.v.s εi from positive numbers εk!
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(c) Use (2.140) and independence to prove that for x ∈ R
n and v ≥ 1,

P(‖Uq(x)‖ ≥ Lv
√
q‖x‖) ≤ exp(−v2q) . (2.141)

(d) Use (2.141) to prove that with probability close to 1, for each of the vectors tk
of Exercise 2.11.12, one has ‖Uq(tk)‖ ≤ Lδ

√
q and conclude.

We end this section with a discussion of a question which shares some features
with Problem 2.11.2, in a sense that it is a property which is obvious, on one hand,
but difficult to prove without using the magic of linearity.26 For k ≤ N , let us
consider Gaussian processes (Xk,t )t∈Tk with associated distances dk . On the space
T =∏k≤N Tk , let us consider the distance d given by

d((tk)k≤N, (t ′k)k≤N) =
(∑

k≤N
dk(tk, t

′
k)

2
)1/2

. (2.142)

Proposition 2.11.16 We have

γ2(T , d) ≤ L
∑

k≤N
γ2(Tk, dk) . (2.143)

Proof Assuming without loss of generality that the processes (Xk)k≤N are inde-
pendent, we can consider the Gaussian process (Xt)t∈T given for t = (tk)k≤N by
Xt =∑k≤N Xk,tk . It is obvious that the distance d of (2.143) is associated with this
process. It is also obvious that

sup
t∈T

Xt =
∑

k≤N
sup
t∈Tk

Xtk .

Taking expectation and combining with (2.114) conclude the proof. �
The question now is to prove (2.143) without using Gaussian processes, for example,
by proving it for any sequence ((Tk, dk))k≤N of metric spaces. The most interesting
part of that project is that it is unexpectedly hard. Is it the sign that we are still
missing an important ingredient? In the next exercise, we show how to prove about
the simplest possible case of (2.143), which is already pretty challenging.

Exercise 2.11.17 Throughout this exercise, each space Tk consists of Mk points,
and the mutual distance of any two different points of Tk is εk > 0. The goal is to
prove the inequality

∫ √
logN(T , d, ε)dε ≤ L

∑

k≤N
εk
√

logMk . (2.144)

26 There are several equally frustrating instances of this situation.
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Throughout the exercise, I denotes a subset of {1, . . . , N}, and I c denotes its
complement.

(a) Prove that if
∑

k∈I ε2
k ≤ ε2, then N(T , d, ε) ≤∏k∈I c Mk .

(b) Show that to prove (2.144), it suffices to prove the following: Consider two
sequences (εk)k≤N and (ηk)k≤N . For ε > 0, define S(ε) by

S(ε)2 = inf
{∑

k∈I c
η2
k ;
∑

k∈I
ε2
k ≤ ε2

}
,

where the infimum is over all choices of I . Then
∫ ∞

0
S(ε)dε ≤ L

∑

k≤N
εkηk . (2.145)

(c) To prove (2.145), show that it suffices to prove the following: Consider a
function h > 0 on a probability space. For ε > 0, define S̃(ε) by

S̃(ε)2 = inf
{ ∫

Ac

1

h
dμ ;

∫

A

hdμ ≤ ε2
}
,

where the infimum is over all choices of A. Then
∫∞

0 S̃(ε)dε ≤ L. Hint: Reduce
to the case where

∑
k≤N εkηk = 1. Use the probability μ on {1, . . . , N} such

that μ({k}) = εkηk and the function h given by h(k) = εk/ηk .
(d) Show that it suffices to prove that

∑
�∈Z 2−�S̃(2−�) ≤ L.

(e) Assuming for simplicity that μ has no atoms,27 prove the statement given in
(d). Hint: For � ∈ Z and 2−2� ≤ ∫ hdμ, consider the set A� of the type A� =
{h ≤ t�} where t� is such that

∫
A�

hdμ = 2−2�, so that S̃(2−�)2 ≤ ∫Ac
�
(1/h)dμ.

Warning: This is not easy.

Exercise 2.11.18 This exercise continues the previous one. The spaces (Tk, dk) are
now any metric spaces, and the goal is to prove that

∫ ∞

0

√
logN(T , d, ε)dε ≤ L

∑

k≤N

∫ ∞

0

√
logN(Tk, dk, ε)dε . (2.146)

Proving this requires passing the main difficulty of proving (2.143), but to
prove (2.143) itself, it will be convenient to use different tools, and that proof
is the object of Exercise 3.1.6.

27 I am sure that this is true without this hypothesis, but I did not find the energy to carry out the
details.
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(a) Show that to prove (2.146), it suffices to prove the following: Consider
decreasing functions fk : R+ → R

+, and for ε > 0, define V (ε) by

V (ε)2 = inf
{∑

k≤N
fk(εk)

2 ;
∑

k≤N
ε2
k ≤ ε2

}
,

where the infimum is taken over all families (εk)k≤N . Then

∫ ∞

0
V (ε)dε ≤ L

∑

k≤N

∫ ∞

0
fk(ε)dε . (2.147)

(b) When each fk is of the type fk = ηk1[0,θk[, deduce (2.146) from (2.145).
(c) Convince yourself that by approximation, it suffices to consider the case where

each fk is a finite sum
∑

� 2−�1[0,θk�[.
(d) In the case (c), prove (2.147) by applying the special case (b) to the family fk,�

of functions given by fk,� := 2−�1[0,θk,�[ for all relevant values of k, �. Hint:
This is a bit harder.

2.12 Dreams

We may reformulate the inequality (2.114)

1

L
γ2(T , d) ≤ E sup

t∈T
Xt ≤ Lγ2(T , d)

of Theorem 2.10.1 by the statement

Chaining suffices to explain the size of a Gaussian process. (2.148)

We simply mean that the “natural” chaining bound for the size of a Gaussian process
(i.e., the right-hand side inequality in (2.114)) is of correct order, provided one uses
the best possible chaining. This is what the left-hand side of (2.114) shows. We may
dream of removing the word “Gaussian” in that statement. The desire to achieve this
lofty goal in as many situations as possible motivates much of the rest of the book.

Besides the generic chaining, we have found in Theorem 2.11.9 another optimal
way to bound Gaussian processes: to put them into the convex hull of a “small”
process, that is, to use the inequality

E sup
t∈T

Xt ≤ L inf
{
S ; T ⊂ conv{tk, k ≥ 1}, ‖tk‖ ≤ S/

√
log(k + 1)

}
.

Since we do not really understand the geometry of going from a set to its convex
hull, it is better (for the time being) to consider this method as somewhat distinct
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from the generic chaining. Let us try to formulate it in a way which is suitable for
generalizations. Given a countable set V of r.v.s, let us define the (possibly infinite)
quantity

S(V) = inf
{
S > 0 ;

∫ ∞

S

∑

V∈V
P(|V | > u)du ≤ S

}
. (2.149)

Lemma 2.12.1 It holds that

E sup
V∈convV

|V | ≤ 2S(V) . (2.150)

Proof We combine (2.6) with the fact that for S > S(V), we have

∫ ∞

0
P
(

sup
V∈convV

|V | ≥ u
)

du ≤ S +
∫ ∞

S

∑

V∈V
P(|V | > u)du ≤ 2S . �

Thus, (2.150) provides a method to bound stochastic processes. This method
may look childish, but for Gaussian processes, the following reformulation of
Theorem 2.11.9 shows that it is in fact optimal:

Theorem 2.12.2 Consider a countable set T . Consider a Gaussian process
(Xt)t∈T , and assume that Xt0 = 0 for some t0 ∈ T . Then there exists a countable
set V of Gaussian r.v.s, each of which is a multiple of the difference of two variables
Xt , with

∀t ∈ T ; Xt ∈ convV , (2.151)

S(V) ≤ LE sup
t∈T

Xt . (2.152)

To understand the need of the condition Xt0 = 0 for some t0, think of the case
where T consists of one single point. The proof of Theorem 2.12.2 is nearly obvious
by using (2.132) to bound S(V) for the set V consisting of the variables Xtk for the
sequence (tk) constructed in Theorem 2.11.9. We may dream of proving statements
such as Theorem 2.12.2 for many classes of processes.

Also worthy of detailing is another remarkable geometric consequence of The-
orem 2.11.9 in a somewhat different direction. Consider an integer N . Considering
i.i.d. standard Gaussian r.v.s, we define as usual the process Xt = ∑i≤N giti . We
may view an element t of �2

N as a function on �2
N by the canonical duality, and

therefore view t as a r.v. on the probability space (�2
N,μ), where μ is the law of the

sequence (gi)i≤N . The processes (Xt) and (t) have the same law; hence, they are
really the same object viewed in two different ways. Consider a subset T of �2

N , and
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assume that T ⊂ conv{tk; k ≥ 1}. Then for any v > 0, we have

{
sup
t∈T

t > v
}
⊂
⋃

k≥1

{tk > v} . (2.153)

The sets {tk ≥ v} on the right are very simple: they are half-spaces. Assume now
that for k ≥ 1 and a certain S, we have ‖tk‖

√
log(k + 1) ≤ S. Then for u ≥ 2

∑

k≥1

μ({tk ≥ Su}) ≤
∑

k≥1

exp
(
− u2

2
log(k + 1)

)
≤ L exp(−u2/L) ,

the very same computation as in (2.132). Theorem 2.11.9 implies that one may find
such tk for S = LE supt Xt . Therefore for v ≥ LE supt Xt , the fact that the set in
the left-hand side of (2.153) is small (in the sense of probability) may be witnessed
by the fact that this set can be covered by a union of simple sets (half-spaces), the
sum of the probabilities of which is small.

We may dream that something similar occurs in many other settings. In Chap. 13,
which can be read right now, we will meet such a fundamental setting, which
inspired the author’s lifetime favorite problem (see Sect. 13.3).

2.13 A First Look at Ellipsoids

We have illustrated the gap between Dudley’s bound (2.41) and the sharper
bound (2.34), using examples (2.49) and (2.42). These examples might look
artificial, but here we demonstrate that the gap between Dudley’s bound (2.41) and
the generic chaining bound (2.34) already exists for ellipsoids in Hilbert space. Truly
understanding ellipsoids will be fundamental in several subsequent questions, such
as the matching theorems of Chap. 4. A further study of ellipsoids is proposed in
Sect. 3.2.

Given a sequence (ai)i≥1 , ai > 0, we consider the ellipsoid

E =
{
t ∈ �2 ;

∑

i≥1

t2
i

a2
i

≤ 1
}
. (2.154)

Proposition 2.13.1 When
∑

i≥1 a
2
i <∞, we have

1

L

(∑

i≥1

a2
i

)1/2 ≤ E sup
t∈E

Xt ≤
(∑

i≥1

a2
i

)1/2
. (2.155)
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Proof The Cauchy-Schwarz inequality implies

Y := sup
t∈E

Xt = sup
t∈E

∑

i≥1

tigi ≤
(∑

i≥1

a2
i g

2
i

)1/2
. (2.156)

Taking ti = a2
i gi/(

∑
j≥1 a

2
j g

2
j )

1/2 yields that actually Y = (
∑

i≥1 a
2
i g

2
i )

1/2 and

thus EY 2 = ∑
i≥1 a

2
i . The right-hand side of (2.155) follows from the Cauchy-

Schwarz inequality:

EY ≤ (EY 2)1/2 =
(∑

i≥1

a2
i

)1/2
. (2.157)

For the left-hand side, let σ = maxi≥1 |ai|. Since Y = supt∈E Xt ≥ |ai||gi | for any
i, we have σ ≤ LEY . Also,

EX2
t =

∑

i

t2
i ≤ max

i
a2
i

∑

j

t2
j

a2
j

≤ σ 2 . (2.158)

Then (2.118) implies28

E(Y − EY )2 ≤ Lσ 2 ≤ L(EY )2 ,

so that
∑

i≥1 a
2
i = EY 2 = E(Y − EY )2 + (EY )2 ≤ L(EY )2. �

As a consequence of Theorem 2.10.1,

γ2(E) ≤ L
(∑

i≥1

a2
i

)1/2
. (2.159)

This statement is purely about the geometry of ellipsoids. The proof we gave was
rather indirect, since it involved Gaussian processes. Later on, in Chap. 4, we will
learn how to give “purely geometric” proofs of similar statements that will have
many consequences.

Let us now assume that the sequence (ai)i≥1 is non-increasing. Since

2n ≤ i ≤ 2n+1 ⇒ a2n ≥ ai ≥ a2n+1

we get

∑

i≥1

a2
i =

∑

n≥0

∑

2n≤i<2n+1

a2
i ≤

∑

n≥0

2na2
2n

28 One may extend (2.118) to the case where U is infinite by a proper definition of supt∈U Xt .
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and

∑

i≥1

a2
i ≥

∑

n≥0

2na2
2n+1 = 1

2

∑

n≥1

2na2
2n ,

and thus
∑

n≥0 2na2
2n ≤ 3

∑
i≥1 a

2
i . So we may rewrite (2.155) as

1

L

(∑

n≥0

2na2
2n

)1/2 ≤ E sup
t∈E

Xt ≤
(∑

n≥0

2na2
2n

)1/2
. (2.160)

Proposition 2.13.1 describes the size of ellipsoids with respect to Gaussian
processes. Our next result describes their size with respect to Dudley’s entropy
bound (2.38).

Proposition 2.13.2 We have

1

L

∑

n≥0

2n/2a2n ≤
∑

n≥0

2n/2en(E) ≤ L
∑

n≥0

2n/2a2n . (2.161)

The right-hand sides in (2.160) and (2.161) are distinctly different.29 Dudley’s
bound fails to describe the behavior of Gaussian processes on ellipsoids. This is a
simple occurrence of a general phenomenon. In some sense, an ellipsoid is smaller
than what one would predict just by looking at its entropy numbers en(E). This idea
will be investigated further in Sect. 4.1.

Exercise 2.13.3 Prove that for an ellipsoid E of Rm, one has

∑

n≥0

2n/2en(E) ≤ L
√

log(m+ 1)γ2(E, d) ,

and that this estimate is essentially optimal. Compare with (2.58).

The proof of (2.161) hinges on ideas which are at least 50 years old and which
relate to the methods of Exercise 2.5.9. The left-hand side is the easier part (it is
also the most important for us). It follows from the next lemma, the proof of which
is basically a special case of (2.45).

Lemma 2.13.4 We have en(E) ≥ 1
2a2n .

Proof Consider the following ellipsoid in R
2n :

En =
{
(ti )i≤2n ;

∑

i≤2n

t2
i

a2
i

≤ 1
}
.

29 This difference may seem rather small, but, as we shall see in Chap. 4, there are natural situations
where it really matters.
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Since En is the image of E by a contraction30(namely, the “projection on the first 2n

coordinates”), it holds that en(En) ≤ en(E).
Throughout the rest of this section, we denote by B the centered unit Euclidean

ball of R2n and by Vol the volume in this space. Let us consider a subset T of En,
with card T ≤ 22n and ε > 0; then

Vol
(⋃

t∈T
(εB + t)

)
≤
∑

t∈T
Vol(εB + t) ≤ 22nε2nVolB = (2ε)2nVolB .

Since we have assumed that the sequence (ai) is non-increasing, we have ai ≥ a2n

for i ≤ 2n and thus a2nB ⊂ En, so that VolEn ≥ a2n
2nVolB. Thus, whenever 2ε < a2n ,

we cannot have En ⊂⋃t∈T (εB + t), so that en(En) ≥ a2n/2. �
We now turn to the upper bound, which relies on a special case of (2.46). We keep
the notation of the proof of Lemma 2.13.4.

Lemma 2.13.5 We have

en+3(E) ≤ en+3(En)+ a2n . (2.162)

Proof We observe that when t ∈ E , then, using that ai ≤ a2n for i > 2n in the last
inequality,

1 ≥
∑

i≥1

t2
i

a2
i

≥
∑

i>2n

t2
i

a2
i

≥ 1

a2
2n

∑

i>2n
t2
i

so that (
∑

i>2n t
2
i )

1/2 ≤ a2n and, viewing En as a subset of E , we have d(t, En) ≤
a2n. Thus, if for k ≥ 1 we cover En by Nk balls of radius ε, the balls with the
same centers but radius ε + a2n cover E . This proves that ek(En) ≤ ek(E)+ a2n and
hence (2.162). �
Lemma 2.13.6 Let ε = maxk≤n a2k2

k−n. Consider a subset A of En with the
following property:

Any two points of A are at mutual distance ≥ 2ε . (2.163)

Then cardA ≤ Nn+3.

Proof The balls centered at the points of A, with radius ε, have disjoint interiors, so
that the volume of their union is cardAVol(εB), and since these balls are entirely
contained in En + εB, we have

cardA Vol(εB) ≤ Vol(En + εB) . (2.164)

30 Generally speaking, a map ϕ from a metric space (T , d) to a metric space (T ′, d ′) is called a
contraction if d ′(ϕ(x), ϕ(y)) ≤ d(x, y).
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For t = (ti )i≤2n ∈ En, we have
∑

i≤2n t
2
i /a

2
i ≤ 1, and for t ′ in εB, we have

∑
i≤2n t

′2
i /ε2 ≤ 1. Let ci = 2 max(ε, ai). Since

∑

i≤2n

(ti + t ′i )2

c2
i

≤
∑

i≤2n

2t2
i + 2t ′2i
c2
i

≤
∑

i≤2n

1

2

( t2
i

a2
i

+ t ′2i
ε2

)
≤ 1 ,

we have

En + εB ⊂ E1 :=
{
t ;
∑

i≤2n

t2
i

c2
i

≤ 1
}
.

Therefore

Vol(En + εB) ≤ Vol E1 = VolB
∏

i≤2n
ci

and comparing with (2.164) yields

cardA ≤
∏

i≤2n

ci

ε
= 22n

∏

i≤2n
max

(
1,

ai

ε

)
.

Next it follows from the choice of ε that for any k ≤ n, we have a2k2
k−n ≤ ε. Then

ai ≤ a2k ≤ ε2n−k for 2k < i ≤ 2k+1, so that

∏

i≤2n
max

(
1,

ai

ε

)
=

∏

k≤n−1

∏

2k<i≤2k+1

max
(

1,
ai

ε

)

≤
∏

k≤n−1

(
2n−k

)2k = 2
∑

k≤n−1(n−k)2k ≤ 22n+2

since
∑

i≥0 i2
−i = 4. Therefore, cardA ≤ 22n · 22n+2 ≤ Nn+3. �

Lemma 2.13.7 We have

en+3(En) ≤ 2 max
k≤n (a2k2

k−n) . (2.165)

Proof Assume now that A is as large as possible under (2.163). Then the balls
centered at points of A and with radius ≤ 2ε cover En, for otherwise we could add
a point to A. Since cardA ≤ Nn+3, we have en+3(En) ≤ 2ε. �
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Combining (2.165) with (2.162), we obtain

Corollary 2.13.8 We have

en+3(E) ≤ 3 max
k≤n (a2k2k−n) . (2.166)

Proof of Proposition 2.13.2 We have, using (2.166),

∑

n≥3

2n/2en(E) =
∑

n≥0

2(n+3)/2en+3(E) ≤ L
∑

n≥0

2n/2
(∑

k≤n
2k−na2k

)

= L
∑

k≥0

2ka2k
∑

n≥k
2−n/2 ≤ L

∑

k≥0

2k/2a2k .

Since E is contained in the ball centered at the origin with radius a1, we have
en(E) ≤ a1 for each n. The result follows. �

2.14 Rolling Up Our Sleeves: Chaining on Ellipsoids

Let us recall the ellipsoid E of (2.154). We have proved (2.159) as a consequence
of the majorizing measure theorem, Theorem 2.10.1. We will later give a more
geometrical proof of this result. In the present section, we demonstrate the hard way
that these results are deep, by explicitly constructing a chaining on the ellipsoid
E .31 This is surprisingly non-trivial.32 Let us assume that the sequence (ai) is non-
increasing, and for n ≥ 0, let In = {i; 2n ≤ i < 2n+1} so that card In = 2n and

E ⊂ E ′ =
{
t ∈ �2 ;

∑

n≥0

1

a2
2n

∑

i∈In
t2
i ≤ 1

}
=
{
t ∈ �2 ;

∑

n≥0

2n

cn

∑

i∈In
t2
i ≤ 1

}
,

(2.167)

where cn = 2na2
2n . Furthermore (as in the previous section),

∑
n≥0 cn =

∑
n≥0 2na2

2n ≤ 3
∑

i≥1 a
2
i . For such an ellipsoid E ′, we will construct sets Un ⊂ �2

with cardUn ≤ Nn+n0 (where n0 is a universal constant) such that

∀t ∈ E ′ ,
∑

n≥0

2n/2d(t, Un) ≤ L
(∑

n≥0

cn

)1/2
. (2.168)

31 There are obvious similarities between this section and Sect. 2.6. It is a good challenge to figure
out by yourself how to do the chaining on ellipsoids after having studied Sect. 2.6.
32 I am grateful to Dali Liu for having suggested to include this section.
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Let us now deduce from this result how to perform the chaining on the ellipsoid E
of (2.154). As we have just seen, such an ellipsoid is contained in an ellipsoid E ′
of the type (2.167) for which

∑
n≥0 cn ≤ L

∑
i≥1 a

2
i . Consider the sets Un ⊂ �2

as in (2.168). Consider a map ϕ : �2 → E such that d(x, ϕ(x)) ≤ 2d(x, E),
and observe that for t ∈ E and x ∈ �2 we have d(x, ϕ(x)) ≤ 2d(x, t) so
that d(t, ϕ(x)) ≤ d(t, x) + d(x, ϕ(x)) ≤ 3d(t, x). Consequently, d(t, ϕ(Un)) ≤
3d(t, Un). The sets ϕ(Un) ⊂ E satisfy cardϕ(Un) ≤ cardUn ≤ Nn+n0 . We define
Tn = {0} for n ≤ n0 and Tn = Un−n0 for n > n0. Thus, cardTn ≤ Nn and (2.168)
implies

∀t ∈ E ,
∑

n≥0

2n/2d(t, Tn) ≤ L
(∑

i

a2
i

)1/2
.

We now prepare for the construction of the sets Un. There is no loss of generality
to assume that

∑
n≥0 cn = 1.

Lemma 2.14.1 Given t ∈ E ′, we can find a sequence (p(n, t))n≥0 of integers with
the following properties:

∑

i∈In
t2
i ≤ 2−p(n,t) , (2.169)

∑

n≥0

2n/2−p(n,t)/2 ≤ L , (2.170)

∀n ≥ 0 , p(n+ 1, t) ≤ p(n, t) + 2 . (2.171)

Proof Define q(n, t) as the largest integer q ≤ 2n such that
∑

i∈In t
2
i ≤ 2−q . Let

A = {n ≥ 0; q(n, t) < 2n}, so that for n ∈ A by definition of q(n, t) we have
2−q(n,t) ≤ 2

∑
i∈In t

2
i . Thus, since t ∈ E ′,

∑

n∈A

2n−q(n,t)

cn
≤ 2

∑

n≥0

2n

cn

∑

i∈In
t2
i ≤ 2.

Since
∑

n cn = 1, then
∑

n∈A 2n/2−q(n,t)/2 ≤ L by the Cauchy-Schwarz inequality.
Since 2n/2−q(n,t)/2 = 2−n/2 for n �∈ A, we have

∑
n≥0 2n/2−q(n,t)/2 ≤ L. We define

now p(n, t) = min{q(k, t)+2(n−k); 0 ≤ k ≤ n} so that (2.171) holds. Also, since
2−p(n,t)/2 ≤∑k≤n 2−q(k,t)/2−(n−k), we obtain

∑

n≥0

2n/2−p(n,t)/2 ≤
∑

n≥0

∑

k≤n
2k/2−q(k,t)/22−(n−k)/2

=
∑

k≥0

2k/2−q(k,t)/2
∑

n≥k
2−(n−k)/2 ≤ L . �
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For each n ≥ 1 and p ≥ 0, consider the set B(n, p) ⊂ �2 which consists
of the t = (ti )i≥1 such that ti = 0 if i ≥ 2n and ‖t‖2 ≤ 2−p/2+2. This is a
ball of dimension 2n − 1 and radius 2−p/2+2. Using (2.47) for ε = 1/4, there is
a set Vn,p ⊂ B(n, p) with cardVn,p ≤ L2n such that every point of B(n, p) is
within distance ≤ 2−p/2 of Vn,p. We consider the set Vn = ∪0≤p≤2nVn,p so that
cardVn,p ≤ L2n . We set U0 = {0}, and we consider the sets Un consisting of the
elements x0 + . . .+ xn where xk ∈ Vk

For t ∈ �2 and n ≥ 0, we define t(n) ∈ �2 by t
(n)
i = ti if i < 2n and t

(n)
i = 0 if

i ≥ 2n. Note that t(n) = t for t ∈ Un.

Lemma 2.14.2 For t ∈ E ′, consider the sequence (p(n, t)) of Lemma 2.14.1. Then
for each n, we can find u(n) ∈ Un such that d(u(n), t(n)) ≤ 2−p(n,t)/2.

Proof The proof is by induction over n. For n = 0, it suffices to take u(0) = 0 since
t(0) = 0. For the induction step from n to n+ 1, we have t(n) = u(n)+ v(n) where
u(n) ∈ Un and ‖v(n)‖2 ≤ 2−p(n,t)/2, so that t(n+1) = u(n) + v′(n) where v′(n) =
v(n) + t(n+1) − t(n). By (2.169) ‖t(n+1) − t(n)‖2 = (

∑
i∈In t

2
i )

1/2 ≤ 2−p(n,t)/2.

Thus, ‖v′(n)‖2 ≤ 2−p(n,t)/2+1 ≤ 2−p(n+1,t )/2+2 where we have used (2.171) in the
second inequality. Since v(n)i = 0 for i ≥ 2n, we have v′(n)i = 0 for i ≥ 2n+1 so
that v′(n) ∈ B(n + 1, p(n + 1, t)). Thus, there is an element w ∈ Vn+1,p(n+1,t ) ⊂
Vn+1 for which ‖v′(n)−w‖2 ≤ 2−p(n+1,t )/2. Setting u(n+1) := u(n)+w ∈ Un+1,
we then have t(n+1) − u(n+ 1) = v′(n)−w. �
Corollary 2.14.3 For t ∈ E ′ we have

∑
n≥0 2n/2d(t, Un) ≤ L.

Proof Recalling (2.169), we have

‖t − t(n)‖2
2 =

∑

k>n

∑

i∈Ik
t2
i ≤

∑

k>n

2−p(k,t)

so that ‖t − t(n)‖2 ≤∑k>n 2−p(k,t)/2. Then

∑

n≥0

2n/2‖t − t(n)‖2 ≤
∑

n≥0

∑

k>n

2−p(k,t)/2 =
∑

k≥1

2−p(k,t)/2
∑

0≤n<k

2n/2

≤ L
∑

k≥1

2k/2−p(k,t)/2 ≤ L ,

using (2.170) in the last inequality. Since d(t, Un) ≤ d(t(n), Un)+ ‖t − t(n)‖2, the
result follows, using also Lemma 2.14.2. �
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2.15 Continuity of Gaussian Processes

By far, the most important result concerning continuity of Gaussian processes is
Dudley’s bound (1.19). However since the finiteness of the right-hand side of (1.19)
is not necessary for the Gaussian process to be continuous, there are situations
where this bound is not appropriate.33 In the present section, we show that a suitable
form of the generic chaining allows us to capture the exact modulus of continuity
of a Gaussian process with respect to its canonical distance in full generality.
Not surprisingly, the modulus of continuity is closely related to the rate at which
the series

∑
n 2n/2Δ(An(t)) converges uniformly on T for a suitable admissible

sequence (An). Our first result shows how to obtain a modulus of continuity using
the generic chaining.

Lemma 2.15.1 Consider a metric space (T , d) and a process (Xt)t∈T which
satisfies the increment condition (2.4):

∀u > 0 , P(|Xs −Xt | ≥ u) ≤ 2 exp

(

− u2

2d(s, t)2

)

. (2.4)

Assume that there exists a sequence (Tn) of subsets of T with card Tn ≤ Nn such
that for a certain integer m and a certain number B one has

sup
t∈T

∑

n≥m
2n/2d(t, Tn) ≤ B . (2.172)

Consider δ > 0. Then, for any u ≥ 1, with probability ≥ 1− exp(−u22m), we have

∀ s, t ∈ T , d(s, t) ≤ δ ⇒ |Xs −Xt | ≤ Lu(2m/2δ + B) . (2.173)

Proof We assume T finite for simplicity. For n ≥ m and t ∈ T , denote by πn(t) an
element of Tn such that d(t, πn(t)) = d(t, Tn). Consider the event Ωu defined by34

∀ n ≥ m+ 1 , ∀ t ∈ T , |Xπn−1(t) −Xπn(t)| ≤ Lu2n/2d(πn−1(t), πn(t)) ,

(2.174)

and

∀ s′, t ′ ∈ Tm , |Xs ′ −Xt ′ | ≤ Lu2m/2d(s′, t ′) . (2.175)

33 In practice, however, as of today, the Gaussian processes for which continuity is important can
be handled through Dudley’s bound, while for those which cannot be handled through this bound
(such as in Chap. 4), it is boundedness which matters. For this reason, the considerations of the
present section are of purely theoretical interest and may be skipped at first reading.
34 We are again following the general method outlined at the end of Sect. 2.4.
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Then as in Sect. 2.4, we have P(Ωu) ≥ 1 − exp(−u22m). Now, when Ωu occurs,
using chaining as usual and (2.174), we get

∀t ∈ T , |Xt −Xπm(t)| ≤ LuB . (2.176)

Moreover, using (2.172) in the inequality, d(t, πm(t)) = d(t, Tm) ≤ B2−m/2 , so
that, using (2.175),

d(s, t) ≤ δ ⇒ d(πm(s), πm(t)) ≤ δ + 2B2−m/2

⇒ |Xπm(s) −Xπm(t)| ≤ Lu(δ2m/2 + B) .

Combining with (2.175) proves that |Xs −Xt | ≤ Lu(δ2m/2+B) and completes the
proof. �
Exercise 2.15.2 Deduce Dudley’s bound (1.19) from Lemma 2.15.1.

We now turn to our main result, which exactly describes the modulus of
continuity of a Gaussian process in terms of certain admissible sequences. It implies
in particular the remarkable fact (discovered by X. Fernique) that for Gaussian
processes the “local modulus of continuity” (as in (2.177)) is also “global”.

Theorem 2.15.3 There exists a constant L∗ with the following property. Consider
a Gaussian process (Xt)t∈T , with canonical associated distance d given by (0.1).
Assume that S = E supt∈T Xt <∞. For k ≥ 1, consider δk > 0, and assume that

∀ t ∈ T ; E sup
{s∈T ;d(s,t)≤δk}

|Xs −Xt | ≤ 2−kS . (2.177)

Let n0 = 0, and for k ≥ 1, consider an integer nk for which

L∗S2−nk/2−k ≤ δk . (2.178)

Then we can find an admissible sequence (An) of partitions of T such that

∀ k ≥ 0 ; sup
t∈T

∑

n≥nk
2n/2Δ(An(t)) ≤ LS2−k . (2.179)

Conversely, given integers nk and an admissible sequence (An) as in (2.179) and
defining now δ∗k = S2−nk/2−k, with probability ≥ 1− exp(−u22nk ), we have

sup
{s,t∈T ;d(s,t)≤δ∗k}

|Xs −Xt | ≤ Lu2−kS . (2.180)

The abstract formulation here might make it hard at first to feel the power of
the statement. The numbers δk control the (local) modulus of continuity of the
process. The numbers nk control the uniform convergence (over t) of the series
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∑
n≥0 2n/2Δ(An(t)). They relate to each other by the relation δk ∼ S2−nk/2−k . The

second part of the theorem asserts that in turn the numbers nk control the uniform
modulus of continuity (2.180).

Proof According to the majorizing measure theorem and specifically (2.114), there
exists a constant L∗ such that for each subset U of T there exists an admissible
sequence (An) of partitions of U such that

∀t ∈ U ,
∑

n≥0

2n/2Δ(An(t)) ≤ L∗

2
E sup

s∈U
Xs . (2.181)

Assuming (2.177), by induction over k, we construct an admissible sequence
(An)n≤nk such that

1 ≤ p ≤ k ⇒ sup
t∈T

∑

np−1<n≤np
2n/2Δ(An(t)) ≤ L∗S2−p . (2.182)

For k = 1, the existence of the sequence (An)n<n1 follows from the Majorizing
Measure Theorem through (2.181) as explained, so we turn to the induction step
from k to k + 1. Using (2.182) for p = k, we deduce that for each t ∈ T ,
2nk/2Δ(Ank (t)) ≤ L∗S2−k , so that Δ(Ank (t)) ≤ L∗S2−nk/2−k ≤ δk using (2.178)
in the last inequality. Consequently, for any element C of Ank , we have Δ(C) ≤ δk ,
so that considering any point t of C we have, using (2.177) in the last inequality,

E sup
s∈C

Xs = E sup
s∈C

(Xs −Xt) ≤ E sup
{s∈T ;d(s,t)≤δk}

|Xs −Xt | ≤ S2−k .

Using the majorizing measure theorem, we construct for each C ∈ Ank an
admissible sequence (AC,n)n≥0 of partitions of C for which

∀ t ∈ C ,
∑

n≥0

2n/2Δ(AC,n(t)) ≤ L∗S2−k−1 . (2.183)

For nk < n ≤ nk+1, we simply define An as the collection of all sets in one of the
partitions AC,n−1 where C ∈ Ank , so that cardAn ≤ Nn−1 cardAnk ≤ N2

n−1 ≤ Nn.
Since for t ∈ C we have An(t) = AC,n−1(t), it follows from (2.183) that for any
C ∈ Ank , we have

sup
t∈C

∑

nk<n≤nk+1

2n/2Δ(An(t)) ≤ sup
t∈C

∑

n>nk

2n/2Δ(AC,n−1(t)) ≤ L∗S2−k .

This completes the induction and the construction of the sequence (An)

since (2.182) implies (2.179).
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It remains to prove the “conversely” part. For this for each n ≥ 0, we simply
consider a subset Tn of T such that

∀A ∈ An , card(Tn ∩ A) = 1 .

For each k, we then use Lemma 2.15.1 for m = nk and B = S2−k . �

Key Ideas to Remember35

• The generic chaining efficiently organizes the standard chaining argument for
processes whose increments have Gaussian-like tails governed by a distance d as
in (2.4).

• The generic chaining applied to such processes motivates the introduction of our
main measure γ2(T , d) of the size of a metric space (T , d). This measure involves
the existence of suitable sequences of partitions.

• The fundamental problem then becomes how to construct such sequences of
partitions in a metric space.

• There is a machine (called a partitioning scheme) to construct such sequences of
partitions. The input to the machine is a functional, a function of the subsets of
our basic metric space, which in a sense is a measure of their size. The existence
of such functionals with specific growth properties is intrinsically linked to the
existence of such sequences of partitions.

• The majorizing measure theorem is the statement that for a Gaussian process
with index set T and canonical distance d the quantity E supt∈T Xt is exactly of
order γ2(T , d). The proof relies on a partitioning scheme, used for the functional
F(A) = E supt∈AXt . Sudakov minoration and concentration of measure are the
main tools to prove that this functional satisfies the required growth condition.

• Gaussian processes can be seen as subsets of a standard Hilbert space, but the
geometric understanding that would relate the size of a set with the size of its
convex hull is still lacking.

• The traditional way to organize chaining uses entropy numbers. Even for sets as
basic as ellipsoids in Hilbert space, entropy numbers provide only a suboptimal
description of their size.

2.16 Notes and Comments

I have heard people saying that the problem of characterizing continuity and
boundedness of Gaussian processes goes back (at least implicitly) to Kolmogorov.
The understanding of Gaussian processes was long delayed by the fact that in

35 The function of this brief summary is not to explain the material again, but is a way for the
reader to check that she did understand the main ideas. If any of the points made below is not clear
to the reader, she may not be ready to proceed and may want to review the corresponding material.
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the most immediate examples the index set is a subset of R or R
n and that the

temptation to use the special structure of this index set is nearly irresistible. Probably
the single most important conceptual progress about Gaussian processes was the
realization, in the late 1960s, that the boundedness of a (centered) Gaussian process
is determined by the structure of the metric space (T , d), where d is the usual
distance d(s, t) = (E(Xs−Xt)

2)1/2. It is difficult now to realize what a tremendous
jump in understanding this was, since this seems so obvious a posteriori.

In 1967, R. Dudley obtained the inequality (2.38). (As he pointed out, R. Dudley
did not state (2.38) though he performed all the essential steps and (2.38) totally
deserves to be called Dudley’s bound.) A few years later, X. Fernique proved that
in the “stationary case”, Dudley’s inequality can be reversed [32], i.e., he proved in
that case the lower bound of Theorem 2.10.1. This historically important result was
central to the work of Marcus and Pisier [61, 62] who built on it to solve all the
classical problems on random Fourier series. Some of their results will be presented
in Chap. 7. Interestingly, now that the right approach has been found, the proof of
Fernique’s result is not really easier than that of Theorem 2.10.1.

Another major contribution of Fernique (building on earlier ideas of C. Preston)
was an improvement of Dudley’s bound based on a new tool called majorizing
measures (which we will study in Sect. 3.1.3). Fernique conjectured that his bound
was essentially optimal. Gilles Pisier suggested in 1983 that I should work on this
conjecture. In my first attempt, I proved fast that Fernique’s conjecture held in the
case where the metric space (T , d) is ultrametric. I learned that Fernique had already
done this, so I was discouraged for a while. In the second attempt, I tried to decide
whether a majorizing measure existed on ellipsoids. I had the hope that some simple
density with respect to the volume measure would work. It was difficult to form any
intuition, and I struggled in the dark for months. At some point, I tried a combination
of suitable point masses and easily found a direct construction of the majorizing
measure on ellipsoids. This made it believable that Fernique’s conjecture was true,
but I still tried to disprove it. Then I realized that I did not understand why a direct
approach using a partitioning scheme should fail, while this understanding should
be useful to construct a counterexample. Once I tried this direct approach, it was a
matter of 3 days to prove Fernique’s conjecture. Gilles Pisier made two comments
about this discovery. The first one was “you are lucky”, by which he meant that I
was lucky that Fernique’s conjecture was true, since a counter example would have
been of limited interest. I am grateful to this day for his second comment: “I wish I
had proved this myself, but I am very glad you did it”.

Fernique’s concept of majorizing measures is difficult to grasp and was dismissed
by the main body of probabilists as a mere curiosity. (I myself found it very difficult
to understand.) This could be the main reason why Fernique’s pathbreaking work
did not receive the recognition it should have. I have tried to repair this and to
express my personal admiration by dedicating this book to his memory and by
paying homage to his work at numerous places in this book.

In 2000, while discussing one of the open problems of this book with Keith Ball
(be he blessed for his interest in it!), I discovered that one could replace majorizing
measures by the totally natural variation on the usual chaining arguments that was
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presented here. That this was not discovered much earlier is a striking illustration
of the inefficiency of my brain. For two decades, it looked like majorizing measures
would not be of any use anymore, but they now play again a major role again for
reasons to be explained in Chap. 5.

In [111], the author presented a particularly simple proof of Theorem 2.10.1
(expressed in terms of majorizing measures since the generic chaining had not been
invented yet). It is based on a partition scheme related to the one we use here. The
precise relationship is discussed on page 72 of [132].

It is on purpose that I did not stress Slepian’s lemma, which is the statement
that (2.127) holds for L = 1. This lemma is very specific to Gaussian processes,
and focusing on it seems a good way to guarantee that one will never move beyond
these. One notable progress I made was to discover (ages ago) the scheme of proof
of Proposition 2.10.8 that dispenses with Slepian’s lemma and that we shall use in
many situations. Comparison results such as Slepian’s lemma are not at the root of
results such as the majorizing measure theorem, but rather are (at least qualitatively)
a consequence of them as in Corollary 2.10.12. This being said, Slepian’s lemma is
historically very important as it crystallizes the link between E supt∈T Xt and the
structure of the metric space (T , d).



Chapter 3
Trees and Other Measures of Size

In this chapter, we systematically investigate different ways to measure the size of a
metric space. One of them, Fernique’s functional of Sect. 3.3 will play a major role
in the sequel, as it is the form which lends itself to vast generalizations. The concept
of a tree presented in Sect. 3.1 is historically important: the author discovered many
of the results he presents while thinking in terms of trees. We know now how to
present these results and their proofs without ever mentioning trees, arguably in a
more elegant fashion, so that trees are not used explicitly elsewhere in this book.
However, it might be too early to dismiss this concept, at least as an instrument of
discovery.

3.1 Trees

We shall describe different ways to measure the size of a metric space and show that
they are all equivalent to the functional γ2(T , d).1

In a nutshell, a tree is a certain structure that requires a “lot of space” to be
constructed, so that a metric space needs to be large in order to contain large trees. At
the simplest level, it already takes some space to construct in a set A sets B1, . . . , Bn

which are appropriately separated from each other. This is even more so if the sets
B1, . . . , Bn are themselves large (e.g., because they contain many sets far from each
other). Trees are a proper formulation of the iteration of this idea. The basic use of
trees is to measure the size of a metric space by the size of the largest tree (of a
certain type) which it contains. Different types of trees yield different measures of
size.

1 It is possible to consider more general notions corresponding to other functionals considered in
the book, but for simplicity we consider only the case of γ2.
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A tree T of a metric space (T , d) is a finite collection of non-empty subsets of T
with the following two properties:

Given A,B in T , if A ∩ B �= ∅ , then either A ⊂ B or else B ⊂ A . (3.1)

T has a largest element . (3.2)

The important condition here is (3.1), and (3.2) is just for convenience.
If A,B ∈ T and B ⊂ A, B �= A, we say that B is a child of A if

C ∈ T , B ⊂ C ⊂ A⇒ C = B or C = A . (3.3)

We denote by c(A) the number of children of A. Since our trees are finite, some
of their sets will have no children. It is convenient to “shrink these sets to a single
point”, so we will consider only trees with the following property:

If A ∈ T and c(A) = 0 , then A contains exactly one point . (3.4)

A fundamental property of trees is as follows: consider trees T1, . . . ,Tm, and for
1 ≤ � ≤ m, let A� be the largest element of T�. Assume that the sets A� are disjoint,
and consider a set A with

⋃
�≤m A� ⊂ A ⊂ T . Then the collection of subsets of

T consisting of A and of
⋃

�≤m T� is a tree. The proof is straightforward. This fact
allows one to construct iteratively more and more complicated (and larger) trees.

An important structure in a tree is a branch. A sequence A0, A1, . . . , Ak is a
branch if A�+1 is a child of A� and if moreover A0 is the largest element of T
while Ak has no child. Then by (3.4), the set Ak is reduced to a single point t , and
A0, . . . , Ak are exactly those elements of T which contain t . So in order to describe
the branches of T , it is convenient to introduce the set

ST = {t ∈ T ; {t} ∈ T } , (3.5)

which we call the support of T . If a set A in a tree has no child, one may call it a
leaf. Thus, a leaf of a tree is reduced to one single point, and the support of a tree is
the union of its leaves. By considering all the collections {A ∈ T ; t ∈ A} as t varies
in ST , we obtain all the branches of T .

3.1.1 Separated Trees

We now quantify our desired property that the children of a given set should be far
from each other in an appropriate sense. A separated tree is a tree T such that to
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each A in T with c(A) ≥ 1 is associated an integer s(A) ∈ Z with the following
properties: First,

If B1 and B2 are distinct children of A, then d(B1, B2) ≥ 4−s(A) . (3.6)

Here, d(B1, B2) = inf{d(x1, x2); x1 ∈ B1, x2 ∈ B2}. We observe that in (3.6),
we make no restriction on the diameter of the children of A, see Fig 3.1. (Such
restrictions will, however, occur in the other notion of tree that we consider later.)
Second, to rule out pathologies, we will also make the following purely technical
assumption:

If B is a child of A , then s(B) > s(A) . (3.7)

An example of separated tree is shown on Fig. 3.1. To measure the size of a
separated tree T , we introduce its depth, i.e.,

ρ(T ) := inf
t∈ST

∑

t∈A∈T
4−s(A)

√
log c(A) . (3.8)

Here and below, we make the convention that the summation does not include the
term A = {t} (for which c(A) = 0). The quantity (3.8) takes into account both the
separation between the children of A (through the term 4−s(A)) and their number

A1

B A0

A2

A3

C

x

Fig. 3.1 A separated tree. The children of A0 are A1 and B. The children of A1 are A2 and C.
A0, A1, A2, and A3 form a branch, of which A3 is a leaf
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(through the term
√

log c(A)). This will be a common feature of all our notions of
sizes of trees.

We observe that in (3.8), we have the infimum over t ∈ ST . In words,

A tree is large if it is large along every branch.

We can then measure the size of T by

sup{ρ(T ) ; T separated tree ⊂ T } . (3.9)

3.1.2 Organized Trees

The notion of separated tree we just considered is but one of many possible notions
of trees, and it does not seem fundamental. Rather, the quantity (3.9) is used as
a convenient intermediate technical step to prove the equivalence of several more
important quantities. Let us now consider another notion of trees, which is more
restrictive (and apparently much more important). An organized tree is a tree T
such that to each A ∈ T with c(A) ≥ 1 is associated an integer j = j (A) ∈ Z and
points t1, . . . , tc(A) with the properties that

1 ≤ � < �′ ≤ c(A)⇒ 4−j−1 ≤ d(t�, t�′) ≤ 4−j+2 (3.10)

and that each ball B(t�, 4−j−2) contains exactly one child of A. In some sense,
4−j (A) tells you at which scale the children of A live. Please note that it may happen
that 4−j (A) is much smaller than Δ(A). An example of organized tree is drawn in
Fig. 3.2.

If B1 and B2 are distinct children of A in an organized tree, then

d(B1, B2) ≥ 4−j (A)−2 , (3.11)

A0

A1 A2

Fig. 3.2 An organized tree. Here j (A2) > j (A1)
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so that an organized tree is also a separated tree, with s(A) = j (A) + 2, but the
notion of organized tree is more restrictive. (For example, we have no control over
the diameter of the children of A in a separated tree.)

We define the depth τ (T ) of an organized tree by

τ (T ) := inf
t∈ST

∑

t∈A∈T
4−j (A)

√
log c(A) . (3.12)

Another way to measure the size of T is then

sup{τ (T ) ; T organized tree ⊂ T } . (3.13)

If we simply view an organized tree T as a separated tree using (3.11), then
ρ(T ) = τ (T )/16 (where ρ(T ) is the depth of T as a separated tree). Thus, we have
shown the following:

Proposition 3.1.1 We have

sup{τ (T ) ; T organized tree} ≤ 16 sup{ρ(T ) ; T separated tree} . (3.14)

The next result provides the fundamental connection between trees and the func-
tional γ2.

Proposition 3.1.2 We have

γ2(T , d) ≤ L sup{τ (T ) ; T organized tree} . (3.15)

Proof We consider the functional

F(A) = sup{τ (T ) ; T ⊂ A , T organized tree} ,

where we write T ⊂ A as a shorthand for “∀B ∈ T , B ⊂ A”.
Next we prove that this functional satisfies the growth condition (2.77) for r = 16

whenever a is of the type 16−j , for c∗ = 1/L. For this, consider n ≥ 1 and m = Nn.
Consider j ∈ Z and t1, . . . , tm ∈ T with

1 ≤ � < �′ ≤ m⇒ 16−j ≤ d(t� , t�′) ≤ 2 · 16−j+1 . (3.16)

Consider sets H� ⊂ B(t�, 2 ·16−j−1) and α < min�≤m F(H�). Consider, for � ≤
m, an organized tree T� ⊂ H� with τ (T�) > α, and denote by A� its largest element.
Next we claim that the tree T consisting of C =⋃�≤mH� (its largest element) and
the union of the trees T� , � ≤ m, is organized, with j (C) = 2j−1 and A1, . . . , Am

as children of C (so that c(C) = m). To see this, we observe that since 4−j (C)−1 =
16−j we have 4−j (C)−1 ≤ d(t�, t�′) ≤ 2 · 16−j+1 ≤ 4−j (C)+2, so that (3.10) holds
for C. Furthermore, A� ⊂ H� ⊂ B(t�, 2 · 16−j−1) ⊂ B(t�, 4−j (C)−2), so that this
ball contains exactly one child of C. Other conditions follow from the fact that the
trees T� are themselves organized. Moreover, ST =⋃�≤m ST�

.
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Consider t ∈ ST , and let � with t ∈ ST�
. Then t ∈ C ∈ T , and also t ∈ A ∈ T

whenever t ∈ A ∈ T�. Thus, using also in the second line that j (C) = 2j − 1 and
that c(C) = m, we obtain

∑

t∈A∈T
4−j (A)

√
log c(A) ≥ 4−j (C)

√
log c(C)+

∑

t∈A∈T�

4−j (A)
√

log c(A)

≥ 4 · 16−j
√

logm+ τ (T�) ≥ 1

L
16−j2n/2 + α .

Since α is arbitrary, we have proved that

F
( ⋃

�≤m
H�

)
≥ τ (T ) ≥ 1

L
16−j2n/2 +min

�≤mF(H�) .

This completes the proof of the growth condition (2.77).
If one examines the proof of Theorem 2.9.1, one observes that it requires only

the growth condition (2.77) to hold true when a is of the type r−j , and we have just
proved that this is the case (for r = 16), so that from (2.81) we have proved that
γ2(T , d) ≤ L(F(T ) + Δ(T )). It remains only to prove that Δ(T ) ≤ LF(T ). For
this, we simply note that if s, t ∈ T , and j0 is the largest integer with 4−j0 ≥ d(s, t),
then the tree T consisting of T , {t}, {s}, is organized with j (T ) = j0 and c(T ) = 2,
so that F(T ) ≥ τ (T ) ≥ 4−j0

√
log 2 and 4−j0 ≤ LF(T ). �

3.1.3 Majorizing Measures

For a probability measure μ on a metric space (T , d), with countable support,2 we
define for each t ∈ T the quantity

Iμ(t) :=
∫ ∞

0

√

log
1

μ(B(t, ε))
dε =

∫ Δ(T )

0

√

log
1

μ(B(t, ε))
dε . (3.17)

The second equality follows from the fact that μ(B(t, ε)) = 1 when B(t, ε) = T ,
so that then the integrand is 0. It is important to master the mechanism at play in the
following elementary exercise:

2 We assume μ with countable support because we do not need a more general setting. The
advantage of this hypothesis is that there are no measurability problems.
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Exercise 3.1.3 Consider a number Δ > 0 and non-increasing function f :
[0,Δ] → R

+. Define ε0 = Δ and for n ≥ 1 define εn = inf{ε > 0; f (ε) ≤ 2n}.
Prove that

1

2

∑

n≥1

2nεn ≤
∫ Δ

0
f (ε)dε ≤ 2

∑

n≥0

2nεn .

Proposition 3.1.4 Given a metric space (T , d), we can find on T a probability
measure μ, supported by a countable subset of T and such that

sup
t∈T

Iμ(t) = sup
t∈T

∫ ∞

0

√

log
1

μ(B(t, ε))
dε ≤ Lγ2(T , d) . (3.18)

Any probability measure3 μ on (T , d) is called a majorizing measure. The reason
for this somewhat unsatisfactory name is that Xavier Fernique proved that for a
Gaussian process and a probability measure μ on T , one has

E sup
t∈T

Xt ≤ L sup
t∈T

Iμ(t) , (3.19)

so that μ can be used to “majorize” the process (Xt )t∈T .4 This was a major advance
over Dudley’s bound. The (in)famous theory of majorizing measures used the
quantity

inf
μ

sup
t∈T

Iμ(t) (3.20)

as a measure of the size of the metric space (T , d), where the infimum is over all
choices of the probability measure μ. This method is technically quite challenging.
We are going to prove that the quantity (3.20) is equivalent to γ2(T , d). A related
idea which is still very useful is explained in Sect. 3.3.

Proof Consider an admissible sequence (An) with

∀t ∈ T ,
∑

n≥0

2n/2Δ(An(t)) ≤ 2γ2(T , d) .

Let us now pick a point tn,A in each set A ∈ An, for each n ≥ 0. Since cardAn ≤
Nn, for each n, there are at most Nn points of the type tn,A. Attributing a mass
1/(2nNn) to each of them, we obtain a total mass ≤ 1. Thus, there is a probability
measure μ on T , supported by a countable set and satisfying μ({tn,A}) ≥ 1/(2nNn)

3 To avoid technicalities, one may assume that μ has countable support.
4 One typically uses the name only when such the right-hand side of (3.19) is usefully small.
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for each n ≥ 0 and each A ∈ An. Then,

∀n ≥ 1 , ∀A ∈ An , μ(A) ≥ μ({tn,A}) ≥ 1

2nNn

≥ 1

N2
n

so that given t ∈ T and n ≥ 1,

ε > Δ(An(t)) ⇒ μ(B(t, ε)) ≥ 1

N2
n

⇒
√

log
1

μ(B(t, ε))
≤ 2n/2+1 . (3.21)

Now, since μ is a probability, μ(B(t, ε)) = 1 for ε > Δ(T ), and then
log(1/μ(B(t, ε))) = 0. Thus

Iμ(t) =
∫ ∞

0

√

log
1

μ(B(t, ε))
dε =

∑

n≥0

∫ Δ(An(t))

Δ(An+1(t))

√

log
1

μ(B(t, ε))
dε

≤
∑

n≥1

2(n+1)/2+1Δ(An(t)) ≤ Lγ2(T , d)

using (3.21). �
Proposition 3.1.5 If μ is a probability measure on T (supported by a countable
set) and T is a separated tree on T , then

ρ(T ) ≤ L sup
t∈T

Iμ(t) .

Combining with (3.14), (3.15), and (3.18), this completes the proof that the four
“measures of the size of T ” considered in this section, namely, (3.9), (3.13), (3.20),
and γ2(T , d) are indeed equivalent.

Proof The basic observation is as follows: the sets

B(C, 4−s(A)−1) = {x ∈ T ; d(x,C) < 4−s(A)−1}

are disjoint as C varies over the children of A (as follows from (3.6)), so that one of
them has measure ≤ c(A)−1.

We then proceed in the following manner, constructing recursively an appropriate
branch of the tree. This is a typical and fundamental way to proceed when working
with trees. We start with the largest element A0 of T . We then select a child
A1 of A0 with μ(B(A1, 4−s(A0)−1)) ≤ 1/c(A0), and a child A2 of A1 with
μ(B(A2, 4−s(A1)−1)) ≤ 1/c(A1), etc., and continue this construction as long as
we can. It ends only when we reach a set of T that has no child and hence by (3.4)
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is reduced to a single point t which we now fix. For any set A with t ∈ A ∈ T , by
construction, we have

μ(B(t, 4−s(A)−1)) ≤ 1

c(A)

so that

4−s(A)−2
√

log c(A) ≤
∫ 4−s(A)−1

4−s(A)−2

√
1

logμ(B(t, ε))
dε , (3.22)

because the integrand is ≥ √log c(A) and the length of the interval of integration
is larger than 4−s(A)−2. By (3.7), the intervals ]4−s(A)−2 , 4−s(A)−1[ are disjoint for
different sets A with t ∈ A ∈ T , so summation of the inequalities (3.22) yields

1

16
ρ(T ) ≤

∑

t∈A∈T
4−s(A)−2

√
log c(A) ≤

∫ ∞

0

√
1

logμ(B(t, ε))
dε = Iμ(t) . �

In the rest of this chapter, we will implicitly use the previous method of “selecting
recursively the branch of the tree we follow” to prove lower bounds without
mentioning trees.

We end this section by an exercise completing the proof of (2.143).

Exercise 3.1.6 Consider metric spaces (Tk, dk)k≤N and probability measuresμk on
Tk . Consider the product probabilityμ on T =∏k≤N Tk and the distance (2.142).

(a) Prove that for t = (tk)k≤N , we have

Iμ(t) ≤ L
∑

k≤N
Iμk (tk) .

Hint: Use (2.147).
(b) Complete the proof of (2.143).

3.2 Rolling Up Our Sleeves: Trees in Ellipsoids

It is one thing to have proved abstract results but quite another thing to visualize
the combinatorics in concrete situations. Consider an ellipsoid E as in (2.154), so

that according to (2.155), S :=
√∑

i≤N a2
i measures its size. Assuming S <∞, the

goal of the present section is to construct explicitly an organized tree T whose depth
τ (T ) witnesses the size of the ellipsoid, i.e., τ (T ) ≥ S/L. This elaborate exercise
will have us confront a number of technical difficulties.
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We first reduce to the case where each ai is of the type 2−k for some k ∈ Z. Let
N
∗ = N \ {0}. For k ∈ Z, let us set Ik = {i ∈ N

∗; 2−k ≤ ai ≤ 2−k−1}, so that the
sets Ik cover N∗ and

∑
k 2−2k card Ik ≥∑i≥1 a

2
i /4 ≥ S2/4, while at the same time

E ⊃ E ′ =
{
t ∈ �2 ;

∑

k

22k
∑

i∈Ik
t2
i ≤ 1

}
. (3.23)

Thus, we have reduced the problem to considering only ellipsoids of the type E ′.
Here comes a somewhat unexpected argument. We are going to replace E ′ by a set
of the type

P =
{
t ∈ �2 ; ∀k , 22k

∑

i∈Ik
t2
i ≤ αk

}
,

where
∑

k αk = 1 (a condition which ensures that P ⊂ E ′). At first sight, the set P
looks much smaller than E ′, but this is not the case. First, how should we chose αk to
ensure that P is as large as possible? Considering independent Gaussian r.v.s (gi),

we have supt∈P
∑

i≥1 tigi =
∑

k

√
αk2−k

√∑
i∈Ik g

2
i , so that since E

√∑
i∈Ik g

2
i is

about
√

card Ik by (2.155), we obtain

E sup
t∈P

∑

i≥1

tigi is about
∑

k

√
αk2−k

√
card Ik . (3.24)

So to maximize this quantity (and, in a sense, the size of P), it is a good idea to
choose αk = 2−2k card Ik/S′2 where S′2 = ∑

� 2−2� card I�. Then, P takes the
form

P =
{
t ∈ �2 ; ∀k ,

∑

i∈Ik
t2
i ≤

2−4k

S′2
card Ik

}
.

This set is very simple: geometrically, P is a product of spheres of dimension
card Ik and radius rk , where rk is defined by r2

k = 2−4k card Ik/S′2. It will be very
useful to reduce to the case where the radii of these spheres are quite different from
each other. This is the purpose of the next lemma.

Lemma 3.2.1 There is a subset J of Z with the following two properties:

∑

k∈J
2−2k card Ik ≥ S′2/L . (3.25)

k, n ∈ J , k < n⇒ rn ≤ 2−6rk . (3.26)

Proof Since S < ∞, the sequence ak = 2−2k card Ik is bounded. We apply
Lemma 2.9.5 (or more precisely the version of this lemma where the index set is
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Z rather than N) with α = 2 to find a finite subset I ⊂ Z such that

k, n ∈ I , k �= n⇒ an < ak2|n−k| . (3.27)

and

∑

k∈I
ak ≥ S′2/L . (3.28)

Consider k, n ∈ I with k < n. Then an < 2n−kak, and recalling the value of an, this
means that card In ≤ 23(n−k) card Ik . Recalling the value of rk , this means that r2

n ≤
r2
k /2. Let us now enumerate I as a finite sequence (n(�))�≤N in increasing order, so

that rn(�+1) ≤ rn(�)/
√

2 and rn(�+12) ≤ 2−6rn(�). For 0 ≤ p ≤ 11, consider the set
Jp = {n(p + 12q); q ≥ 0, p + 12q ≤ N}, so that I = ∪0≤p≤11Jp. Consequently,∑

k∈I ak = ∑
0≤p≤11

∑
k∈Jp ak. Thus, using (3.28), there exists some p, 0 ≤

p ≤ 11 such that
∑

k∈Jp ak ≥ S′2/L, and the set Jp satisfies the desired
requirements. �
Consider a set J as constructed in Lemma 3.2.1. We then replace P by the subset
P ′ consisting of the points t ∈ P such that ti = 0 when i ∈ Ik and k /∈ J . We note
that

∑
k∈J rk

√
card Ik = ∑

k∈J 2−2k card Ik/S′ ≥ S′/L, where the last inequality
follows from (3.25).

We have now finished our preliminary reductions. To construct inside any
ellipsoid E an organized tree T such that its depth τ (T ) witnesses the size of E ,
it suffices to perform the same task for a set of the type

P ′ =
{
t ∈ �2(I∗) ; ∀k ≤ N ,

∑

i∈Ik
t2
i ≤ r2

k

}
,

where N is a given integer, where (Ik)k≤N are disjoint subsets of N∗ of union I∗,
and where rk+1 ≤ 2−6rk . Just as in (3.24), the size of P ′ is about

∑
k≤N rk

√
card Ik .

For k ≤ N , let us consider the sphere

Sk =
{
t ∈ �2(I∗) ;

∑

i∈Ik
t2
i ≤ r2

k , i �∈ Ik ⇒ ti = 0
}
.

It follows from the volume argument (2.45) (used for A = B and ε = 1/2) that
there is a subset Uk of Sk with

cardUk ≥ 2card Ik , (3.29)

such that any two distinct points of Uk are at distance≥ rk/2. Given 1 ≤ m ≤ N and
for k ≤ m given yk ∈ Uk , yk = (yk,i)i∈I ∗ consider the set A = A(y1, . . . , ym) ⊂ P ′
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defined as

A(y1, . . . , ym) =
{
t ∈ �2(I∗) ; ∀k ≤ m , ∀i ∈ Ik , ti = yk,i

}
.

We will show that these sets, together with the set P ′, form an organized tree T
(as defined in the previous section). When m < N , we have c(A) = cardUm+1:
the children of A are the sets A(y1, . . . , ym, y) where y ∈ Um+1. When m = N ,
we have c(A) = 0 and A(y1, . . . , yN) consists of single point. We now check the
condition (3.10). Consider m < N . Define j (A) as the smallest integer j such that
4−j−1 ≤ rm+1/2, so that rm+1 ≤ 2 · 4−j . For y ∈ Um+1, consider the unique
point t (y) ∈ A(y1, . . . , ym, y) such that t (y)i = 0 if i ∈ Ik for k > m + 1. Then
for y, y ′ ∈ Um+1, y �= y ′, the distance d(t (y), t (y ′)) is the same as the distance
between y and y ′, which are different points of Um+1 ⊂ Sm+1. Thus

4−j (A)−1 ≤ rm+1/2 ≤ d(t (y), t (y ′)) ≤ 2rm+1 ≤ 4−j (A)+1 .

Furthermore, recalling that rk+1 ≤ 2−6rk (so that in particular
∑

k≥m rk ≤ 2rm) if
x ∈ A(y1, . . . , ym, y), then

‖x − t (y)‖ ≤
∑

k≥m+2

rk ≤ 2rm+2 ≤ 2 · 2−6rm+1 ≤ 2−64−j (A)+1 = 4−j (A)−2 ,

so that A(y1, . . . , ym, y) ⊂ B(t (y), 4−j (A)−2) as required. Let us now study τ (T ).
A branch in T is defined by a point t ∈ ST , which is the unique point of a set of the
type A(y1, . . . , yN). Let us set A0 = P ′ and Am := A(y1, . . . , ym) for 1 ≤ m < N .
Then t ∈ Am for 0 ≤ m < N . Also, c(Am) = cardUm+1 and 4−j (Am) ≥ rm+1/2.
Thus, using (3.29) in the last equality,

∑

t∈A∈T
4−j (A)

√
log c(A) ≥

∑

0<m<N

4−j (Am)
√

log c(Am)

≥
∑

0<m<N

rm+1
√

log cardUm+1/L ≥
∑

1≤k≤N
rk
√

card Ik/L ,

and, as we have seen, this last quantity is the size of P ′.

3.3 Fernique’s Functional

3.3.1 Fernique’s Functional

In Sect. 3.1, we presented four equivalent methods to measure the size of a metric
space. (Besides our usual γ2(T , d), these were the maximum depth of a separated
or organized tree contained in T and majorizing measures.) Recalling (3.17), it will
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turn out that a fifth measure of size, the quantity

Fer(T , d) := sup
μ

∫

T

Iμ(t)dμ(t) (3.30)

will play an important role. Here, the supremum is over all probability measures on
T which are supported by a countable set.

Why is the functional (3.30) important? This is far from obvious. In the context
of Gaussian processes, this functional has no special importance, and the related
notion of majorizing measures is not particularly useful. We will first understand the
usefulness of Fernique’s functional in Chap. 5 while studying a class of processes
which are conditionally Gaussian. Furthermore, in the following chapters, we
will be able to use similar ideas in far more general situations, while the proper
generalization of the other functionals has not been found yet. In this section, we
will prove that Fernique’s functional is equivalent to the functional γ2(T , d):

1

L
γ2(T , d) ≤ Fer(T , d) ≤ Lγ2(T , d) . (3.31)

We will not give the simplest possible proof of this fact. Rather we will prepare for
future work by giving arguments which contain in germ the ideas which will prove
fruitful. The ideas of this section will not be critically used before Chap. 11.

A further understanding of Fernique’s functional will be reached in Sect. 3.5
where we will basically show the remarkable fact that the supremum in the right-
hand side of (3.30) is obtained when μ is the “law of the supremum”, i.e., the law
of a r.v. such that Xτ = supt∈T Xt (see Theorem 3.5.1).

The right-hand side inequality in (3.31) is the easiest and is a consequence of the
following:

Proposition 3.3.1 Consider a probability measure μ on a metric space (T , d).
Then

∫

T

Iμ(t)dμ(t) ≤ Lγ2(T , d) . (3.32)

Proof For each t ∈ T , we define ε0(t) = Δ(T ), and for n ≥ 1, we define

εn(t) = inf
{
ε > 0 ; μ(B(t, ε)) ≥ N−1

n+1

}
. (3.33)

Thus,
√

log(1/μ(B(t, ε))) ≤ L2n/2 for ε ≥ εn(t) and then

Iμ(t) =
∫ Δ(T )

0

√
1

log(μ(B(t, ε)))
dε =

∑

n≥0

∫ εn(t)

εn+1(t)

√
1

log(μ(B(t, ε)))
dε

≤ L
∑

n≥0

2n/2εn(t) . (3.34)
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Consider an admissible sequence (An) of partitions with

∀t ∈ T ,
∑

n≥0

2n/2Δ(An(t)) ≤ 2γ2(T , d) . (3.35)

Let us fix n ≥ 0 and set

Tn =
{
t ∈ T ; μ(An(t)) ≥ N−1

n+1

}; T ′n = T \ Tn =
{
t ∈ T ; μ(An(t)) < N−1

n+1

}
.

Thus, T ′n is the union of the sets A ∈ An which are of measure ≤ N−1
n+1. Since

cardAn ≤ Nn, we have μ(T ′n) ≤ NnN
−1
n+1 = N−1

n . Also, by definition of εn(t), we
have εn(t) ≤ Δ(An(t)) if t ∈ Tn and εn(t) ≤ Δ(T ) if t ∈ T ′n. Consequently,

∫

T

2n/2εn(t)dμ(t) =
∫

Tn

2n/2εn(t)dμ(t)+
∫

T ′n
2n/2εn(t)dμ(t)

≤
∫

Tn

2n/2Δ(An(t))dμ(t)+ LΔ(T )2n/2N−1
n .

Combining with (3.34), we obtain

∫

T

Iμ(t)dμ(t) ≤ LΔ(T )+ L

∫

T

∑

n≥1

2n/2Δ(An(t))dμ(t) . (3.36)

Integrating (3.35) with respect to μ proves that the last term of (3.36) is ≤
Kγ2(T , d) and concludes the proof since Δ(T ) ≤ Lγ2(T , d). �

3.3.2 Fernique’s Convexity Argument

Our approach to the left-hand side of (3.31) is based on the following elementary
fact, which is a consequence of the Hahn-Banach theorem:

Lemma 3.3.2 Consider a number a > 0. Consider a set S of functions on a finite
set T . Assume that for each probability measure ν on T , there exists f ∈ S such
that

∫
f dν ≤ a. Then for each ε > 0, there is a function f in the convex hull of S

such that f ≤ a + ε.

Proof Denote S+ the set of functions g such that there exists f ∈ S with f ≤ g.
Denote by C the closed convex hull of S+. We prove that the constant function a
equal to a everywhere belongs to C. We proceed by contradiction. If this is not the
case, by the Hahn-Banach theorem, we may separate C and a. That is, there exists
a linear functional ϕ on the space of functions on T such that ϕ(f ) > ϕ(a) for
f ∈ C. Consider then a function g on T with g ≥ 0. For each λ > 0 and each
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f ∈ S, we have f + λg ≥ f so that f + λg ∈ C and hence ϕ(f )+ λϕ(g) > ϕ(a).
This proves that ϕ(g) ≥ 0, i.e., ϕ is positive. Since T is finite, ϕ is of the form
ϕ(g) = ∑

t∈T αtg(t) for numbers αt ≥ 0. Setting β = ∑
t∈T α(t), consider the

probability measure ν on T given by ν({t}) = αt/β for t ∈ T . Then ϕ(g) = β
∫
gdν

for each function g on T . Taking g = a shows that βa = ϕ(a). By hypothesis, there
exists f ∈ C with

∫
f dν ≤ a. Then ϕ(f ) = β

∫
f dν ≤ βa = ϕ(a), a contradiction.

So we have proved that a ∈ C, the closure of the convex hull of S+.
Consequently, there is one point of this convex hull which is ≤ a + ε everywhere.
The result follows. �

Of course, the hypothesis that T is finite is inessential; it is just to avoid secondary
complications.

Let us give a version of the basic lemma sufficiently general to cover all our
needs.

Lemma 3.3.3 Consider a finite metric space (T , d). Consider a convex function
Φ :]0, 1] → R

+. Assume that for each probability measure μ on T and a certain
number D, one has

∫

T

dμ(t)
∫ Δ(T )

0
Φ(μ(B(t, ε)))dε ≤ D . (3.37)

Then there exists a probability measure μ on T for which

sup
t∈T

∫ Δ(T )

0
Φ(μ(B(t, ε)))dε ≤ 2D . (3.38)

Proof Let us denote by M(T ) the set of probability measures on T . The class C of
functions f on T that satisfy

∃μ ∈M(T ) ; ∀ t ∈ T , fμ(t) :=
∫ Δ(T )

0
Φ(μ(B(t, ε)))dε ≤ f (t)

is convex. This is immediate to check using the convexity of Φ. For each probability
measure ν on T , there exists f in C with

∫
f dν ≤ B: this is true for f = fν

by (3.37). Consequently by Lemma 3.3.2, there exists f ∈ C such that f ≤ 2B,
which is the content of the lemma. �
Corollary 3.3.4 Consider a finite metric space (T , d). Assume that for a certain
number C and for each probability measure μ on T , we have

∫

T

Iμ(t)dμ(t) ≤ C . (3.39)

Then there is probability measure μ on T such that

∀t ∈ T , Iμ(t) ≤ 2C + 2Δ(T ) . (3.40)
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Proof Calculus shows that the function Φ(x) = √log(e/x) is convex for x ∈]0, 1]
and

√
log(1/x) ≤ Φ(x) ≤ 1+√log(1/x). Thus

Iμ(t) ≤
∫ Δ(T )

0
Φ(μ(B(t, ε)))dε ≤ Δ(T )+ Iμ(t) ,

so that (3.39) implies that (3.37) holds for D = C + Δ(T ) and (3.40) then follows
from (3.38). �
Lemma 3.3.5 We have Δ(T ) ≤ LFer(T , d).

Proof Consider s, u ∈ T with d(s, u) ≥ Δ(T )/2 and the probability μ on T such
that μ({s}) = μ({u}) = 1/2. For ε < Δ(T )/2 ≤ d(s, u), we have μ(B(s, ε)) ≤
1/2, and this implies that Iμ(s) ≥ Δ(T )

√
log 2/2. Similarly we have Iμ(u) ≥

Δ(T )/L so that
∫
T Iμ(t)dμ(t) ≥ Δ(T )/L. �

Proof of (3.31) When T is Finite Combining Corollary 3.3.4 and Lemma 3.3.5, we
obtain that there exist a probability μ on T such that supt∈T Iμ(t) ≤ L Fer(T , d).
On the other hand, we have proved in Sect. 3.1 that γ2(T , d) ≤ L supt∈T Iμ(t).5 �

3.3.3 From Majorizing Measures to Sequences of Partitions

In Sect. 3.1, we have proved that given a probability measure μ on a metric space
T , we have

γ2(T , d) ≤ L sup
t∈T

Iμ(t) . (3.41)

We do not know how to generalize the arguments of the proof to the more general
settings we will consider later. We give now a direct proof, following a scheme
which we know how to generalize. The contents of this section will not be relevant
until Chap. 11. First, we prove that

Δ(T ) ≤ L sup
t∈T

Iμ(t) . (3.42)

For this, we consider s, t ∈ T with d(s, t) > Δ(T )/2 so that since the balls
B(t,Δ(T )/4) and B(s,Δ(T )/4) are disjoint, one of them, say the first one, has
a measure ≤ 1/2. Then μ(B(t, ε)) ≤ 1/2 for ε ≤ Δ(T )/4 and thus Iμ(t) ≥√

log 2Δ(T )/4. We have proved (3.42).

5 The argument by which we have proved this inequality will not generalize, but fortunately there
is another route, which is described in the next section.
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We start the main argument. We will construct an admissible sequence (An) of
partitions of T which witnesses (3.41). For A ∈ An, we also construct an integer
jn(A) as follows: First, we set A0 = A1 = {T } and j0(T ) = j1(T ) = j0, the largest
integer with Δ(T ) ≤ 2−j0(T ). Next for n ≥ 1, we require the conditions

A ∈ An ⇒ Δ(A) ≤ 2−jn(A)+2 , (3.43)

t ∈ A ∈ An ⇒ μ(B(t, 2−jn(A))) ≥ N−1
n−1 . (3.44)

The construction proceeds as follows: Having constructedAn, we split each element
A of An into at most Nn pieces, ensuring that cardAn+1 ≤ N2

n = Nn+1. For this,
we set

A0 = {t ∈ A;μ(B(t, 2−jn(A)−1)) ≥ 1/Nn} . (3.45)

We claim first that we may cover A0 by < Nn sets, each of diameter ≤ 2−jn(A)+1.
For this, we consider a subset W ofA0, maximal with respect to the property that any
two points of W are at distance > 2−jn(A). The balls of radius 2−jn(A)−1 centered at
the points ofW are disjoint, and each of them is of measure> N−1

n by (3.45), so that
there are < Nn of them. Since W is maximum, the balls of radius 2−jn(A) centered
at the points of W cover A0, and each of them has diameter ≤ 2−jn(A)+1. Thus,
there exists a partition of A0 in < Nn sets of diameter ≤ 2−jn(A)+1. The required
partition of A consists of these sets B and of A1 = A \ A0. For each set B, we
set jn+1(B) = jn(A) + 1, and we set jn+1(A1) = jn(A), so that conditions (3.43)
and (3.44) hold.

This completes the construction. The important point is that

B ∈ An+1, B ⊂ A ∈ An, jn+1(B) = jn(A)⇒ μ(B(t, 2−jn+1(B)))

= μ(B(t, 2−jn(A))) ≤ N−1
n . (3.46)

This property holds because if t ∈ A and μ(B(t, 2−jn(A))) > N−1
n , then t ∈ A0

and the element B of An+1 which contains t has been assigned a value jn+1(B) =
jn(A)+ 1.

To prove (3.41), we will prove that

∀t ∈ T ,
∑

n≥0

2n/2Δ(An(t)) ≤ LIμ(t) .

We fix t ∈ T . We set j (n) = jn(An(t)) and a(n) = 2n/22−j (n). Using (3.43), it
suffices to prove that

∑

n≥0

a(n) ≤ LIμ(t) . (3.47)
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We consider α = √
2 and the corresponding set I as in (2.84) (leaving to the reader

to prove that the sequence (a(n)) is bounded, which will become clear soon). Thus,
as in (2.91), we have

n ∈ I, n ≥ 1 ⇒ j (n+ 1) = j (n)+ 1 , j (n− 1) = j (n) . (3.48)

We enumerate I \ {0} as a sequence (nk)k≥0 (leaving again to the reader the easier
case where I is finite), so that j (nk+1) ≥ j (nk + 1) = j (nk)+ 1 and

∑

n≥0

a(n) ≤ La(0)+ L
∑

k≥1

a(nk) . (3.49)

From (3.48), we have j (nk − 1) = j (nk). Using (3.46) for n = nk − 1, we obtain

μ(B(t, 2−j (nk))) < N−1
nk−1 ,

so that
√

log(1/μ(B(t, ε)) ≥ 2nk/2/L for ε < 2−j (nk). Since j (nk+1) > j (nk), this
implies

a(nk) = 2nk/2−j (nk) ≤ 2 · 2nk/2(2−j (nk) − 2j (nk+1))

≤ L

∫ 2−j (nk)

2−j (nk+1)

√

log
1

μ(B(t, ε))
dμ(ε) .

Summation of these inequalities and use of (3.42) and (3.49) proves (3.47). �

3.4 Witnessing Measures

Proposition 3.4.1 ([65]) For a metric space (T , d), define

δ2(T , d) = sup
μ

inf
t∈T Iμ(t) , (3.50)

where the supremum is taken over all probability measures μ on T .6 Then

1

L
γ2(T , d) ≤ δ2(T , d) ≤ Lγ2(T , d) . (3.51)

6 Please observe that the order of the infimum and the supremum is not as in (3.20).
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It is obvious that inft∈T Iμ(t) ≤
∫
T Iμ(t)dμ(t) so that δ2(T , d) ≤ Fer(T , d).

Thus, the right-hand side of (3.51) follows from the right-hand side of (3.31), while
the left-hand side of (3.31) follows from the left-hand side of (3.51).

The most important consequence of (3.31) is that there exists a probability
measure μ on T for which inft∈T Iμ(t) ≥ γ2(T , d)/L. Such a probability measure
“witnesses that the value of γ2(T , d) is large” because of the right-hand side
of (3.51). In this spirit, we will call μ a witnessing measure, and we define its “size”
as the quantity inft∈T Iμ(t).7 Witnessing measures can be magically convenient.
One of the first advances the author made beyond the results of [132] was the
realization that witnessing measures yield a proof of Theorem 5.2.1 below an order
of magnitude easier than the original proof. This approach is now replaced by the use
of Fernique’s functional because, unfortunately, we do not know how to extend the
idea of witnessing measure to settings where multiple distances will be considered.
Finding proper generalizations of Proposition 3.4.1 to more general settings is an
attractive research problem (see in particular Problem 10.15.4).

Proof of Proposition 3.4.1 The right-hand side inequality follows from Proposi-
tion 3.3.1 and the trivial fact that inft∈T Iμ(t) ≤

∫
Iμ(t)dμ(t). The reader should

review the material of Sect. 3.1 to follow the proof of the converse. Recalling (3.5),
given an organized tree T , we define a measure μ on T by μ(A) = 0 if A∩ST = ∅
and by

t ∈ ST ⇒ μ({t}) = 1
∏

t∈A∈T c(A)
.

The intuition is that the mass carried by A ∈ T is equally divided between the
children of A. Then, Iμ(t) = ∞ if t �∈ ST . Consider t ∈ A ∈ T and j = j (A).
Then, since T is an organized tree, B(t, 4−j−2) meets only one child of A, so that
μ(B(t, 4−j−2)) ≤ 1/c(A). Copying the argument of (3.22) readily implies that
LIμ(t) ≥∑t∈A∈T 4−j (A)

√
log c(A) from which the result follows by (3.15). �

Exercise 3.4.2 For a metric space (T , d), define

χ2(T , d) = sup
μ

inf
∫ ∑

n≥0

2n/2Δ(An(t))dμ(t) ,

where the infimum is taken over all admissible sequences and the supremum over all
probability measures. It is obvious that χ2(T , d) ≤ γ2(T , d). Prove that γ2(T , d) ≤
Lχ2(T , d). Hint: Prove that the functional χ2(T , d) satisfies the appropriate growth
condition. Warning: The argument takes about half a page and is fairly non-trivial.

7 Thus, a probability measure μ on T is both a majorizing and a witnessing measure. It bounds
γ2(T , d) from above by L supt∈T Iμ(t) and from below by inft∈T Iμ(t)/L. Furthermore, one may
find μ such that these two bounds are of the same order.



106 3 Trees and Other Measures of Size

3.5 An Inequality of Fernique

We end up this chapter with a beautiful inequality of Fernique. It will not be
used anywhere else in this work, but is presented to emphasize Fernique’s lasting
contributions to the theory of Gaussian processes.

Theorem 3.5.1 Consider a Gaussian process (Xt)t∈T . Provide T with the canoni-
cal distance associated with this process, and consider a probability measure μ on
T . Consider a r.v. τ of law μ. Then for any probability measure ν on T , we have

EXτ ≤ L

∫

Iν(t)dμ(t)+ LΔ(T , d) . (3.52)

Here of course, Xτ is the r.v. Xτ(ω)(ω). We leave some technical details aside, and
prove the result only when T is finite. The basic principle is as follows:

Lemma 3.5.2 Consider a standard Gaussian r.v. g and a set A. Then, E1A|g| ≤
LP(A)

√
log(2/P(A)).

Proof We write

E1A|g| =
∫ ∞

0
P(A ∩ {|g| ≥ t})dt ≤

∫ ∞

0
min(P(A), 2 exp(−t2/2))dt .

Letting α = √2 log(2/P(A)), we split the integral in the regions t ≤ α and t > α.
We bound the first part by αP(A) and the second by

∫ ∞

α

2 exp(−t2/2)dt ≤ 1

α

∫ ∞

α

2t exp(−t2/2)dt = P(A)/α ≤ LP(A)α . �

Corollary 3.5.3 Consider Gaussian r.v.s (gi)i≤N with Eg2
i ≤ a2. Consider a r.v. τ

valued in {1, . . . , N}, and let αi = P(τ = i). Then E|gτ | ≤ La
∑

i≤N αi
√

log 2/αi .

Proof Since |gτ | = ∑
i≤N 1{τ=i}|gi |, and using Lemma 3.5.2 to obtain

E1{τ=i}|gi | ≤ Laαi
√

log 2/αi . �
We also need the following elementary convexity inequality:

Lemma 3.5.4 Consider numbers αi > 0 with
∑

i≤N αi ≤ α ≤ 1. Then

∑

i≤N
αi
√

log(2/αi) ≤ α
√

log(2N/α) . (3.53)

Proof Calculus shows that the function ϕ(x) = x
√

log(2/x) is concave increasing
for x ≤ 1, so that if α′ = ∑

i≤N αi , then N−1∑
i≤N ϕ(αi) ≤ ϕ(α′/N) ≤

ϕ(α/N). �
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The slightly technical part of the proof of Theorem 3.5.1 is contained in the
following:

Lemma 3.5.5 Consider probability measures μ and ν on a metric space (T , d).
Then there exist n0 ∈ Z and a sequence of partitions (Bn)n≥n0 (which need not
be increasing) of T with the following properties: First, Bn0 contains only one set.
Next, the sets of Bn are of diameter ≤ 2−n+2. Finally,

∑

n≥n0

2−n
∑

A∈Bn,B∈Bn+1

μ(A ∩ B)
√

log(2/μ(A ∩ B))

≤ L

∫

Iν(t)dμ(t)+ LΔ(T , d) . (3.54)

Proof We consider the largest integer n0 with 2−n0 ≥ Δ(T , d). We set Bn0 = {T }.
For n > n0, we proceed as follows: for k ≥ 0, we set

Tn,k = {t ∈ T ; 1/Nk+1 < ν(B(t, 2−n)) ≤ 1/Nk} .

The sets (Tn,k)k≥0 form a partition of T . Consider a subset V of Tn,k such that the
points of V are at mutual distance > 2−n+1. The balls of radius 2−n centered at the
points of V are disjoint, and by definition of Tn,k , they have a ν-measure > 1/Nk+1.
Thus, cardV ≤ Nk+1, and according to Lemma 2.9.3, ek+1(Tn,k) ≤ 2−n+1, and thus
Tn,k can be partitioned into at most Nk+1 sets of diameter ≤ 2−n+2. We construct
such a partition Bn,k of Tn,k for each k, and we consider the corresponding partition
Bn of T .

We now turn to the proof of (3.54). First we note that cardBn,k ≤ Nk+1 and
cardBn+1,� ≤ N�+1. Also,

∑
A∈Bn,k ,B∈Bn+1,�

μ(A ∩ B) ≤ μ(Tn,k ∩ Tn+1,�). We
then use (3.53) to obtain

Sn,k,� :=
∑

A∈Bn,k ,B∈Bn+1,�

μ(A ∩ B)
√

log(2/μ(A ∩ B))

≤ μ(Tn,k ∩ Tn+1,�)
√

log(2Nk+1N�+1/μ(Tn,k ∩ Tn+1,�)) .

The left-hand side of (3.54) is
∑

n≥n0
2−n

∑
k,� Sn,k,�. We will use the decompo-

sition

∑

k,�

Sn,k,� =
∑

(k,�)∈I (n)
Sn,k,� +

∑

(k,�)∈J (n)
Sn,k,�
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where I (n) = {(k, �);μ(Tn,k ∩ Tn+1,�) ≥ 1/(Nk+1N�+1)} and J (n) =
{(k, �);μ(Tn,k ∩ Tn+1,�) < 1/(Nk+1N�+1)}. Then

∑

(k,�)∈I (n)
Sn,k,� ≤

∑

k,�

μ(Tn,k ∩ Tn+1,�)

√
log(2N2

k+1N
2
�+1)

≤ L
∑

k,�

μ(Tn,k ∩ Tn+1,�)(2k/2 + 2�/2)

≤ L
∑

k

μ(Tn,k)2k/2 + L
∑

�

μ(Tn+1,�)2�/2 . (3.55)

Now the definition of Tn,k shows that

∑

k≥1

μ(Tn,k)2
k/2 ≤

∫ √
log(1/ν(B(t, 2−n))dμ(t) , (3.56)

and thus

∑

n≥n0

2−n
∑

k≥1

2k/2μ(Tn,k) ≤ L

∫

Iν(t)dμ(t) .

Next, since the functionϕ(x) = x
√

log 2Nk+1N�+1/x increases for x ≤ Nk+1N�+1,
for (k, �) ∈ J (n), we have ϕ(μ(Tn,k ∩ Tn+1,�)) ≤ ϕ(1/(Nk+1N�+1)) so that

∑

(k,�)∈J (n)
Sn,k,� ≤

∑

(k,�)∈J (n)
ϕ(μ(Tn,k ∩ Tn+1,�)) ≤

∑

(k,�)∈J (n)
ϕ(1/Nk+1N�+1)

≤ L
∑

k,�

2k/2 + 2�/2

Nk+1N�+1
≤ L . (3.57)

Combining these estimates yields the desired inequality:

∑

n≥n0

2−n
∑

k,�≥0

Sn,k,� ≤ L

∫

Iν(t)dμ(t)+ L2−n0 . �

Proof of Theorem 3.5.1 For n ≥ n0 and A ∈ Bn, we fix an arbitrary point tn,A ∈ A.
We lighten notation by writing t0 = tn0,T . We define πn(t) = tn,A for t ∈ A ∈ Bn.
We write

Xτ −Xt0 =
∑

n≥n0

Xπn+1(τ ) −Xπn(τ) , (3.58)
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so that defining Yn,τ := Xπn+1(τ ) − Xπn(τ), we have

E|Xτ −Xt0 | ≤
∑

n≥n0

E|Yn,τ | . (3.59)

Given A ∈ Bn and B ∈ Bn+1, let us define the variable YA,B := Xtn+1,B −Xtn,A . The
sets A ∩ B for A ∈ Bn and B ∈ Bn+1 form a partition of T . When τ (ω) ∈ A ∩ B,
we have πn(τ) = tn,A and πn+1(τ ) = tn+1,B so that Yn,τ = YA,B . The event
τ (ω) ∈ A ∩ B has probability μ(A ∩ B) since τ has law μ. When A ∩ B �= ∅, we
have d(tn+1,B, tn,A) ≤ Δ(A)+Δ(B) ≤ L2−n, so that EY 2

A,B = d(tn+1,B, tn,A)
2 ≤

L2−2n. It then follows from Corollary 3.5.3 that

E|Yn,τ | ≤ L2−n
∑

A∈Bn,B∈Bn+1

μ(A ∩ B)
√

log(2/μ(A ∩ B)) ,

and summation over n and use of (3.54) finishes the proof. �
It is actually possible to give a complete geometric description of the quantity

supτ EXτ where the supremum is taken over all the τ of given law μ (see [98]).

Key Ideas to Remember

• Trees in a metric space (T , d) are well-separated structures which are easy to
visualize and provide a convenient way to measure the size of this metric space,
by the size of the largest tree it contains. For suitable classes of trees, this measure
of size is equivalent to γ2(T , d).

• One may also measure the size of a metric space by the existence of certain
probability measures on this space. Fernique’s majorizing measures were used
early to control from above the size of a metric space in a way very similar to
the functional γ2(T , d), which is, however, far more technically convenient than
majorizing measures.

• An offshoot of the idea of majorizing measures, Fernique’s functional, is an
equivalent way to measure the size of a metric space and will be of fundamental
importance in the sequel.

• The size of a metric space (T , d) can also be bounded from below by the
existence of well-scattered probability measures on T .



Chapter 4
Matching Theorems

We remind the reader that before attacking any chapter, she should find useful to
read the overview of this chapter, which is provided in the appropriate subsection of
Chap. 1. Here, this overview should help to understand the overall approach.

4.1 The Ellipsoid Theorem

As pointed out after Proposition 2.13.2, an ellipsoid E is in some sense quite smaller
than what one would predict by looking only at the numbers en(E). We will trace the
roots of this phenomenon to a simple geometric property, namely, that an ellipsoid
is “sufficiently convex”, and we will formulate a general version of this principle for
sufficiently convex bodies. The case of ellipsoids already suffices to provide tight
upper bounds on certain matchings, which is the main goal of the present chapter.
The general case is at the root of certain very deep facts of Banach space theory, such
as Bourgain’s celebrated solution of the Λp problem in Sects. 19.3.1 and 19.3.2.

Recall the ellipsoid E of (2.154), which is defined as the set

E =
{

t ∈ �2 ;
∑

i≥1

t2
i

a2
i

≤ 1

}

(2.154)

and is the unit ball of the norm

‖x‖E :=
(∑

i≥1

x2
i

a2
i

)1/2

. (4.1)
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Lemma 4.1.1 We have

‖x‖E , ‖y‖E ≤ 1 ⇒
∥
∥
∥
x + y

2

∥
∥
∥
E
≤ 1− ‖x − y‖2

E
8

. (4.2)

Proof The parallelogram identity implies

‖x − y‖2
E + ‖x + y‖2

E = 2‖x‖2
E + 2‖y‖2

E ≤ 4

so that

‖x + y‖2
E ≤ 4− ‖x − y‖2

E

and

∥
∥
∥
x + y

2

∥
∥
∥
E
≤
(

1− 1

4
‖x − y‖2

E
)1/2 ≤ 1− 1

8
‖x − y‖2

E . �

Since (4.2) is the only property of ellipsoids we will use, it clarifies matters to
state the following definition:

Definition 4.1.2 Consider a number p ≥ 2. A norm ‖·‖ in a Banach space is called
p-convex if for a certain number η > 0 we have

‖x‖ , ‖y‖ ≤ 1 ⇒
∥
∥
∥
x + y

2

∥
∥
∥ ≤ 1− η‖x − y‖p . (4.3)

Saying just that the unit ball of the Banach space is convex implies that for
‖x‖, ‖y‖ ≤ 1, we have ‖(x+y)/2‖ ≤ 1. Here, (4.3) quantitatively improves on this
inequality. Geometrically, it means that the unit ball of the Banach space is “round
enough”.

Thus, (4.2) implies that the Banach space �2 provided with the norm ‖ · ‖E is
2-convex. For 1 < q < ∞, the classical Banach space Lq is p-convex where
p = max(2, q). The reader is referred to [57] for this result and any other classical
facts about Banach spaces. Let us observe that taking y = −x in (4.3), we must
have

2pη ≤ 1 . (4.4)

In this section, we shall study the metric space (T , d) where T is the unit ball of
a p-convex Banach space B and where d is the distance induced on B by another
norm ‖ · ‖∼. This concerns in particular the case where T is the ellipsoid (2.154)
and ‖ · ‖∼ is the �2 norm.
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Given a metric space (T , d), we consider the functionals

γα,β(T , d) = inf
(

sup
t∈T

∑

n≥0

(
2n/αΔ(An(t))

)β
)1/β

, (4.5)

where α and β are positive numbers and where the infimum is over all admissible
sequences (An). Thus, with the notation of Definition 2.7.3, we have γα,1(T , d) =
γα(T , d). For matchings, the important functionals are γ2,2(T , d) and γ1,2(T , d)

(but it requires no extra effort to consider the general case). The importance of these
functionals is that under certain conditions, they nicely relate to γ2(T , d) through
Hölder’s inequality. We explain right now how this is done, even though this spoils
the surprise of how the terms

√
logN occur in Sect. 4.5.

Lemma 4.1.3 Consider a finite metric space T , and assume that card T ≤ Nm.
Then,

γ2(T , d) ≤
√
mγ2,2(T , d) . (4.6)

Proof Since T is finite, there exists1 an admissible sequence (An) of T for which

∀t ∈ T ,
∑

n≥0

2nΔ(An(t))
2 ≤ γ2,2(T , d)

2 . (4.7)

Since cardT ≤ Nm, we may assume that Am consists of all the sets {t} for t ∈ T .
Then, Am(t) = {t} for each t , so that in (4.7) the sum is really over n ≤ m−1. Since
for any numbers (an)0≤n≤m−1 we have

∑
0≤n≤m−1 an ≤

√
m(
∑

0≤n≤m−1 a
2
n)

1/2 by
the Cauchy-Schwarz inequality, it follows that

∀t ∈ T ,
∑

n≥0

2n/2Δ(An(t)) ≤ √mγ2,2(T , d) . �

How to relate the functionals γ1,2 and γ2 by a similar argument is shown in
Lemma 4.7.9.

We may wonder how it is possible, using something as simple as the Cauchy-
Schwarz inequality in Lemma 4.1.3, that we can ever get essentially exact results.
At a general level, the answer is obvious: it is because we use this inequality in the
case of near equality. That this is indeed the case for the ellipsoids of Corollary 4.1.7
is a non-trivial fact about the geometry of these ellipsoids.

1 Since there are only finitely many admissible sequences, the infimum over these is achieved.
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Theorem 4.1.4 If T is the unit ball of a p-convex Banach space, if η is as in (4.3)
and if the distance d on T is induced by another norm, then

γα,p(T , d) ≤ K(α, p, η) sup
n≥0

2n/αen(T , d) . (4.8)

Before we prove this result (in Sect. 4.2), we explore some of its consequences.
The following exercise stresses the main point of this theorem:

Exercise 4.1.5 Consider a general metric space (T , d).

(a) Prove that

γα,p(T , d) ≤ K(α)
(∑

n≥0

(
2n/αen(T , d)

)p
)1/p

, (4.9)

and that

sup
n≥0

2n/αen(T , d) ≤ K(α)γα,p(T , d) . (4.10)

(b) Prove that it is essentially impossible in general to improve on (4.9). Hint: You
probably want to review Chap. 3 before you try this.

Thus, knowing only the numbers en(T , d), we would expect only the general
bound (4.9). The content of Theorem 4.1.4 is that the size of T , as measured by the
functional γα,p, is actually much smaller than that.

Corollary 4.1.6 (The Ellipsoid Theorem) Consider the ellipsoid E of (2.154) and
α ≥ 1. Then2

γα,2(E) ≤ K(α) sup
ε>0

ε(card{i ; ai ≥ ε})1/α. (4.11)

Proof Without loss of generality, we may assume that the sequence (ai) is non-
increasing. We apply Theorem 4.1.4 to the case ‖ · ‖ = ‖ · ‖E , where d is the
distance of �2, and we get

γα,2(E) ≤ K(α) sup
n≥0

2n/αen(E) .

To bound the right-hand side, we write

sup
n≥0

2n/αen(E) ≤ 22/αe0(E)+ sup
n≥0

2(n+3)/αen+3(E) .

2 Recalling that a subset of �2 is always provided with the distance induced by the �2 norm.
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We now proceed as in the proof of Proposition 2.13.2. Using (2.166), we have

sup
n≥0

2(n+3)/αen+3(E) ≤ K(α) sup
n≥0

2n/α max
k≤n 2k−na2k

= K(α) sup
0≤k≤n

2k−n(1−1/α)a2k

= K(α) sup
k≥0

2k/αa2k , (4.12)

and since e0(E) ≤ a1, we have proved that γα,2(E) ≤ K(α) supn≥0 2n/αa2n . Finally,
the choice ε = a2n shows that

2n/αa2n ≤ sup
ε>0

ε(card{i ; ai ≥ ε})1/α

since card{i; ai ≥ a2n} ≥ 2n because the sequence (ai) is non-increasing. �
The restriction α ≥ 1 is inessential and can be removed by a suitable modification

of (2.166). The important cases are α = 1 and α = 2. We will use the following
convenient reformulation:

Corollary 4.1.7 Consider a countable set J , numbers (bi)i∈J , and the ellipsoid

E =
{
x ∈ �2(J ) ;

∑

j∈J
b2
j x

2
j ≤ 1

}
.

Then

γα,2(E) ≤ K(α) sup
u>0

1

u
(card{j ∈ J ; |bj | ≤ u})1/α .

Proof Without loss of generality, we can assume that J = N. We then set ai = 1/bi ,
we apply Corollary 4.1.6, and we set ε = 1/u. �

We give right away a striking application of this result. This application is at the
root of the results of Sect. 4.7. We denote by λ Lebesgue’s measure.

Proposition 4.1.8 Consider the set L of functions f : [0, 1] → R such that f (0) =
f (1) = 0, f is continuous on [0, 1], f is differentiable outside a finite set, and
sup |f ′| ≤ 1.3 Then γ1,2(L, d2) ≤ L, where d2(f, g) = ‖f − g‖2 =

( ∫
[0,1](f −

g)2dλ
)1/2

.

3 The same result holds for the set L′ of 1-Lipschitz functions f with f (0) = f (1) = 0, since L is
dense in L′.
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Proof The very beautiful idea (due to Coffman and Shor [26]) is to use the Fourier
transform to represent L as a subset of an ellipsoid. The Fourier coefficients of a
function f ∈ L are defined for p ∈ Z by

cp(f ) =
∫ 1

0
exp(2πipx)f (x)dx .

The key fact is the Plancherel formula,

‖f ‖2 =
(∑

p∈Z
|cp(f )|2

)1/2
, (4.13)

which states that the Fourier transform is an isometry from L2([0, 1]) into �2
C
(Z).

Thus, if

D = {(cp(f ))p∈Z ; f ∈ L} ,

the metric space (L, d2) is isometric to a subspace of (D, d), where d is the
distance induced by �2

C
(Z). It is then obvious from the definition that γ1,2(L, d2) ≤

γ1,2(D, d), so that it suffices to prove that γ1,2(D, d) <∞. By integration by parts
and since f (0) = f (1) = 0, cp(f ′) = −2πipcp(f ), so that, using (4.13) for f ′,
we get

∑

p∈Z
p2|cp(f )|2 ≤

∑

p∈Z
|cp(f ′)|2 = ‖f ′‖2

2 .

For f ∈ L, we have f (0) = 0 and |f ′| ≤ 1 so that |f | ≤ 1 and |c0(f )| ≤ 1. Thus
for f ∈ L, we have

|c0(f )|2 +
∑

p∈Z
p2|cp(f )|2 ≤ 2 ,

and thus D is a subset of the complex ellipsoid E in �2
C
(Z) defined by

E :=
{
(cp) ∈ �2

C
(Z) ;

∑

p∈Z
max(1, p2)|cp|2 ≤ 2

}
.

Viewing each complex number cp as a pair (xp, yp) of real numbers with |cp|2 =
x2
p + y2

p yields that E is (isometric to) the real ellipsoid defined by

∑

p∈Z
max(1, p2)(x2

p + y2
p) ≤ 2 .
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We then apply Corollary 4.1.7 as follows: The set J consists of two copies of Z.
There is a two-to-one map ϕ from J to Z and bj = max(1, |ϕ(j)|). Then card{j ∈
J ; |bj | ≤ u} ≤ Lu for u ≥ 1 and = 0 for u < 1. �
Exercise 4.1.9

(a) For k ≥ 1, consider the space T = {0, 1}2k . Writing t = (ti)i≤2k a point
of T , consider on T the distance d(t, t ′) = 2−j−1, where j = min{i ≤
2k; ti �= t ′i }. Consider the set L of 1-Lipschitz functions on (T , d) which are
zero at t = (0, . . . , 0). Prove that γ1,2(L, d∞) ≤ L

√
k, where d∞ denotes the

distance induced by the uniform norm. Hint: Use Lemma 4.5.18 to prove that
en(L, d∞) ≤ L2−n, and conclude using (4.9).

(b) Let μ denote the uniform probability on T and d2 the distance induced by
L2(μ). It can be shown that γ1,2(L, d2) ≥

√
k/L. (This could be challenging

even if you master Chap. 3.) Meditate upon the difference with Proposi-
tion 4.1.8.

4.2 Partitioning Scheme II

Consider parameters α, p ≥ 1.

Theorem 4.2.1 Consider a metric space (T , d) and a number r ≥ 4. Assume that
for j ∈ Z, we are given functions sj ≥ 0 on T with the following property:

Whenever we consider a subset A of T and j ∈ Z with Δ(A) ≤ 2r−j ,

then for each n ≥ 1 either en(A) ≤ r−j−1, or else there exists t ∈ A

with sj (t) ≥ (2n/αr−j−1)p . (4.14)

Then we can find an admissible sequence (An) of partitions such that

∀t ∈ T ;
∑

n≥0

(2n/αΔ(An(t)))
p ≤ K(α, p, r)

(
Δ(T , d)p + sup

t∈T

∑

j∈Z
sj (t)

)
.

(4.15)

The proof is identical to that of Theorem 2.9.8 which corresponds to the case α = 2
and p = 1.

Proof of Theorem 4.1.4 We recall that by hypothesis T is the unit ball for the norm
‖ · ‖ of p-convex Banach space (but we study T for the metric d induced by a
different norm). For t ∈ T and j ∈ Z, we set

cj (t) = inf{‖v‖ ; v ∈ Bd(t, r
−j ) ∩ T } ≤ 1 , (4.16)
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where the index d emphasizes that the ball is for the distance d rather than for the
norm. Since T is the unit ball, we have cj (t) ≤ 1. Let us set

D = sup
n≥0

2n/αen(T , d) . (4.17)

The proof relies on Theorem 4.2.1 for the functions

sj (t) = KDp(cj+2(t)− cj−1(t)) , (4.18)

for a suitable value of K . Since cj (t) ≤ 1, it is clear that

∀t ∈ T ,
∑

j∈Z
sj (t) ≤ 3KDp ,

and (using also that Δ(T , d) ≤ 2e0(T , d)) the issue is to prove that (4.14) holds
for a suitable constant K in (4.18). Consider then a set A ⊂ T with Δ(A) ≤ 2r−j ,
consider n ≥ 1, and assume that en(A) > a := r−j−1. The goal is to find t ∈ A

such that sj (t) ≥ (2n/αr−j−1)p, i.e.,

KDp(cj+2(t)− cj−1(t)) ≥ (2n/αr−j−1)p . (4.19)

For this, let m = Nn. According to Lemma 2.9.3, (a) there exist points (t�)�≤m in
A, such that d(t�, t�′) ≥ a whenever � �= �′. We will show that one of the points t�
satisfies (4.19). Consider H� = T ∩Bd(t�, a/r) = T ∩Bd(t�, r

−j−2). By definition
of cj+1(t�), we have cj+2(t�) = inf{‖v‖ ; v ∈ H�}. The basic idea is that the points
of the different sets H� cannot be too close to each other for the norm of T because
there are Nn such sets. So, since the norm is sufficiently convex, we will find a point
in the convex hull of these sets with a norm quite smaller than max�≤m cj+2(t�). To
implement the idea, consider u′ such that

2 > u′ > max
�≤m inf{‖v‖ ; v ∈ H�} = max

�≤m cj+2(t�) . (4.20)

For � ≤ m, consider v� ∈ H� with ‖v�‖ ≤ u′. It follows from (4.3) that for �, �′ ≤ m,

∥
∥
∥
v� + v�′

2u′
∥
∥
∥ ≤ 1− η

∥
∥
∥
v� − v�′

u′
∥
∥
∥
p

. (4.21)

Set

u = inf
{
‖v‖ ; v ∈ conv

⋃

�≤m
H�

}
. (4.22)
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Since (v� + v�′)/2 ∈ conv
⋃

�≤m H�, by definition of u , we have u ≤ ‖v� + v′�‖/2,
and (4.21) implies

u

u′ ≤ 1− η

∥
∥
∥
v� − v�′

u′
∥
∥
∥
p

,

so that, using that u′ < 2 in the second inequality below,

‖v� − v�′‖ ≤ u′
(u′ − u

ηu′
)1/p

< R := 2
(u′ − u

η

)1/p
,

and hence the points w� := R−1(v�−v1) belong to the unit ball T . Now, since H� ⊂
Bd(t�, a/r), we have v� ∈ Bd(t�, a/r). Since r ≥ 4, we have d(v�, v�′) ≥ a/2 for
� �= �′, and since the distance d arises from a norm, by homogeneity, we have
d(w�,w�′) ≥ R−1a/2 for � �= �′. Then Lemma 2.9.3, (c) implies that en−1(T , d) ≥
R−1a/4, so that from (4.17) it holds that 2(n−1)/αR−1a/4 ≤ D, and recalling that
R = 2((u′ − u)/η)1/p, we obtain

(2n/αrj−1)p ≤ KDp(u′ − u) ,

where K depends on α only. Since this holds for any u′ as in (4.20), there exists �
such that

(2n/αrj−1)p ≤ KDp(cj+2(t�)− u) . (4.23)

Now, by construction, for �′ ≤ m, we have

H�′ ⊂ Bd(t�′, a/r) = Bd(t�′ , r
−j−2) ⊂ Bd(t�, r

−j+1)

since d(t�, t�′) ≤ 2r−j as t�, t�′ ∈ A and Δ(A) ≤ 2r−j . Thus conv
⋃

�′≤m H�′ ⊂
Bd(t�, r

−j+1) ∩ T , and from (4.16) and (4.22), we have u ≥ cj−1(t�), and we have
proved (4.19). �
Exercise 4.2.2 Write the previous proof using a certain functional with an appro-
priate growth condition.

The following generalization of Theorem 4.1.4 yields very precise results when
applied to ellipsoids. It will not be used in the sequel, so we refer to [132] for a
proof.

Theorem 4.2.3 Consider β , β ′ , p > 0 with

1

β
= 1

β ′
+ 1

p
. (4.24)
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Then, under the conditions of Theorem 4.1.4, we have

γα,β(T , d) ≤ K(p, η, α)
(∑

n

(2n/αen(T , d))
β ′
)1/β ′

.

Exercise 4.2.4 Use Theorem 4.2.3 to obtain a geometrical proof of (2.159). Hint:
Choose α = 2, β = 1, β ′ = p = 2 and use (2.166).

4.3 Matchings

The rest of this chapter is devoted to the following problem. Consider N r.v.s
X1, . . . , XN independently and uniformly distributed in the unit cube [0, 1]d , where
d ≥ 1. Consider a typical realization of these points. How evenly distributed
in [0, 1]d are the points X1, . . . , XN? To measure this, we will match the points
(Xi)i≤N with nonrandom “evenly distributed” points (Yi)i≤N , that is, we will
find a permutation π of {1, . . . , N} such that the points Xi and Yπ(i) are “close”.
There are different ways to measure “closeness”. For example, one may wish that
the sum of the distances d(Xi, Yπ(i)) be as small as possible (Sect. 4.5), that the
maximum distance d(Xi, Yπ(i)) be as small as possible (Sect. 4.7), or one can use
more complicated measures of “closeness” (Sect. 17.1).

The case d = 1 is by far the simplest. Assuming that the Xi are labeled in a way
that X1 ≤ X2 ≤ . . . and similarly for the Yi , one has E supi≤N |Xi − Yi | ≤ L

√
N .

This is a consequence of the classical inequality (which we will later prove as an
exercise):

E sup
0≤t≤1

| card{i ≤ N ; Xi ≤ t} − Nt| ≤ L
√
N . (4.25)

The case where d = 2 is very special and is the object of the present chapter.
The case d ≥ 3 will be studied in Chap. 18. The reader having never thought of
the matter might think that the points X1, . . . , XN are very evenly distributed. This
is not quite the case; for example, with probability close to one, one is bound to
find a little square of area about N−1 logN that contains no point Xi . This is a very
local irregularity. In a somewhat informal manner, one can say that this irregularity
occurs at scale

√
logN/

√
N . This specific irregularity is mentioned just as an easy

illustration and plays no part in the considerations of the present chapter. What
matters here4 is that in some sense, there are irregularities at all scales 2−k for
1 ≤ k ≤ L−1 logN and that these are all of the same order. To see this, let us
think that we actually move the points Xi to the points Yπ(i) in straight lines. In
a given small square of side 2−k , there is often an excess of points Xi of order

4 This is much harder to visualize and is specific to the case d = 2.
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√
N2−2k = 2−k

√
N . When matched these points will leave the square and will

cross its boundary. The number of points crossing this boundary per unit of length
is independent of the scale 2−k. It will also often happen that there is a deficit of
points Xi in this square of side 2−k , and in this case, some points Xi will have to
cross the boundary to enter it. The flows at really different scales should be roughly
independent, and there are about logN such scales, so when we combine what
happens at different scales we should get an extra factor

√
logN (and not logN).

Crossing our fingers, we should believe that about
√
N logN points Xi per unit of

length cross a typical interval contained in the square, so that the total length of the
segments joining the points Xi to the points Yπ(i) should be of that order.5 This fact
that all scales have the same weight is typical of dimension 2. In dimension 1, it is
the large scales that matter most, while in dimension ≥ 3, it is the small ones.

Exercise 4.3.1 Perform this calculation.

One can summarize the situation by saying that

obstacles to matchings at different scales may combine

in dimension 2 but not in dimension ≥ 3 . (4.26)

It is difficult to state a real theorem to this effect, but this is actually seen with great
clarity in the proofs. The crucial estimates involve controlling sums, each term of
which represents a different scale. In dimension 2, many terms contribute to the final
sum (which therefore results in the contribution of many different scales), while
in higher dimension, only a few terms contribute. (The case of higher dimension
remains non-trivial because which terms contribute depend on the value of the
parameter.) Of course, these statements are very mysterious at this stage, but we
expect that a serious study of the methods involved will gradually bring the reader
to share this view.

What does it mean to say that the nonrandom points (Yi)i≤N are evenly
distributed? When N is a square, N = n2, everybody will agree that the N points
(k/n, �/n), 1 ≤ k , � ≤ n are evenly distributed, and unless you love details, you
are welcomed to stick to this case. More generally, we will say that the nonrandom
points (Yi)i≤N are evenly spread if one can cover [0, 1]2 with N rectangles with
disjoint interiors, such that each rectangle R has an area 1/N , contains exactly one
point Yi , and is such that6 R ⊂ B(Yi , 10/

√
N). To construct such points, one may

proceed as follows: Consider the largest integer k with k2 ≤ N , and observe that
k(k + 3) ≥ (k + 1)2 ≥ N , so that there exist integers (ni)i≤k with k ≤ ni ≤ k + 3
and

∑
i≤k ni = N . Cut the unit square into k vertical strips, in a way that the i-th

5 As we will see later, we have guessed the correct result.
6 There is nothing magic about the number 10. Thinks of it as a universal constant. The last thing I
want is to figure out the best possible value. That 10 works should be obvious from the following
construction.
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strip has width ni/N and to this i-th strip attribute ni points placed at even intervals
1/ni .7

The basic tool to construct matchings is the following classical fact. The proof,
based on the Hahn-Banach theorem, is given in Sect. B.1.

Proposition 4.3.2 Consider a matrix C = (cij )i,j≤N . Let

M(C) = inf
∑

i≤N
ciπ(i) ,

where the infimum is over all permutations π of {1, . . . , N}. Then

M(C) = sup
∑

i≤N
(wi + w′i ) , (4.27)

where the supremum is over all families (wi)i≤N , (w′i )i≤N that satisfy

∀i, j ≤ N , wi +w′j ≤ cij . (4.28)

Thus, if cij is the cost of matching i with j, M(C) is the minimal cost of a matching
and is given by the “duality formula” (4.27).

A well-known application of Proposition 4.3.2 is another “duality formula”.

Proposition 4.3.3 Consider points (Xi)i≤N and (Yi)i≤N in a metric space (T , d).
Then

inf
π

∑

i≤N
d(Xi, Yπ(i)) = sup

f∈C

∑

i≤N
(f (Xi)− f (Yi)) , (4.29)

where C denotes the class of 1-Lipschitz functions on (T , d), i.e., functions f for
which |f (x)− f (y)| ≤ d(x, y).

Proof Given any permutation π and any 1-Lipschitz function f , we have

∑

i≤N
f (Xi)− f (Yi) =

∑

i≤N
(f (Xi)− f (Yπ(i))) ≤

∑

i≤N
d(Xi, Yπ(i)) .

7 A more elegant approach dispenses from this slightly awkward construction. It is the concept
of “transportation cost”. One attributes mass 1/N to each point Xi , and one measures the “cost
of transporting” the resulting probability measure to the uniform probability on [0, 1]2. In the
presentation, one thus replaces the evenly spread points Yi by a more canonical object, the uniform
probability on [0, 1]2. This approach does not make the proofs any easier, so we shall not use it
despite its aesthetic appeal.
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This proves the inequality ≥ in (4.29). To prove the converse, we use (4.27) with
cij = d(Xi, Yj ), so that

inf
π

∑

i≤N
d(Xi, Yπ(i)) = sup

∑

i≤N
(wi +w′i ) , (4.30)

where the supremum is over all families (wi) and (w′i ) for which

∀i , j ≤ N , wi +w′j ≤ d(Xi, Yj ) . (4.31)

Given a family (w′i )i≤N , consider the function

f (x) = min
j≤N(−w

′
j + d(x, Yj )) . (4.32)

It is 1-Lipschitz, since it is the minimum of functions which are themselves 1-
Lipschitz. By definition, we have f (Yj ) ≤ −w′j , and by (4.31) for i ≤ N , we
have wi ≤ f (Xi), so that

∑

i≤N
(wi +w′i ) ≤

∑

i≤N
(f (Xi)− f (Yi)) . �

Exercise 4.3.4 Consider a function f which achieves the supremum in the right-
hand side of (4.29). Prove that for an optimal matching, we have f (Xi)−f (Yπ(i)) =
d(Xi, Yπ(i)). If you know f , this basically tells you how to find the matching. To
find Yπ(i), move from Xi in the direction of steepest descent of f until you find a
points Yj .

The following is a well-known and rather useful result of combinatorics. We
deduce it from Proposition 4.3.2 in Sect. B.1, but other proofs exist, based on
different ideas (see, for example, [21] § 2).

Corollary 4.3.5 (Hall’s Marriage Lemma) Assume that to each i ≤ N , we
associate a subset A(i) of {1, . . . , N} and that, for each subset I of {1, . . . , N},
we have

card
(⋃

i∈I
A(i)

)
≥ card I . (4.33)

Then we can find a permutation π of {1, . . . , N} for which

∀i ≤ N , π(i) ∈ A(i) .
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4.4 Discrepancy Bounds

Generally speaking, the study of expressions of the type

sup
f∈F

∣
∣
∑

i≤N
(f (Xi)−

∫

f dμ)
∣
∣ (4.34)

for a class of functions F will be important in the present book, particularly in
Chap. 14. A bound on such a quantity is called a discrepancy bound because since

∣
∣
∑

i≤N
(f (Xi)−

∫

f dμ)
∣
∣ = N

∣
∣ 1

N

∑

i≤N
f (Xi)−

∫

f dμ
∣
∣

it bounds uniformly on F the “discrepancy” between the true measure
∫
f dμ and

the “empirical measure” N−1∑
i≤N f (Xi). Finding such a bound simply requires

finding a bound for the supremum of the process (|Zf |)f∈F , where the (centered)
r.v.s Zf are given by8

Zf =
∑

i≤N
(f (Xi)−

∫

f dμ) , (4.35)

a topic at the very center of our attention.
A relation between discrepancy bounds and matching theorems can be guessed

from Proposition 4.3.3 and will be made explicit in the next section. In this book,
every matching theorem will be proved through a discrepancy bound.

4.5 The Ajtai-Komlós-Tusnády Matching Theorem

Theorem 4.5.1 ([3]) If the points (Yi)i≤N are evenly spread and the points
(Xi)i≤N are i.i.d. uniform on [0, 1]2, then (for N ≥ 2)

E inf
π

∑

i≤N
d(Xi, Yπ(i)) ≤ L

√
N logN , (4.36)

where the infimum is over all permutations of {1, . . . , N} and where d is the
Euclidean distance.

The term
√
N is just a scaling effect. There are N terms d(Xi, Yπ(i)), each of

which should be about 1/
√
N . The non-trivial part of the theorem is the factor

8 Please remember this notation which is used throughout this chapter.
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√
logN . In Sect. 4.6, we shall show that (4.36) can be reversed, i.e.,

E inf
π

∑

i≤N
d(Xi, Yπ(i)) ≥ 1

L

√
N logN . (4.37)

In order to understand that the bound (4.36) is not trivial, you can study the
following greedy matching algorithm which was shown to me by Yash Kanoria:

Exercise 4.5.2 For each n ≥ 0, consider the partition Hn of [0, 1]2 into 22n equal
squares. Consider the largest integer n0 with 22n0 ≤ N , and proceed as follows: For
each small square in Hn0 , match as many as possible of the points Xi with points Yi
in the same square. Remove the points Xi and the points Yi that you have matched
this way. For the remaining points, proceed as follows: In each small square of
Hn0−1, match as many of the remaining points Xi to remaining points Yi inside the
same square. Remove all the points Xi and the points Yi that you have removed at
this stage, and continue in this manner. Prove that the expected cost of the matching
thus constructed is ≤ L

√
N logN .9

Let us state the “discrepancy bound” at the root of Theorem 4.5.1. Consider the class
C of 1-Lipschitz functions on [0, 1]2, i.e., of functions f that satisfy

∀x, y ∈ [0, 1]2 , |f (x)− f (y)| ≤ d(x, y) ,

where d denotes the Euclidean distance. We denote by λ the uniform measure on
[0, 1]2.

Theorem 4.5.3 We have

E sup
f∈C

∣
∣
∑

i≤N
(f (Xi)−

∫

f dλ)
∣
∣ ≤ L

√
N logN . (4.38)

Research Problem 4.5.4 Prove that the following limit

lim
N→∞

1√
N logN

E sup
f∈C

∣
∣
∑

i≤N
(f (Xi)−

∫

f dλ)
∣
∣

exists.

At the present time, there does not seem to exist the beginning of a general approach
for attacking a problem of this type, and certainly the methods of the present book
are not appropriate for this. Quite amazingly, however, the corresponding problem
has been solved in the case where the cost of the matching is measured by the square

9 It can be shown that this bound can be reversed.
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of the distance (see [4]). The methods seem rather specific to the case of the square
of a distance.

Theorem 4.5.3 is obviously interesting in its own right and proving it is the goal
of this section. Before we discuss it, let us put matchings behind us.

Proof of Theorem 4.5.1 We recall (4.29), i.e.,

inf
π

∑

i≤N
d(Xi, Yπ(i)) = sup

f∈C

∑

i≤N
(f (Xi)− f (Yi)) , (4.39)

and we simply write

∑

i≤N
(f (Xi)− f (Yi)) ≤

∣
∣
∑

i≤N
(f (Xi)−

∫

f dλ)
∣
∣+ ∣∣

∑

i≤N
(f (Yi)−

∫

f dλ)
∣
∣ .

(4.40)

Next, we claim that

∣
∣
∑

i≤N
(f (Yi)−

∫

f dλ)
∣
∣ ≤ L

√
N . (4.41)

We recall that since (Yi)i≤N are evenly spread, one can cover [0, 1]2 with N

rectanglesRi with disjoint interiors, such that each rectangleRi has an area 1/N and
is such that Yi ∈ Ri ⊂ B(Yi , 10/

√
N). Consequently,N

∫
f dλ = N

∑
i≤N

∫
Ri

f dλ
and

∣
∣
∑

i≤N
(f (Yi)−

∫

f dλ)
∣
∣ = ∣∣

∑

i≤N
f (Yi)−N

∫

f dλ
∣
∣

≤
∑

i≤N

∣
∣(f (Yi)−N

∫

Ri

f dλ)
∣
∣

≤
∑

i≤N
N
∣
∣
∫

Ri

(f (Yi)− f (x))dλ(x)
∣
∣ . (4.42)

Since f is 1-Lipschitz and Ri is of diameter ≤ L/
√
N , we have |f (Yi) − f (x)| ≤

L/
√
N when x ∈ Ri . This proves the claim.

Now, using (4.39) and taking expectation,

E inf
π

∑

i≤N
d(Xi, Yπ(i)) ≤ L

√
N + E sup

f∈C

∣
∣
∑

i≤N
(f (Xi)−

∫

f dλ)
∣
∣

≤ L
√
N logN

by (4.38). �
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4.5.1 The Long and Instructive Way

S. Bobkov and M. Ledoux recently found [19] a magically simple proof of
Theorem 4.5.3. We will present it in Sect. 4.5.2. This proof relies on very specific
features, and it is unclear as to whether it will apply to other matching theorems. In
the present section, we write a far more pedestrian (but far more instructive) proof
with the general result Theorem 6.8.3 in mind.

To prove Theorem 4.5.3, the overall strategy is clear. We think of the left-hand
side as E supf∈C |Zf |, where Zf is the random variable of (4.35). We then find nice
tail properties for these r.v.s, and we use the methods of Chap. 2. In the end (and
because we are dealing with a deep fact), we shall have to prove some delicate
“smallness” property of the class C. This smallness property will ultimately be
derived from the ellipsoid theorem. The (very beautiful) strategy for the hard part of
the estimates relies on a kind of two-dimensional version of Proposition 4.1.8 and
is outlined on page 129.

The class C of 1-Lipschitz function on the unit square is not small in any sense for
the simple reason that it contains all the constant functions. However, the expression∑

i≤N(f (Xi) −
∫
f dλ) does not change if we replace f by f + a where a is a

constant. In particular

sup
f∈C

∣
∣
∑

i≤N
(f (Xi)−

∫

f dλ)
∣
∣ = sup

f∈Ĉ

∣
∣
∑

i≤N
(f (Xi)−

∫

f dλ)
∣
∣

where we define Ĉ as the set of 1-Lipschitz functions on the unit square for which
f (1/2, 1/2) = 0.10 The gain is that we now may hope that Ĉ is small in the
appropriate sense. To prove Theorem 4.5.3, we will prove the following:

Theorem 4.5.5 We have

E sup
f∈Ĉ

∣
∣
∣
∑

i≤N
(f (Xi)−

∫

f dλ)
∣
∣
∣ ≤ L

√
N logN . (4.43)

The following fundamental classical result will allow us to control the tails of the
r.v. Zf of (4.35). It will be used many times.

Lemma 4.5.6 (Bernstein’s Inequality) Let (Wi)i≥1 be independent r.v.s with
EWi = 0, and consider a number a with |Wi | ≤ a for each i. Then, for v > 0,

P
(∣
∣
∣
∑

i≥1

Wi

∣
∣
∣ ≥ v

)

≤ 2 exp

(

−min

(
v2

4
∑

i≥1 EW
2
i

,
v

2a

))

. (4.44)

10 There is no real reason other than my own fancy to impose that the functions are zero right in
the middle of the square.
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Proof For |x| ≤ 1, we have

|ex − 1− x| ≤ x2
∑

k≥2

1

k! = x2(e − 2) ≤ x2

and thus, since EWi = 0, for a|λ| ≤ 1, we have

|E expλWi − 1| ≤ λ2EW 2
i .

Therefore, E expλWi ≤ 1+ λ2EW 2
i ≤ expλ2EW 2

i , and thus

E expλ
∑

i≥1

Wi =
∏

i≥1

E expλWi ≤ expλ2
∑

i≥1

EW 2
i .

Now, for 0 ≤ λ ≤ 1/a, we have

P
(∑

i≥1

Wi ≥ v
)
≤ exp(−λv)E exp λ

∑

i≥1

Wi

≤ exp
(
λ2
∑

i≥1

EW 2
i − λv

)
.

If av ≤ 2
∑

i≥1 EW
2
i , we take λ = v/(2

∑
i≥1 EW

2
i ), obtaining a bound

exp(−v2/(4
∑

i≥1 EW
2
i )). If av > 2

∑
i≥1 EW

2
i , we take λ = 1/a, and we note

that

1

a2

∑

i≥1

EW 2
i −

v

a
≤ av

2a2 −
v

a
= − v

2a
,

so that P(
∑

i≥1 Wi ≥ v) ≤ exp(−min(v2/4
∑

i≥1 EW
2
i , v/2a)). Changing Wi into

−Wi we obtain the same bound for P(
∑

i≥1 Wi ≤ −v). �
Corollary 4.5.7 For each v > 0, we have

P(|Zf | ≥ v) ≤ 2 exp
(
−min

( v2

4N‖f ‖2
2

,
v

4‖f ‖∞
))

, (4.45)

where ‖f ‖p denotes the norm of f in Lp(λ).

Proof We use Bernstein’s inequality with Wi = f (Xi)−
∫
f dλ if i ≤ N and Wi =

0 if i > N . We then observe that EW 2
i ≤ Ef 2 = ‖f ‖2

2 and |Wi | ≤ 2 sup |f | =
2‖f ‖∞. �

Let us then pretend for a while that in (4.45), the bound was instead
2 exp(−v2/(4N‖f ‖2

2)). Thus, we would be back to the problem we considered first,
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bounding the supremum of a stochastic process under the increment condition (2.4),
where the distance on C is given by d(f1, f2) =

√
2N‖f1 − f2‖2. The first thing

to point out is that Theorem 4.5.3 is a prime example of a natural situation where
using covering numbers does not yield the correct result, where we recall that for a
metric space (T , d), the covering number N(T , d, ε) denotes the smallest number
of balls of radius ε that are needed to cover T . This is closely related to the fact
that, as explained in Sect. 2.13, covering numbers do not describe well the size of
ellipsoids. It is hard to formulate a theorem to the effect that covering numbers do
not suffice, but the root of the problem is described in the next exercise, and a more
precise version can be found later in Exercise 4.5.20.

Exercise 4.5.8 Prove that for each 0 < ε ≤ 1

logN(Ĉ, d2, ε) ≥ 1

Lε2 , (4.46)

where d2 denotes the distance in L2([0, 1]2). Hint: Consider an integer n ≥ 0, and
divide [0, 1]2 into 22n equal squares of area 2−2n. For every such square C, consider
a number εC = ±1. Consider then the function f ∈ C such that for x ∈ C, one
has f (x) = εCd(x, B), where B denotes the boundary of C. There are 222n

such
functions. Prove that by appropriate choices of the signs εC , one may find at least
exp(22n/L) functions of this type which are at mutual distance ≥ 2−n/L.

Since covering numbers do not suffice, we will appeal to the generic chaining,
Theorem 2.7.2. As we will show later, in Exercise 4.5.21, we have γ2(Ĉ, d2) = ∞.
To overcome this issue, we will replace Ĉ by a sufficiently large finite subset F ⊂ Ĉ,
for which we shall need the crucial estimate γ2(F , d2) ≤ L

√
logN . This will be

done by proving that γ2,2(Ĉ, d2) < ∞ where γ2,2 is the functional of (4.5), so that
γ2,2(F , d2) <∞, and appealing to Lemma 4.1.3.

The main ingredient toward the control of γ2,2(Ĉ, d2) is the following two-
dimensional version of Proposition 4.1.8:

Lemma 4.5.9 Consider the space C∗ of 1-Lipschitz functions on [0, 1]2 which are
zero on the boundary of [0, 1]2. Then γ2,2(C∗, d2) <∞.

Proof We represent C∗ as a subset of an ellipsoid using the Fourier transform.
The Fourier transform associates with each function f on L2([0, 1]2) the complex
numbers cp,q(f ) given by

cp,q(f ) =
∫ ∫

[0,1]2
f (x1, x2) exp(2iπ(px1 + qx2))dx1dx2 . (4.47)

The Plancherel formula

‖f ‖2 =
( ∑

p,q∈Z
|cp,q(f )|2

)1/2
(4.48)
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asserts that Fourier transform is an isometry, so that if

D = {(cp,q(f ))p,q∈Z ; f ∈ C∗)} ,

it suffices to show that γ2,2(D, d) < ∞ where d is the distance in the complex
Hilbert space �2

C
(Z× Z). Using (4.47) and integration by parts, we get

−2iπpcp,q(f ) = cp,q

(∂f

∂x

)
.

Using (4.48) for ∂f/∂x and since ‖∂f/∂x‖2 ≤ 1, we get
∑

p,q∈Z p2|cp,q(f )|2
≤ 1/4π2. Proceeding similarly for ∂f/∂y, we get

D ⊂ E = {(cp,q) ∈ �2
C
(Z× Z) ; |c0,0| ≤ 1 ,

∑

p,q∈Z
(p2 + q2)|cp,q |2 ≤ 1

}
.

We view each complex number cp,q as a pair (xp,q, yp,q) of real numbers and
|cp,q |2 = x2

p,q + y2
p,q , so that

E = {(
(xp,q), (yp,q)

) ∈ �2(Z× Z)× �2(Z× Z) ;
x2

0,0 + y2
0,0 ≤ 1 ,

∑

p,q∈Z
(p2 + q2)(x2

p,q + y2
p,q) ≤ 1

}
. (4.49)

For u ≥ 1, we have

card
{
(p, q) ∈ Z× Z ; p2 + q2 ≤ u2} ≤ (2u+ 1)2 ≤ Lu2 .

We then deduce from Corollary 4.1.7 that γ2,2(E, d) <∞. �
Proposition 4.5.10 We have γ2,2(Ĉ, d2) <∞.

I am grateful to R. van Handel who showed me the following simple arguments,
which replaces pages of gritty work in [132]. The basic idea is to deduce this from
Lemma 4.5.9, essentially by showing that Ĉ is a Lipschitz image of a subset of C∗
or more exactly of the clone considered in the next lemma.

Lemma 4.5.11 The set C� of 1-Lipschitz functions on [−1, 2]2 which are zero on
the boundary of this set satisfies γ2,2(C�, d�) <∞ where d� is the distance induced
by L2([−1, 2]2, dλ).

Proof This should be obvious form Lemma 4.5.9; we just perform the same
construction on two squares of different sizes, [0, 1]2 and [−1, 2]2. �
Lemma 4.5.12 Each 1-Lipschitz function f ∈ Ĉ is the restriction to [0, 1]2 of a
function f � of C�.
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Proof A function f ∈ Ĉ may be extended to a 1-Lipschitz function f̃ on R
2 by the

formula f̃ (y) = infx∈[0,1]2 f (x)+ d(x, y). Since f (1/2, 1/2) = 0 by definition of

Ĉ and since f is 1-Lipschitz, then |f (x)| ≤ 1/
√

2 ≤ 1 for x ∈ [0, 1]2. The function
f �(y) = min(f̃ (y), d(y,R2 \ [−1, 2]2)) is 1-Lipschitz. Since each point of [0, 1]2
is at distance ≥ 1 of R2 \ [−1, 2]2, f � coincides with f on [0, 1]2, and it is zero on
the boundary of [−1, 2]2. �
Proof of Proposition 4.5.10 To each function f of C�, we associate its restriction
ϕ(f ) to [0, 1]2. Since the map ϕ is a contraction, by Lemma 4.5.11, we have
γ2,2(ϕ(C�)) <∞, and by Lemma 4.5.12, we have Ĉ ⊂ ϕ(C�). �

Let us now come back to Earth and deal with the actual bound (4.45). For
this, we develop an appropriate version of Theorem 2.7.2. It will be used many
times. The ease with which one deals with two distances is remarkable. The proof
of the theorem contains a principle which will be used many times: if we have
two admissible sequences of partitions such that for each of them, the sets of the
partition as small in a certain sense, then we can construct an admissible sequence
of partitions whose sets are small in both senses.

Theorem 4.5.13 Consider a set T provided with two distances d1 and d2. Consider
a centered process (Xt )t∈T which satisfies

∀s, t ∈ T , ∀u > 0 ,

P(|Xs − Xt | ≥ u) ≤ 2 exp
(
−min

( u2

d2(s, t)2 ,
u

d1(s, t)

))
. (4.50)

Then

E sup
s,t∈T

|Xs −Xt | ≤ L(γ1(T , d1)+ γ2(T , d2)) . (4.51)

This theorem will be applied when d1 is the �∞ distance, but it sounds funny, when
considering two distances, to call them d2 and d∞.

Proof We denote by Δj(A) the diameter of the set A for dj . We consider an
admissible sequence (Bn)n≥0 such that11

∀t ∈ T ,
∑

n≥0

2nΔ1(Bn(t)) ≤ 2γ1(T , d1) (4.52)

11 The factor 2 in the right-hand side below is just in case the infimum over all partitions is not
attained.
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and an admissible sequence (Cn)n≥0 such that

∀t ∈ T ,
∑

n≥0

2n/2Δ2(Cn(t)) ≤ 2γ2(T , d2) . (4.53)

Here Bn(t) is the unique element of Bn that contains t (etc.). We define partitions
An of T as follows: we set A0 = {T }, and, for n ≥ 1, we define An as the partition
generated by Bn−1 and Cn−1, i.e., the partition that consists of the sets B ∩ C for
B ∈ Bn−1 and C ∈ Cn−1. Thus cardAn ≤ N2

n−1 ≤ Nn, and the sequence (An) is
admissible. We then choose for each n ≥ 0 a set Tn such that cardTn ≤ Nn which
meets all the sets in An. It is convenient to reformulate (4.50) as follows: when
u ≥ 1, we have

∀s, t ∈ T , P
(|Xs −Xt | ≥ u2d1(s, t)+ ud2(s, t)

) ≤ 2 exp(−u2) .

We then copy the proof of (2.34), replacing (2.31) by

∀t , |Xπn(t) − Xπn−1(t)| ≤ u22nd1(πn(t), πn−1(t))+ u2n/2d2(πn(t), πn−1(t)) . �

Exercise 4.5.14 The purpose of this exercise is to deduce Theorem 4.5.13 from
Theorem 2.7.14.

(a) Prove that if for some numbers A,B > 0 a r.v. Y ≥ 0 satisfies

P(Y ≥ u) ≤ 2 exp
(
−min

( u2

A2
,
u

B

))
,

then for p ≥ 1, we have ‖Y‖p ≤ L(A
√
p + Bp).

(b) We denote by Dn(A) the diameter of a subset A of T for the distance δn(s, t) =
‖Xs − Xt‖2n . Prove that under the conditions of Theorem 4.5.13, there exists
an admissible sequence of partitions (An) such that

sup
t∈T

∑

n≥0

Dn(An(t)) ≤ L(γ1(T , d1)+ γ2(T , d2)) . (4.54)

Exercise 4.5.15 Consider a space T equipped with two different distances d1 and
d2. Prove that

γ2(T , d1 + d2) ≤ L(γ2(T , d1)+ γ2(T , d2)) . (4.55)

We can now state a general bound, from which we will deduce Theorem 4.5.3.

Theorem 4.5.16 Consider a class F of functions on [0, 1]2, and assume that 0 ∈
F . Then

E sup
f∈F

∣
∣
∑

i≤N
(f (Xi)−

∫

f dλ)
∣
∣ ≤ L

(√
Nγ2(F , d2)+ γ1(F , d∞)

)
, (4.56)
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where d2 and d∞ are the distances induced on F by the norms of L2 and L∞,
respectively.

Proof Combining Corollary 4.5.7 with Theorem 4.5.13, we get, since 0 ∈ F and
Z0 = 0,

E sup
f∈F

|Zf | ≤ E sup
f,f ′∈F

|Zf −Zf ′ | ≤ L
(
γ2(F , 2

√
Nd2)+γ1(F , 4d∞)

)
. (4.57)

Finally, γ2(F , 2
√
Nd2) = 2

√
Nγ2(F , d2) and γ1(F , 4d∞) = 4γ1(F , d∞). �

Exercise 4.5.17 Try to prove (4.25) now. Hint: Consider F = {1[0,k/N]; k ≤ N}.
Use Exercise 2.7.5 and entropy numbers.

In the situation which interests us, there will plenty of room to control the term
γ1(F , d∞), and this term is a lower-order term, which can be considered as a simple
nuisance. For this term, entropy numbers suffice. To control these, we first state a
general principle, which was already known to Kolmogorov.

Lemma 4.5.18 Consider a metric space (U, d), and assume that for certain
numbers B and α ≥ 1 and each 0 < ε < B, we have

N(U, d, ε) ≤
(B

ε

)α
. (4.58)

Consider the set B of 1-Lipschitz functions f on U with ‖f ‖∞ ≤ B. Then for each
ε > 0, we have

logN(B, d∞, ε) ≤ K(α)
(B

ε

)α
, (4.59)

where K(α) depends only on α. In particular,

en(B, d∞) ≤ K(α)B2−n/α . (4.60)

Proof By homogeneity, we may and do assume that B = 1. Using (4.58) for ε =
2−n, for each n ≥ 0, consider a set Vn ⊂ U with cardVn ≤ 2nα such that any point
of U is within distance 2−n of a point of Vn. We define on B the distance dn by
dn(f, g) = maxx∈Vn |f (x)− g(x)|. We prove first that

d∞(f, g) ≤ 2−n+1 + dn(f, g) . (4.61)

Indeed, for any x ∈ U , we can find y ∈ Vn with d(x, y) ≤ 2−n and then |f (x) −
g(x)| ≤ 2−n+1 + |f (y)− g(y)| ≤ 2−n+1 + dn(f, g).

Denote by Wn(f, r) the ball for dn of center f and radius r . We claim that

Wn−1(f, 2−n+1) ⊂ Wn(f, 2−n+3) . (4.62)
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Indeed, using (4.61) for n − 1 rather than n, we see that dn(f, g) ≤ d∞(f, g) ≤
2−n+2 + 2−n+1 ≤ 2−n+3 for g ∈ Wn−1(f, 2−n+1).

Next, we claim that

N(Wn(f, 2−n+3), dn, 2−n) ≤ LcardVn . (4.63)

Since dn(f, g) = ‖ϕn(f ) − ϕn(g)‖∞ where ϕn(f ) = (f (x))x∈Vn, we are actually
working here in R

cardVn , and (4.63) is a consequence of (2.47): in R
cardVn , we are

covering a ball of radius 2−n+3 by balls of radius 2−n.
Covering B by N(B, dn−1, 2−n+1) balls Wn−1(f, 2−n+1) and hence by

N(B, dn−1, 2−n+1) balls Wn(f, 2−n+3) and then covering each of these by
N(Wn(f, 2−n+3), dn, 2−n) ≤ LcardVn balls for dn of radius 2−n, we obtain

N(B, dn, 2−n) ≤ LcardVnN(B, dn−1, 2−n+1) . (4.64)

Since cardVn = 2αn, iteration of (4.64) proves that logN(B, dn, 2−n) ≤ K2αn.
Finally, (4.61) implies that

logN(B, d∞, 2−n+2) ≤ logN(B, dn−1, 2−n−1) ≤ K2αn

and concludes the proof. �
We apply the previous lemma to U = [0, 1]2 which obviously satisfies (4.58) for

α = 2, so that (4.60) implies that for n ≥ 0,

en(Ĉ, d∞) ≤ L2−n/2 . (4.65)

Proposition 4.5.19 We have

E sup
f∈Ĉ

∣
∣
∑

i≤N
f (Xi)−

∫

f dλ
∣
∣ ≤ L

√
N logN . (4.66)

An interesting feature of this proof is that it does not work to try to use (4.56)
directly. Rather we will use (4.56) for an appropriate subset T of Ĉ, which can be
thought of as the “main part” of Ĉ, and for the “rest” of Ĉ, we will use other (and
much cruder) bounds. This method is not artificial. As we will learn much later, in
Theorem 6.8.3, when properly used, it always yields the best possible estimates.

Proof Consider the largest integer m with 2−m ≥ 1/N . By (4.65), we may find a
subset T of Ĉ with card T ≤ Nm and

∀f ∈ Ĉ , d∞(f, T ) ≤ L2−m/2 ≤ L/
√
N .
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Thus for each f ∈ Ĉ, consider f̃ ∈ T with d∞(f, f̃ ) ≤ L/
√
N . Then

|Zf | ≤ |Zf̃ | + |Zf − Zf̃ | = |Zf̃ | + |Zf−f̃ | ≤ |Zf̃ | + L
√
N ,

where we have used the obvious inequality |Z
f−f̃ | ≤ 2d∞(f, f̃ ). Since f̃ ∈ T , we

obtain

E sup
f∈Ĉ

|Zf | ≤ E sup
f∈T

|Zf | + L
√
N . (4.67)

To prove (4.66), it suffices to show that

E sup
f∈T

|Zf | ≤ L
√
N logN . (4.68)

Proposition 4.5.10 and Lemma 4.1.3 imply γ2(T , d2) ≤ L
√
m ≤ L

√
logN . Now,

as in (2.56), we have

γ1(T , d∞) ≤ L
∑

n≥0

2nen(T , d∞) .

Since en(T , d∞) = 0 for n ≥ m, (4.65) yields γ1(T , d∞) ≤ L2m/2 ≤ L
√
N .

Thus (4.68) follows from Theorem 4.5.16 and this completes the proof. �
Exercise 4.5.20 Use Exercise 4.5.8 to prove that Dudley’s bound cannot yield
better than the estimate γ2(T , d2) ≤ L logN .

Exercise 4.5.21 Assuming γ2(C∗, d2) < ∞, show that the previous arguments
prove that

E sup
f∈C∗

∣
∣
∑

i≤N
f (Xi)−

∫

f dλ
∣
∣ ≤ L

√
N(1+ γ2(C∗, d2)) .

Comparing with (4.78), conclude that γ2(C∗, d2) = ∞. Convince yourself that the
separated trees implicitly constructed in the proof of (4.78) also witness this.

Exercise 4.5.22 Suppose now that you are in dimension d = 3. Prove that
E supf∈Ĉ |

∑
i≤N f (Xi) −

∫
f dλ| ≤ LN2/3. Hint: According to Lemma 4.5.18,

we have en(Ĉ, d∞) ≤ L2−n/3. This is the only estimate you need, using the trivial
fact that en(Ĉ, d2) ≤ en(Ĉ, d∞).

Exercise 4.5.23 Consider the space T = {0, 1}N provided with the distance
d(t, t ′) = 2−j/2, where j = min{i ≥ 1; ti �= t ′i } for t = (ti)i≥1. This space
somewhat resembles the unit square, in the sense that N(T , d, ε) ≤ Lε−2 for ε ≤ 1.
Prove that if (Xi)i≤N are i.i.d. uniformly distributed in T and (Yi)i≤N are uniformly
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spread (in a manner which is left to the reader to define precisely), then

E inf
π

∑

i≤N
d(Xi, Yπ(i)) ≤ L

√
N logN , (4.69)

where the infimum is over all the permutations of {1, . . . , N}. Hint: You can do this
from scratch, and for this, covering numbers suffice, e.g., in the form of (4.59). The
method of Exercise 4.5.2 also works here. In Exercise 4.6.8, you will be asked to
prove that this bound is of the correct order.

4.5.2 The Short and Magic Way

We now start studying the Bobkov-Ledoux approach [19] which considerably
simplifies previous results such as the following one:

Theorem 4.5.24 ([110]) Consider the class C∗ of 1-Lipschitz functions on [0, 1]2
which are zero on the boundary of [0, 1]2. Consider points (zi)i≤N in [0, 1]2 and
standard independent Gaussian r.v.s gi . Then

E sup
f∈C∗

∣
∣
∑

i≤N
gif (zi)

∣
∣2 ≤ LN logN . (4.70)

It should be obvious from Lemma 4.5.12 that in the previous result, one may
replace C∗ by Ĉ of Theorem 4.5.5. The following improves on Theorem 4.5.3:

Corollary 4.5.25 Consider an independent sequence (Xi)i≤N of r.v.s valued in
[0, 1]2. (It is not assumed that these r.v.s have the same distribution.) Then

E sup
f∈Ĉ

∣
∣
∑

i≤N
(f (Xi)− Ef (Xi))

∣
∣ ≤ L

√
N logN . (4.71)

Proof Consider i.i.d. standard Gaussian r.v.s gi . Taking first expectation in the gi
given the Xi , it follows from Theorem 4.5.24 (or more accurately from the version
of this theorem for the class Ĉ) that E supf∈Ĉ |

∑
i≤N gif (Xi)|2 ≤ LN logN . The

Cauchy-Schwarz inequality yields E supf∈Ĉ |
∑

i≤N gif (Xi)| ≤ L
√
N logN . We

will learn later the simple tools which allow to deduce (4.71) from this inequality,
in particular the Giné-Zinn inequalities and specifically (11.35) (which has to be
combined with (6.6)). �
Let us consider an integer n ≥ √N and the set

G = {(k/n, �/n) ; 0 ≤ k, � ≤ n− 1} .
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Using the fact that the functions f ∈ C∗ are 1-Lipschitz and replacing each point
zi by the closest point in G (which is at distance ≤ √

2/n ≤ L/
√
N of z), the

following is obvious:

Lemma 4.5.26 To prove Theorem 4.5.24, we may assume that each zi ∈ G.

Let us define an ellipsoid E in R
N as a set E = {∑k≥1 αkuk} where (uk)k≥1 is a

given sequence in R
N and where (αk)k≥1 varies over all the possible sequences with∑

k≥1 α
2
k ≤ 1.12 For t ∈ R

N , we write Xt =∑i≤N tigi as usual.

Lemma 4.5.27 We have

E sup
t∈E

|Xt |2 ≤
∑

k≥1

‖uk‖2 .

Proof This is exactly the same argument as to prove (2.157). For t =∑k≥1 αkuk ∈
E we have Xt = ∑k≥1 αkXuk so that by the Cauchy-Schwarz inequality we have
|Xt |2 ≤ ∑

k≥1 |Xuk |2 and the result follows from taking the supremum in t and
expectation since E|Xuk |2 = ‖uk‖2. �

To prove Theorem 4.5.24, we will show that the set {(f (zi))i≤N ; f ∈ C∗} is a
subset of an appropriate ellipsoid.

For this, we identify G with the group Zn × Zn where Zn = Z/nZ, with the
idea to use Fourier analysis in G, keeping in mind that a function on [0, 1]2 which is
zero on the boundary of this set will give rise to a function on Zn×Zn. Consider the
elements τ1 = (1, 0) and τ2 = (0, 1) of G. For a function f : G → R, we define
the functions f1(τ ) = f (τ + τ1) − f (τ) and f2(τ ) = f (τ + τ2) − f (τ) and the
class C̃ of functions G→ R which satisfy

∀τ ∈ G , |f (τ)| ≤ 1 ; ∀τ ∈ G ; |f1(τ )| ≤ 1/n ; |f2(τ )| ≤ 1/n . (4.72)

Thus, seeing the functions on C∗ as functions on G, they belong to C̃. Let us
denote by Ĝ the set of characters χ on G.13 The Fourier transform f̂ of a function
f on G is the function f̂ on Ĝ given by f̂ (χ) = (cardG)−1∑

τ∈G f (τ)χ̄(τ ) where
we recall that |χ(τ)| = 1. One then has the Fourier expansion

f =
∑

χ∈Ĝ
f̂ (χ)χ , (4.73)

12 The name is justified, a bit of algebra allows one to show that such a set is an ellipsoid in the
usual sense, but we do not need that.
13 A character of a group G is a group homomorphism from G to the unit circle.
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and the Plancherel formula

1

cardG

∑

τ∈G
|f (τ)|2 =

∑

χ∈Ĝ
|f̂ (χ)|2 . (4.74)

The key to the argument is the following:

Proposition 4.5.28 There exist positive numbers (c(χ))χ∈Ĝ such that

∑

χ∈Ĝ

1

c(χ)
≤ L log n (4.75)

and

∀f ∈ C̃ ,
∑

χ∈Ĝ
c(χ)|f̂ (χ)|2 ≤ 1 . (4.76)

We start the preparations for the proof of Proposition 4.5.28. The following lemma
performs integration by parts:

Lemma 4.5.29 For each function f on G and every χ ∈ Ĝ, we have f̂1(χ) =
(χ(−τ1)− 1)f̂ (χ) .

Proof Since
∑

τ∈G f (τ + τ1)χ(τ ) =∑τ∈G f (τ)χ(τ − τ1) by change of variable,
we have

(cardG)f̂1(χ) =
∑

τ∈G
(f (τ + τ1)− f (τ))χ(τ ) =

∑

τ∈G
f (τ)(χ(τ − τ1)− χ(τ))

= (χ(τ1)− 1)
∑

τ∈G
f (τ)χ(τ) = (χ(τ1)− 1)(cardG)f̂ (χ) ,

where we have used in the third equality that χ(τ − τ1) = χ(τ)χ(−τ1). �
Corollary 4.5.30 For f ∈ C̃, we have

∑

χ∈Ĝ
(|χ(−τ1)− 1|2 + |χ(−τ2)− 1|2)|f̂ (χ)|2 ≤ 2

n2
. (4.77)

Proof Using Lemma 4.5.29 and then the Plancherel formula (4.74) and (4.72), we
obtain

∑

χ∈Ĝ
|χ(−τ1)− 1|2|f̂ (χ)|2 =

∑

χ∈Ĝ
|f̂1(χ)|2 = 1

cardG

∑

τ∈G
|f1(τ )|2 ≤ 1

n2 ,

and we proceed similarly for τ2. �
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Proof of Proposition 4.5.28 For χ ∈ Ĝ, let us set c(χ) = 1/2 if χ is the constant
character χ0 equal to 1, and otherwise

c(χ) = n2

4

(|χ(−τ1)− 1|2 + |χ(−τ2)− 1|2) .

Then, since |f̂ (χ0)| ≤ 1 because |f (τ)| ≤ 1 for each τ and using (4.77) in the
second inequality,

∑

χ∈Ĝ
c(χ)|f̂ (χ)|2 = 1

2
|f̂ (χ0)|2 +

∑

χ∈Ĝ,χ �=χ0

c(χ)|f̂ (χ)|2 ≤ 1

2
+ n2

4

2

n2 ≤ 1 ,

and this proves (4.76). To prove (4.75), we use that Ĝ is exactly the set of characters
of the type χp,q(a, b) = exp(2iπ(ap + bq)/n) where 0 ≤ p, q ≤ n − 1. Thus
χp,q(−τ1) = exp(−2iπp/n) andχp,q(−τ2) = exp(−2iπq/n). Now, for 0 ≤ x ≤
1, we have |1− exp(−2iπx)| ≥ min(x, 1− x) so that

|χp,q(−τ1)− 1| ≥ 1

Ln
min(p, n− p) ; |χp,q(−τ2)− 1| ≥ 1

Ln
min(q, n− q) .

Thus

∑

χ∈Ĝ

1

c(χ)
≤ 1

c(χ0)
+ L

∑ 1

min(p, n − p)2 +min(q, n− q)2
,

where the sum is over 0 ≤ p, q ≤ n−1 and (p, q) �= (0, 0). Distinguishing whether
p ≤ n/2 or p ≥ n/2 (and similarly for q), we obtain

∑ 1

min(p, n− p)2 +min(q, n− q)2 ≤ 4
∑ 1

p2 + q2 ,

where the sum is over the same set and this sum is ≤ L logn. �
Proof of Theorem 4.5.24 We write (4.73) as f = ∑

χ∈Ĝ αχχ/
√
c(χ) where

αχ = √
c(χ)f̂ (χ) so that

∑
χ∈Ĝ |αχ |2 ≤ 1 by (4.76). Now we come back to

real numbers by taking the real part of the identity f = ∑
χ∈Ĝ αχχ/

√
c(χ).

This gives an equality of the type f = ∑
χ∈Ĝ(α′χχ ′ + β ′χχ ′′)/

√
c(χ) where

∑
χ∈Ĝ((α′χ )2+(β ′χ)2) ≤ 1 and |χ ′|, |χ ′′| ≤ 1. That is, the set {(f (zi))i≤N ; f ∈ C∗}

is a subset of the ellipsoid E = {∑k≥1 αkuk;
∑

k α
2
k ≤ 1}, where the family (uk)

of points of RN consists of the points (χ ′(zi)/
√
c(χ))i≤N and (χ ′′(zi)/

√
c(χ))i≤N

where χ takes all possible values in Ĝ. For such a uk , we have |uk(zi)| ≤ 1/
√
c(χ)

so that ‖uk‖2 =∑i≤N uk(zi)
2 ≤ N/c(χ), and then by (4.75), we have

∑
k ‖uk‖2 ≤
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LN logn. Finally we apply Lemma 4.5.27, and we take for n the smallest integer
≥ √N . �
Exercise 4.5.31 Let us denote by ν the uniform measure on G and by dν the
distance in the space L2(ν). Prove that γ2(C∗, dν) ≥ √

logn/L. Warning: This is
not so easy, and the solution is not provided. Hint: Make sure you understand the
previous chapter, and construct an appropriate tree. The ingredients on how to build
that tree are contained in the proof given in the next section, and Sect. 3.2 should
also be useful. You may assume that N is a power of 2 to save technical work.
Furthermore, you may also look at [132] where trees were explicitly used.

4.6 Lower Bound for the Ajtai-Komlós-Tusnády Theorem

Recall that C∗ denotes the class of 1-Lipschitz functions on the unit square which
are zero on the boundary of the square. We shall prove the following, where (Xi)i≤N
are i.i.d. in [0, 1]2:

Theorem 4.6.1 We have

E sup
f∈C∗

∣
∣
∑

i≤N

(
f (Xi)−

∫

f dλ
)∣
∣ ≥ 1

L

√
N logN . (4.78)

Since

sup
f∈C∗

∣
∣
∑

i≤N
(f (Xi)−

∫

f dλ)
∣
∣ ≤ sup

f∈C∗
∣
∣
∑

i≤N
(f (Xi)− f (Yi))

∣
∣

+ sup
f∈C∗

∣
∣
∑

i≤N
(f (Yi)−

∫

f dλ)
∣
∣ ,

taking expectation and using (4.41), it follows from (4.78) that if the points Yi are
evenly spread, then (provided N ≥ L)

E sup
f∈C∗

∣
∣
∑

i≤N
(f (Xi)− f (Yi))

∣
∣ ≥ 1

L

√
N logN ,

and since C∗ ⊂ C, the duality formula (4.29) implies that the expected cost of
matching the points Xi and the points Yi is at least

√
N logN/L.

The proof of Theorem 4.6.1 occupies this entire section and starts now. The
beautiful argument we present goes back to [3]. We can expect that this proof is non-
trivial. To explain why, let us recall the set T used in the proof of Proposition 4.5.19.
Analysis of the proof of that proposition leads us to guess that the reason why the
bound it provides cannot be improved is that γ2(T , d2) is actually of order

√
logN
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(and not of a smaller order). So a proof of (4.78) must contain a proof that this
is the case. In the previous chapter, we learned a technique to prove such results,
the construction of “trees”. Not surprisingly, our proof implicitly uses a tree which
witnesses just this, somewhat similar to the tree we constructed in Sect. 3.2.14

We may assume N large, and we consider a number r ∈ N which is a small
proportion of logN , say, r � (logN)/100.15 The structure of the proof is to
recursively construct for k ≤ r certain (random) functions fk such that for any
q ≤ r

∑

k≤q
fk is 1-Lipschitz (4.79)

and for each k ≤ r ,

E
∑

i≤N

(
fk(Xi)−

∫

fkdλ
)
≥
√
N

L
√
r
. (4.80)

The function f ∗ =∑k≤r fk is then 1-Lipschitz and satisfies

E
∑

i≤N

(
f ∗(Xi)−

∫

f ∗dλ
)
≥
√
Nr

L
.

This completes the proof of (4.78). The function fk looks to what happens at scale
2−k, and (4.80) states that each such scale 2−k contributes about equally to the final
result.

Following the details of the construction is not that difficult, despite the fact that
ensuring (4.79) requires technical work. What is more difficult is to see why one
makes such choices as we do. There is no magic there, making the right choices
means that we have understood which aspect of the geometric complexity of the
class C∗ is relevant here.

The main idea behind the construction of the function fk is that if we divide
[0, 1]2 into little squares of side 2−k, in each of these little squares, there is some
irregularity of the distribution of the Xi . The function fk is a sum of terms, each
corresponding to one of the little squares (see (4.90)). It is designed to, in a sense,
add the irregularities over these different squares.

14 It should also be useful to solve Exercise 4.5.31.
15 We absolutely need for the proof a number r which is a proportion of logN , and taking a small
proportion gives us some room. More specifically, each square of side 2−r will have an area larger
than, say, 1/

√
N , so that it will typically contain many points Xi , as we will use when we perform

normal approximation.
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Fig. 4.1 The graphs of fk,1 and fk,3

The functions fk will be built out of simple functions which we describe now.
For 1 ≤ k ≤ r and 1 ≤ � ≤ 2k, we consider the function f ′k,� on [0, 1] defined as
follows:

f ′k,�(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 unless x ∈ [(�− 1)2−k, �2−k[
1 for x ∈ [(�− 1)2−k, (�− 1/2)2−k[
−1 for x ∈ [(�− 1/2)2−k, �2−k[ .

(4.81)

We define (Fig. 4.1)

fk,�(x) =
∫ x

0
f ′k,�(y)dy . (4.82)

We now list a few useful properties of these functions. In these formulas, ‖.‖2
denotes the norm in L2([0, 1]), etc. The proofs of these assertions are completely
straightforward and better left to the reader.

Lemma 4.6.2 The following holds true:

The family (f ′k,�) is orthogonal in L2([0, 1]) . (4.83)

‖f ′k,�‖2
2 = 2−k . (4.84)

‖f ′k,�‖1 = 2−k . (4.85)

fk,� is zero outside ](�− 1)2−k, �2−k[ . (4.86)

‖fk,�‖1 = 2−2k−2 . (4.87)

‖f ′k,�‖∞ = 1 ; ‖fk,�‖∞ = 2−k−1 . (4.88)

‖fk,�‖2
2 =

1

12
2−3k . (4.89)
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The functions fk will be of the type

fk = 2k−5

√
r

∑

�,�′≤2k

zk,�,�′fk,� ⊗ fk,�′ , (4.90)

where fk,�⊗ fk,�′(x, y) = fk,�(x)fk,�′(y) and zk,�,�′ ∈ {0, 1,−1}. Note that fk,�⊗
fk,�′ is zero outside the little square [(� − 1)2−k, �2−k[×[(�′ − 1)2−k, �′2−k] and
that these little squares are disjoint as � and �′ vary. The term zk,�,�′fk,� ⊗ fk,�′ is
designed to take advantage of the irregularity of the distribution of the Xi in the
corresponding little square. The problem of course is to choose the numbers zk,�,�′ .
There are two different ideas here: First, as a technical device to ensure (4.79), zk,�,�′
may be set to zero. This will happen on a few little squares, those where are getting
dangerously close to violate this condition (4.79). The second idea is that we will
adjust the signs of zk,�,�′ in a way that the contributions of the different little squares
add properly (rather than canceling each other).

Let us now explain the scaling term 2k−5/
√
r in (4.90). The coefficient 2−5 is

just a small numerical constant ensuring that we have enough room. The idea of
the term 2k/

√
r is that the partial derivatives of fk will be of order 1/

√
r . Taking

a sum of a most r such terms and taking cancellations in effect will give us partial
derivatives which at most of the points are ≤ 1. This is formally expressed in the
next lemma. So, such sums are not necessarily 1-Lipschitz, but are pretty close to
being so, and some minor tweaking will ensure that they are.

Lemma 4.6.3 Consider q ≤ r . Consider a function of the type f = ∑
k≤q fk ,

where fk is given by (4.90) and where zk,�,�′ ∈ {0, 1,−1}. Then

∥
∥
∥
∂f

∂x

∥
∥
∥

2
≤ 2−6 . (4.91)

Proof First we note that

∂f

∂x
(x, y) =

∑

k≤q

2k−5

√
r

∑

�,�′≤2k

zk,�,�′f
′
k,�(x)fk,�′(y) , (4.92)

which we rewrite as

∂f

∂x
(x, y) =

∑

k≤q

2k−5

√
r

∑

�≤2k

ak,�(y)f
′
k,�(x) ,

where ak,�(y) =∑�′≤2k zk,�,�′fk,�′(y). Using (4.83), we obtain

∫ (∂f

∂x

)2
dx =

∑

k≤q

22k−10

r

∑

�≤2k

ak,�(y)
2‖f ′k,�‖2

2 .
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Since z2
k,�,�′ ≤ 1 and since the functions (fk,�)�≤2k have disjoint support, we have

ak,�(y)
2 ≤∑�′≤2k fk,�′(y)

2, so that

∫ (∂f

∂x

)2
dx ≤

∑

k≤q

22k−10

r

∑

�,�′≤2k

‖f ′k,�‖2
2fk,�′(y)

2.

Integrating in y and using (4.84) and (4.89) yield

∥
∥
∥
∂f

∂x

∥
∥
∥

2

2
≤
∑

k≤q

22k−10

r

2−2k

12
= q

r

2−10

12
≤ 2−12 . �

Naturally, we have the same bound for ‖∂f/∂y‖2. These bounds do not imply that
f is 1-Lipschitz, but they imply that it is 1-Lipschitz “most of the time”.

We construct the functions fk recursively. Having constructed f1, . . . , fq , let
f := ∑

k≤q fk , and assume that it is 1-Lipschitz. We will construct fq+1 of the
type (4.90) by choosing the coefficients zq+1,�,�′ . Let us say that a square of the
type

[(�− 1)2−q, �2−q [×[(�′ − 1)2−q, �′2−q [ (4.93)

for 1 ≤ �, �′ ≤ 2q is a q-square. There are 22q such q-squares.

Definition 4.6.4 We say that a (q + 1)-square is dangerous if it contains a point
for which either |∂f/∂x| ≥ 1/2 or |∂f/∂y| ≥ 1/2. We say that it is safe if it is not
dangerous.

The danger is that on this square (4.93), the function f + fq+1 might not be 1-
Lipschitz.

Lemma 4.6.5 At most half of the (q + 1)-squares are dangerous, so at least half of
the (q + 1)-squares are safe.

This lemma is a consequence of the fact that “f is 1-Lipschitz most of the time.”
The proof is a bit technical, so we delay it to the end of the section.

The following is also a bit technical but is certainly expected. It will also be
proved later.

Lemma 4.6.6 If zq+1,�,�′ = 0 whenever the corresponding (q + 1)-square (4.93)
is dangerous, then f + fq+1 is 1-Lipschitz.

We now complete the construction of the function fq+1. For a dangerous square,
we set zq+1,�,�′ = 0. Let us define

h�,�′(x) = fq+1,� ⊗ fq+1,�′(x)−
∫

fq+1,� ⊗ fq+1,�′dλ .
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Using (4.89) and (4.87), we obtain

‖h�,�′‖2
2 ≥ 2−6q/L . (4.94)

Let us define then

D�,�′ =
∑

i≤N
h�,�′(Xi) . (4.95)

For a safe square, we choose zq+1,�,�′ = ±1 such that

zq+1,�,�′D�,�′ = |D�,�′ | .

Thus, if

fq+1 = 2q−4

√
r

∑

�,�′≤2q+1

zq+1,�,�′fq+1,� ⊗ fq+1,�′

we have

∑

i≤N

(
fq+1(Xi)−

∫

fq+1dλ
)
= 2q−4

√
r

∑

safe

|D�,�′ | . (4.96)

where the sum is over all values of (�, �′) such that the corresponding square (4.93)
is safe.

We turn to the proof of (4.80) and for this we estimate E
∑

safe |D�,�′ |. An obvious
obstacle to perform this estimate is that the r.v.s D�,�′ are not independent of the set
of safe squares. But we know that at least half of the squares are safe, so we can
bound below

∑
safe |D�,�′ | by the sum of the 22q+1 smallest among the 22q+2 r.v.s

|D�,�′ |.
Let us estimate ED2

�,�′ . By definition, (4.95) D�,�′ is a sum
∑

i≤N h�,�′(Xi) of

independent centered r.v.s so that ED2
�,�′ = N‖h�,�′ ‖2

2, and using (4.94), we obtain
an estimate

ED2
�,�′ ≥ 2−6qN/L . (4.97)

Let us then pretend for a moment that the r.v.s D�,�′ are Gaussian and independent
as �, �′ vary. For a Gaussian r.v. g, we have P(|g| ≥ (Eg2)1/2/100) ≥ 7/8. Then for
each �, �′, we have |D�,�′ | ≥ 2−3q

√
N/L with probability ≥ 7/8. In other words,

the r.v. Y�,�′ = 1|D�,�′ |≥2−3q
√
N/L satisfies EY�,�′ ≥ 7/8. Then Bernstein’s inequality

shows that with overwhelming probability, at least 3/4 of these variables equal 1.
For further use let us state the following more general principle: Considering M
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independent r.v.s Zi ∈ {0, 1} with P(Zi = 1) = ai = EZi , then for u > 0, we have

P
(∣
∣
∑

i≤M
(Zi − ai)

∣
∣ ≥ uM

)
≤ 2 exp(−Mu2/L) , (4.98)

and in particular P(
∑

i≤M Zi ≤∑i≤M ai −Mu) ≤ 2 exp(−Mu2/L).

Thus, |D�,�′ | ≥ 2−3q
√
N/L for at least 3/4 of the squares, so that at least 1/4

of the squares are both safe and satisfy this inequality. Consequently, it follows as
desired from (4.96) that (4.80) holds (for q + 1 rather than q).

It is not exactly true that the r.v.s D�,�′ are independent and Gaussian. Standard
techniques exist to take care of this, namely, Poissonization and normal approx-
imation. There is all the room in the world because r ≤ (logN)/100. As these
considerations are not related to the rest of the material of this work, they are better
omitted.

We now turn to the proofs of Lemmas 4.6.5 and 4.6.6. The next lemma prepares
for these proofs.

Lemma 4.6.7 Consider q ≤ r and a function of the type f = ∑k≤q fk , where fk
is given by (4.90) and where zk,�,�′ ∈ {0, 1,−1}. Then

∣
∣
∣
∂2f

∂x∂y

∣
∣
∣ ≤ 2q−4

√
r

. (4.99)

Proof We have

∣
∣
∣
∂2f

∂x∂y

∣
∣
∣ =

∣
∣
∣
∑

k≤q

2k−5

√
r

∑

�,�′≤2k

zk,�,�′f
′
k,� ⊗ f ′k,�′

∣
∣
∣ ≤

∑

k≤q

2k−5

√
r

∑

�,�′≤2k

|f ′k,� ⊗ f ′k,�′ | .

The functions f ′k,�⊗f ′
k,�′ have disjoint support and by the first part of (4.88) |f ′k,�⊗

f ′
k,�′ | ≤ 1. Also,

∑
k≤q 2k ≤ 2q+1. �

Proof of Lemma 4.6.5 We will observe from the definition that all functions f ′k,�
for k ≤ q are constant on the intervals [�2−q−1, (� + 1)2−q−1[. Thus according
to (4.92), on a (q + 1)-square, ∂f/∂x does not depend on x. If (x, y) and (x ′, y ′)
belong to the same (q + 1)-square, then

∂f

∂x
(x ′, y ′) = ∂f

∂x
(x, y ′) . (4.100)

Moreover, |y − y ′| ≤ 2−q−1 so that (4.99) implies

∣
∣
∣
∂f

∂x
(x, y)− ∂f

∂x
(x, y ′)

∣
∣
∣ ≤ |y − y ′|2

q−5
√
r
≤ 2−6
√
r
,
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and combining with (4.100), we obtain

∣
∣
∣
∂f

∂x
(x, y)− ∂f

∂x
(x ′, y ′)

∣
∣
∣ =

∣
∣
∣
∂f

∂x
(x, y)− ∂f

∂x
(x, y ′)

∣
∣
∣ ≤ 2−6

√
r
.

In particular if a (q+1)-square contains a point at which |∂f/∂x| ≥ 1/2, then at each
point of this square, we have |∂f/∂x| ≥ 1/2 − 2−6/

√
r ≥ 1/4. The proportion α

of (q + 1)-squares with this property satisfies α(1/4)2 ≤ ‖∂f/∂x‖2
2 ≤ 2−12, where

we have used (4.91) in the last inequality. This implies that at most a proportion
2−8 of (q + 1)-squares can contain a point with |∂f/∂x| ≥ 1/2. Repeating the
same argument for ∂f/∂y shows that as desired at most half of (q + 1)-squares are
dangerous. �
Proof of Lemma 4.6.6 To ensure that g := f + fq+1 is 1-Lipschitz, it suffices to
ensure that it is 1-Lipschitz on each (q + 1)-square. When the square is dangerous,
fq+1 = 0 on this square by construction, and g is 1-Lipschitz on it because there
g = f and f is 1-Lipschitz.

When the square is safe, everywhere on the square we have |∂f/∂x| ≤ 1/2 and
|∂f/∂y| ≤ 1/2. Now the second part of (4.88) implies

∥
∥
∥
∂g

∂x
− ∂f

∂x

∥
∥
∥∞ =

∥
∥
∥

1√
r

2q−4
∑

�,�′≤2q+1

zq+1,�,�′f
′
q+1,� ⊗ fq+1,�′

∥
∥
∥∞ ≤ 1

25
√
r

and

∥
∥
∥
∂g

∂y
− ∂f

∂y

∥
∥
∥∞ =

∥
∥
∥

1√
r

2q−4
∑

�,�′≤2q+1

zq+1,�,�′fq+1,� ⊗ f ′q+1,�′
∥
∥
∥∞ ≤ 1

25
√
r
,

where we have used that the elements of the sum have disjoint supports. So we are
certain that at each point of a safe square we have |∂g/∂x| ≤ 1/

√
2 and |∂g/∂y| ≤

1/
√

2 and hence that g is 1-Lipschitz on a safe square. �
Exercise 4.6.8 This is a continuation of Exercise 4.5.23. Adapt the method you
learned in this section to prove that the bound (4.69) is of the correct order.

4.7 The Leighton-Shor Grid Matching Theorem

Theorem 4.7.1 ([55]) If the points (Yi)i≤N are evenly spread and if (Xi)i≤N
are i.i.d. uniform over [0, 1]2, then (for N ≥ 2), with probability at least 1 −
L exp(−(logN)3/2/L), we have

inf
π

sup
i≤N

d(Xi, Yπ(i)) ≤ L
(logN)3/4

√
N

. (4.101)
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In particular

E inf
π

sup
i≤N

d(Xi, Yπ(i)) ≤ L
(logN)3/4

√
N

. (4.102)

To deduce (4.102) from (4.101), one simply uses any matching in the (rare) event
that (4.101) fails. We shall prove in Sect. 4.8 that the inequality (4.102) can be
reversed. A close cousin of this theorem can be found in Appendix A.

A first simple idea is that to prove Theorem 4.7.1, we do not care about what
happens at a scale smaller than (logN)3/4/

√
N . Therefore, consider the largest

integer �1 with 2−�1 ≥ (logN)3/4/
√
N (so that in particular 2�1 ≤ √N ). We divide

[0, 1]2 into little squares of side 2−�1 . For each such square, we are interested in how
many points (Xi) it contains, but we do not care where these points are located in
the square. We shall deduce Theorem 4.7.1 from a discrepancy theorem for a certain
class of functions.16 What we really have in mind is the class of functions which are
indicators of a union A of little squares with sides of length 2−�1 and such that the
boundary of A has a given length. It turns out that we shall have to parametrize the
boundaries of these sets by curves, so it is convenient to turn things around and to
consider the class of sets A that are the interiors of curves of given length.

To make things precise, let us define the grid G of [0, 1]2 of mesh width 2−�1 by

G = {(x1, x2) ∈ [0, 1]2 ; 2�1x1 ∈ N or 2�1x2 ∈ N
}
.

A vertex of the grid is a point (x1, x2) ∈ [0, 1]2 with 2�1x1 ∈ N and 2�1x2 ∈ N.
There are (2�1+1)2 vertices. An edge of the grid is the segment between two vertices
that are at distance 2−�1 of each other. A square of the grid is a square of side 2−�1

whose edges are edges of the grid. Thus, an edge of the grid is a subset of the grid,
but a square of the grid is not a subset of the grid (see Fig. 4.2).

A curve is the image of a continuous map ϕ : [0, 1] → R
2. We say that the curve

is a simple curve if it is one-to-one on [0, 1[. We say that the curve is traced on G

if ϕ([0, 1]) ⊂ G and that it is closed if ϕ(0) = ϕ(1). If C is a closed simple curve
in R

2, the set R2 \ C has two connected components. One of these is bounded. It is

called the interior of C and is denoted by
o

C.
The proof of Theorem 4.7.1 has a probabilistic part (the hard one) and a

deterministic part. The probabilistic part states that with high probability the number
of points inside a closed curve differs from its expected value by at most the length
of the curve times L

√
N(logN)3/4. The deterministic part will be given at the end

of the section and will show how to deduce Theorem 4.7.1 from Theorem 4.7.2.

16 This is the case for every matching theorem we prove.
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Fig. 4.2 A square A, and
edge e, a vertex V , and a
simple curve C traced on G A

V
e

C

Theorem 4.7.2 With probability at least 1− L exp(−(logN)3/2/L), the following
occurs: Given any closed simple curve C traced on G, we have

∣
∣
∑

i≤N

(
1 o
C
(Xi)− λ(

o

C)
)∣
∣ ≤ L�(C)

√
N(logN)3/4 , (4.103)

where λ(
o

C) is the area of
o

C and �(C) is the length of C.

We will reduce the proof of this theorem to the following result, which concerns
curves of a given length going through a given vertex:

Proposition 4.7.3 Consider a vertex τ of G and k ∈ Z. Define C(τ, k) as the set
of closed simple curves traced on G that pass through τ 17 and have length ≤ 2k .
Then, if −�1 ≤ k ≤ �1+ 2, with probability at least 1−L exp(−(logN)3/2/L), for
each C ∈ C(τ, k), we have

∣
∣
∑

i≤N

(
1 o

C
(Xi)− λ(

o

C)
)∣
∣ ≤ L2k

√
N(logN)3/4 . (4.104)

It would be easy to control the left-hand side if one considered only curves with
a simple pattern, such as boundaries of rectangles. The point, however, is that the
curves we consider can be very complicated and the longer we allow them to be,
the more so. Before we discuss Proposition 4.7.3 further, we show that it implies
Theorem 4.7.2.

17 That is, τ is an end vertex of an edge which belongs to the curve.
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Proof of Theorem 4.7.2 Since there are at most (2�1 + 1)2 ≤ LN choices for the
vertex τ , we can assume with probability at least

1− L(2�1 + 1)2(2�1 + 4) exp(−(logN)3/2/L) ≥ 1− L′ exp
(− (logN)3/2/L′

)

(4.105)

that (4.104) occurs for all choices of C ∈ C(τ, k), for any τ and any k with −�1 ≤
k ≤ �1 + 2.

Consider a simple curve C traced on G. Bounding the length of C by the total
length of the edges of G, we have 2−�1 ≤ �(C) ≤ 2(2�1 + 1) ≤ 2�1+2. Then
the smallest integer k for which �(C) ≤ 2k satisfies −�1 ≤ k ≤ �1 + 2. Since
2k ≤ 2�(C), the proof is finished by (4.104). �
Exercise 4.7.4 Prove the second inequality in (4.105) in complete detail.

The main step to prove Proposition 4.7.3 is the following:

Proposition 4.7.5 Consider a vertex τ of G and k ∈ Z. Define C(τ, k) as in
Proposition 4.7.3. Then, if −�1 ≤ k ≤ �1 + 2, we have

E sup
C∈C(τ,k)

∣
∣
∑

i≤N

(
1 o

C
(Xi)− λ(

o

C)
)∣
∣ ≤ L2k

√
N(logN)3/4 . (4.106)

Proof of Proposition 4.7.3 To prove Proposition 4.7.3, we have to go from the
control in expectation provided by (4.106) to the control in probability of (4.104).
There is powerful tool to do this: concentration of measure. The function

f (x1, . . . , xN) = sup
C∈C(τ,k)

∣
∣
∑

i≤N

(
1 o

C
(xi)− λ(

o

C)
)∣
∣

of points x1, . . . , xN ∈ [0, 1]2 has the property that changing the value of a
given variable xi can change the value of f by at most one. One of the earliest
“concentration of measure” results (for which we refer to [52]) asserts that for such
a function, the r.v. W = f (X1, . . . , XN) satisfies a deviation inequality of the form

P(|W − EW | ≥ u) ≤ 2 exp
(
− u2

2N

)
. (4.107)

Using (4.106) to control EW and taking u = L2k
√
N(logN)3/4 prove Proposi-

tion 4.7.3 in the case k ≥ 0. A little bit more work is needed when k < 0. In
that case, a curve of length 2k is entirely contained in the square V of center τ and
side 2k+1 and 1 o

C
(Xi) = 0 unless Xi ∈ V . To take advantage of this, we work

conditionally on I = {i ≤ N;Xi ∈ V }, and we can then use (4.107) with card I
instead of N . This provides the desired inequality when card I ≤ L22kN . On the
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other hand, by (4.98) and since λ(V ) = 22k+2, we have P(card I ≥ L22kN) ≤
exp(−N22k) ≤ L exp(−(logN)3/2/L) because k ≥ −�1 and the choice of �1. �

We start the proof of Proposition 4.7.5. We denote by Fk the class of functions
of the type 1 o

C
, where C ∈ C(τ, k) so we can rewrite (4.106) as

E sup
f∈Fk

∣
∣
∑

i≤N
(f (Xi)−

∫

f dλ)
∣
∣ ≤ L2k

√
N(logN)3/4 . (4.108)

The key point again is the control on the size of Fk with respect to the distance of
L2(λ). The difficult part of this control is the following:

Proposition 4.7.6 We have

γ2(Fk, d2) ≤ L2k(logN)3/4 . (4.109)

Another much easier fact is the following:

Proposition 4.7.7 We have

γ1(Fk, d∞) ≤ L2k
√
N . (4.110)

Proof of (4.108) and of Proposition 4.7.5 Combine Propositions 4.7.6 and 4.7.7
and Theorem 4.5.16. �

Let us first prove the easy Proposition 4.7.7.

Lemma 4.7.8 We have card C(τ, k) ≤ 22k+�1+1 = Nk+�1+1.

Proof A curve C ∈ C(τ, k) consists of at most 2k+�1 edges of G. If we move
through C, at each vertex of G, we have at most four choices for the next edge, so
card C(τ, k) ≤ 42k+�1 = Nk+�1+1. �
Proof of Proposition 4.7.7 Generally speaking, a set T of cardinality ≤ Nm and
diameter Δ satisfies γ1(T , d) ≤ LΔ2m, as is shown by taking An = {T } for n < m

and Am(t) = {t}. We use this for T = Fk, so that card T = card C(τ, k) ≤ Nk+�1+1
by Lemma 4.7.8 and 2k+�1+1 ≤ L2k

√
N . �

We now attack the difficult part, the proof of Proposition 4.7.6. The exponent
3/4 occurs through the following general principle, where we recall that if d is a
distance, so is

√
d:

Lemma 4.7.9 Consider a finite metric space (T , d) with card T ≤ Nm. Then

γ2(T ,
√
d) ≤ m3/4γ1,2(T , d)

1/2 . (4.111)
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Proof Since T is finite, there exists an admissible sequence (An) of T such that

∀t ∈ T ,
∑

n≥0

(2nΔ(An(t), d))
2 ≤ γ1,2(T , d)

2 . (4.112)

Without loss of generality, we can assume that Am(t) = {t} for each t , so that
in (4.112) the sum is over n ≤ m− 1. Now

Δ(A,
√
d) = Δ(A, d)1/2

so that, using Hölder’s inequality,

∑

0≤n≤m−1

2n/2Δ(An(t),
√
d) =

∑

0≤n≤m−1

(2nΔ(An(t), d))
1/2

≤ m3/4
(∑

n≥0

(
2nΔ(An(t), d)

)2
)1/4

≤ m3/4γ1,2(T , d)
1/2 ,

which concludes the proof. �
Let us denote by A�B the symmetric difference (A \B)∪ (B \A) between two

sets A and B. On the set of closed simple curves traced on G, we define the distance

d1 by d1(C,C
′) = λ(

o

C � o

C
′
) and the distance

δ(C1, C2) :=
∥
∥1 o

C1
− 1 o

C2

∥
∥

2 = (λ(
o

C1�
o

C2))
1/2 = (d1(C1, C2)

)1/2
, (4.113)

so that

γ2(Fk, d2) = γ2(C(τ, k), δ) = γ2(C(τ, k),
√
d1) ,

and using Lemma 4.7.8 and (4.111) for m := k + �1 + 1, we obtain

γ2(Fk, d2) ≤ L(logN)3/4γ1,2(C(τ, k), d1)
1/2 ,

because m ≤ L logN for k ≤ �1 + 2.
Therefore, it remains only to prove the following:

Proposition 4.7.10 We have

γ1,2(C(τ, k), d1) ≤ L22k . (4.114)
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The reason why this is true is that the metric space (L, d2) of Proposition 4.1.8
satisfies γ1,2(L, d2) < ∞, while (C(τ, k), d1) is a Lipschitz image of a subset of
this metric space (L, d2). The elementary proof of the following may be found in
Sect. B.2.

Lemma 4.7.11 There exists a map W from a subset T of L onto C(τ, k) which for
any f0, f1 ∈ T satisfies

d1(W(f0),W(f1)) ≤ L22k‖f0 − f1‖2 . (4.115)

To conclude the proof of Proposition 4.7.10, we check that the functionals γα,β
behave as expected under Lipschitz maps.

Lemma 4.7.12 Consider two metric spaces (T , d) and (U, d ′) and a map f :
(T , d)→ (U, d ′) which is onto and satisfies

∀x, y ∈ T , d ′(f (x), f (y)) ≤ Ad(x, y)

for a certain constant A. Then

γα,β(U, d ′) ≤ K(α, β)Aγα,β(T , d) .

Proof This is really obvious when f is one-to-one. We reduce to that case by
considering a map ϕ : U → T with f (ϕ(x)) = x and replacing T by ϕ(U). �

It remains to deduce Theorem 4.7.1 from Theorem 4.7.2. The argument is purely
deterministic and unrelated to any other material in the present book. The basic idea
is very simple, and to keep it simple, we describe it in slightly imprecise terms.
Consider a union A of little squares of side length 2−�1 and the union A′ of all the
little squares that touch A (see Fig. 4.3).

We want to prove that A′ contains as many points Yi as A contains points Xi , so
that by Hall’s Marriage Lemma each point Xi can be matched to a point Yi in the
same little square or in a neighbor of it. Since the points Yi are evenly spread, the
number of such points in A′ is very nearly Nλ(A′). There may be more than Nλ(A)

points Xi in A, but (4.103) tells us that the excess number of points cannot be more
than a proportion of the length � of the boundary of A. The marvelous fact is that we
may also expect that λ(A′)−λ(A) is also proportional to �, so that we may hope that
the excess number of points Xi in A should not exceed N(λ(A′) − λ(A)), proving
the result. The proportionality constant is not quite right to make the argument work,
but this difficulty is bypassed simply by applying the same argument to a slightly
coarser grid.

When one tries to describe precisely what is meant by the previous argument,
one has to check a number of details. This elementary task which requires patience
is performed in Appendix B.3.
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Fig. 4.3 A union A of little
squares and the boundary of
A′

A

A

4.8 Lower Bound for the Leighton-Shor Theorem

Theorem 4.8.1 If the points (Xi)i≤N are i.i.d. uniform over [0, 1]2 and the points
(Yi)i≤N are evenly spread, then

E inf
π

max
i≤N d(Xi, Yπ(i)) ≥ (logN)3/4

L
√
N

. (4.116)

We consider the class of functions

C = {f : [0, 1] → [0, 1] ; f (0) = f (1) = 0 ;
∫ 1

0
f ′2(x)dx ≤ 1

}
. (4.117)

For f ∈ C, we consider its subgraph

S(f ) := {(x, y) ∈ [0, 1]2 ; y ≤ f (x)} . (4.118)

To prove (4.116), the key step will be to show that with high probability we may
find f ∈ C with

card{i ≤ N ; Xi ∈ S(f )} ≥ Nλ(S(f ))+ 1

L

√
N(logN)3/4 . (4.119)
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With a little more work, we could actually prove that we can find such a function f

which moreover satisfies |f ′| ≤ 1. This extra work is not needed. The key property
of f here is that its graph has a bounded length, and this is already implied by the
condition ‖f ′‖2 ≤ 1, since the length of this graph is

∫ 1
0

√
1+ f ′2(x)dx ≤ 2.

Lemma 4.8.2 The set of points within distance ε > 0 of the graph of f has an area
≤ Lε. The set of points within distance ε > 0 of S(f ) has an area≤ λ(S(f ))+Lε.

Proof The graph of f ∈ C has length ≤ 2. One can find a subset of the graph of f
of cardinality ≤ L/ε such that each point of the graph is within distance ε of this
set.18 A point within distance ε of the graph then belongs to one of L/ε balls of
radius 2ε. This proves the first assertion. The second assertion follows from the fact
that a point which is within distance ε of S(f ) either belongs to S(f ) or is within
distance ε of the graph of f . �
Proof of Theorem 4.8.1 We prove that when there exists a function f satisfy-
ing (4.119), then infπ maxi≤N d(Xi, Yπ(i)) ≥ (logN)3/4/L

√
N . Let us denote by

S(f )ε the ε-neighborhood19 of S(f ) in [0, 1]2. We first observe that for any f ∈ C,
we have

card{i ≤ N ; Yi ∈ S(f )ε} ≤ Nλ(S(f ))+ LεN + L
√
N . (4.120)

This is because, by definition of an evenly spread family, each point Yi belongs
to a small rectangle Ri of area 1/N and of diameter ≤ 10/

√
N and a pessimistic

upper bound for the left-hand side of (4.120) is the number of such rectangles that
intersect S(f )ε . These rectangles are entirely contained in the set of points within
distance L/

√
N of S(f )ε , i.e., in the set of points within distance ≤ ε + L/

√
N of

S(f ) and by Lemma 4.8.2, this set has area ≤ λ(S(f )) + Lε + L/
√
N , hence the

bound (4.120).
Consequently (and since we may assume that N is large enough), (4.119) implies

that for ε = (logN)3/4/(L
√
N), it holds that

card{i ≤ N ; Yi ∈ S(f )ε} < card{i ≤ N ; Xi ∈ S(f )} ,

and therefore any matching must pair at least one point Xi ∈ S(f ) with a point
Yj �∈ S(f )ε , so that maxi≤N d(Xi, Yπ(i)) ≥ ε. �

Recalling the functions fk,� of (4.82), we consider now an integer c ≥ 2 which
will be determined later. The purpose of c is to give us room. Thus, by (4.87),

∫ 1

0
fck,�(x)dx = 2−2ck−2 . (4.121)

18 This is true for any curve of length 2. If one consider a parameterization ϕ(t) 0 ≤ t ≤ 2 of the
curve by arc length, the points ϕ(kε) for k ≤ 2/ε have this property.
19 That is, the set of points within distance ≤ ε of a point of S(f ).



156 4 Matching Theorems

Let us set

f̃k,� = 1√
r
fck,� .

Consider the functions of the type

f =
∑

k≤r
fk with fk =

∑

1≤�≤2ck

xk,�f̃k,� , (4.122)

where xk,� ∈ {0, 1}. Then f (0) = f (1) = 0.

Lemma 4.8.3 A function f of the type (4.122) satisfies

∫ 1

0
f ′(x)2dx ≤ 1 . (4.123)

Proof Using (4.83) and (4.84), we obtain

∫ 1

0
f ′(x)2dx =

∑

k≤r

∑

�≤2ck

x2
k,�

r
‖fck,�‖2

2 =
∑

k≤r

∑

�≤2ck

x2
k,�

r
2−ck ≤ 1 . �

Consequently, each function of the type (4.122) belongs the class C of (4.117).

Proof of (4.119) Given N large, we choose r as the largest integer for which 2cr ≤
N1/100, so that r ≤ logN/Lc. The construction of the functions fk is inductive.
Assume that we have already constructed f1, . . . , fq , and let g = ∑

k≤q fk . For

� ≤ 2c(q+1), let us consider the region

R� := S(g + f̃q+1,�) \ S(g) ,

so that by (4.121)

λ(R�) = 2−2c(q+1)

4
√
r

. (4.124)

These regions are disjoint because the functions f̃q+1,� have disjoint support.
Furthermore, if we choose fq+1 = ∑�≤2c(q+1) xq+1,�f̃q+1,� where xq+1,� ∈ {0, 1},
then we have

S(g + fq+1) \ S(g) =
⋃

�∈J
R� ,
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where

J = {� ≤ 2c(q+1) ; xq+1,� = 1} ,

and thus

λ(S(g + fq+1) \ S(g)) =
∑

J

λ(R�) . (4.125)

Since our goal is to construct functions such that there is an excess of points Xi in
their subgraph, we do the obvious thing; we take xq+1,� = 1 if there is an excess of
points Xi in R�, that if

δ� := card{i ≤ N;Xi ∈ R�} −Nλ(R�) ≥ 0 , (4.126)

and otherwise we set xk+1,� = 0. We have, recalling (4.125),

card{i ≤ N ; Xi ∈ S(g + fq+1) \ S(g)} =
∑

J

card{i ≤ N ; Xi ∈ R�}

=
∑

J

δ� + Nλ(S(g + fq+1) \ S(g)) . (4.127)

We will show that with high probability, we have
∑

J δ� ≥ √
N/(Lr1/4).

Recalling that g = ∑
k≤q fk and g + fq+1 = ∑

k≤q+1 fk , summation of the
inequalities (4.127) over q < r then proves (4.119), where f is the function∑

k≤r fk .
Let us say that the region R� is favorable if

δ� ≥
√
Nλ(R�)/L

∗ = 2−c(q+1)
√
N/(Lr1/4) ,

where the universal constant L∗ will be determined later. The idea underlying this
definition is that given a subset A of the square, with 1/N � λ(A) ≤ 1/2, the
number of points Xi which belong to A has typical fluctuations of order

√
Nλ(A).

Since δ� ≥ 0 for � ∈ J and since by construction � ∈ J when R� is favorable, we
have

∑

J

δ� ≥ card{�;R� favorable} × 2−c(q+1)
√
N/(Lr1/4) .

To conclude the proof, it then suffices to show that with overwhelming probabil-
ity at least a fixed proportion of the regions R� for � ≤ 2c(q+1) are favorable. One
has to be cautious that the r.v.s Xi are not independent of the function g and of the
regions R� because in particular the construction of g uses the values of the Xi .
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One simple way around that difficulty is to proceed as follows: There are at most
∏

k≤q 22ck ≤ 22cq+1
possibilities for g. To each of these possibilities corresponds a

family of 22c(q+1)
regions R�. If we can ensure that with overwhelming probability

for each of these families a least a fixed proportion of the R� are favorable, we are
done. Since there are at most 22cq+1

families, it suffices to prove that for a given
family, this fails with probability≤ 2−2cq+2

. To achieve this, we proceed as follows:
by normal approximation of the tails of the binomial law, there exists a constant L∗
and a number N0 > 0 such that given any set A ⊂ [0, 1]2 with 1/2 ≥ λ(A) and
Nλ(A) ≥ N0, we have

P
(

card{i ≤ N;Xi ∈ A} −Nλ(A) ≥ √Nλ(A)/L∗
) ≥ 1/4 . (4.128)

Since c is a universal constant and 2rc ≤ N1/100, (4.124) shows that Nλ(R�)

becomes large with N . In particular (4.128) shows that the probability that a
given region R� is favorable is ≥ 1/4. Now, using Poissonization, we can pretend
that these probabilities are independent as � varies. As noted in (4.98), given M

independent r.v.s Zi ∈ {0, 1} with P(Zi = 1) ≥ 1/4, then P(
∑

i≤M Zi ≤ M/8) ≤
exp(−βM) for some universal constant β. Since here we have M = 2c(q+1), then
exp(−βM) = exp(−β2c−22cq+2). This is ≤ 2−2cq+2

as required provided we have
chosen c large enough that β2c−2 ≥ 1. �

4.9 For the Expert Only

Having proved both the Ajtai-Komlós-Tusnády and the Leighton-Shor matching
theorems, we should not fall under the illusion that we understand everything about
matchings. The most important problem left is arguably the ultimate matching
conjecture, stated later as Problem 17.1.2. A first step in that direction would be
to answer the following question:20

Question 4.9.1 Can we find a matching which achieves simultaneously both (4.36)
and (4.101)?

The existence of such a matching does not seem to be of any particular impor-
tance, but the challenge is that the Ajtai-Komlós-Tusnády (AKT) theorem and the
Leighton-Shor matching theorems are proved by rather different routes, and it is far
from obvious to find a common proof.

In the rest of the section, we discuss a special matching result. Consider the space
T = {0, 1}N provided with the distance d(t, t ′) = 2−j , where j = min{i ≥ 1; ti �=

20 The difference between a problem and a question is that a question is permitted to sound less
central.
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t ′i } for t = (ti)i≥1. This space somewhat resembles the unit interval, in the sense
that N(T , d, ε) ≤ Lε−1 for ε ≤ 1. The space of Exercise 4.5.23 is essentially the
space T × T . The AKT theorem tells us what happens for matchings in [0, 1]2, and
Exercise 4.5.23 tells us what happens for matchings in T 2. But what happens in the
space U := [0, 1]×T ? It does not really matter which specific sensible distance we
use on U ; let us say that we define d((x, t), (x ′, t ′)) = |x − x ′| + d(t, t ′).

Theorem 4.9.2 The expected cost of the optimal matching of N random i.i.d.
uniformly distributed21 points in U with N evenly spread points is exactly of order√
N(logN)3/4.

The appealing part of this special result is of course the fractional power of log.
This result is as pretty as almost anything found in this book, but its special nature
makes it appropriate to guide the (expert) reader to the proof through exercises.

Let us start with a finite approximation of T . We consider the space Tm = {0, 1}m
provided with the distance defined for t �= t ′ by d(t, t ′) = 2−j , where j = min{i ≥
1; ti �= t ′i } for t = (ti)i≤m. We set Um = [0, 1] × Tm, and we denote by θm the
uniform measure on Um. Surely the reader who has reached this stage knows how
to deduce22 the upper bound of Theorem 4.9.2 from the following:

Theorem 4.9.3 The set L of 1-Lipschitz functions f on Um which satisfy |f | ≤ 1
satisfies γ2(L, d2) ≤ Lm3/4.

Here of course L is seen as a subset of L2(Um, θm). The proof of Theorem 4.9.3 will
use an expansion of the elements of L on a suitable basis. Using the same method
as in Lemma 4.5.12, one can assume furthermore that the functions of L are zero
on {0} × Tm and {1} × Tm. For 0 ≤ n ≤ m, we consider the natural partition Cn
of Tm into 2n sets obtained by fixing the first n coordinates of t ∈ Tm. Denoting by
μm the uniform measure on Tm, for C ∈ Cn, we have μm(C) = 2−n. A set C ∈ Cn
with n < m is the union of two sets C1 and C2 in Cn+1. We denote by hC a function
on Tn which equals 2n/2 on one of these sets and −2n/2 on the other. Consider also
the function h∅ on Tm, constant equal to 1. In this manner, we obtain an orthogonal
basis (hC) of L2(Tm,μm). For f ∈ L, we consider the coefficients of f on this
basis,

ap,C(f ) :=
∫

Um

exp(2ipπx)hC(t)f (x, t)dxdμm(t) .

There and always, p ∈ Z, n ≥ 0, C ∈ Cn or p ∈ Z and C = ∅. We will lighten
notation by writing simply

∑
p,C sums over all possible values of (p,C) as above.

21 It should be obvious what is meant by “uniform probability on U”.
22 By following the scheme of proof of (4.43).
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Exercise 4.9.4

(a) Prove that

∑

p,C

p2|ap,C|2 ≤ L . (4.129)

Hint: Just use that |∂f/∂x| ≤ 1.
(b) Prove that for each n and each C ∈ Cn, we have

∑

p∈Z
|ap,C |2 ≤ L2−3n . (4.130)

Hint: Prove that | ∫ hC(t)f (x, t)dμm(t)| ≤ L2−3n/2.

We have just shown that L is isometric to a subset of the set A of sequences
(ap,C) which satisfy (4.129) and (4.130).

Exercise 4.9.5 We will now show that γ2(A) ≤ Lm3/4.

(a) Prove that A is contained in an ellipsoid of the type

E =
{
(ac,C) ;

∑

p,C

α2
p,C |ap,C|2 ≤ 1

}

where α2
p,C = (p2 + 22n/m)/L if C ∈ Cn, n ≥ 0 and α2

p,∅ = p2/L.
(b) Conclude using (2.155). (The reader must be careful for the unfortunate clash

of notation.)

The goal of the next exercise is to prove the lower bound in Theorem 4.9.2. This
lower bound is obtained by a non-trivial twist on the proof of the lower bound for
the AKT theorem, so you must fully master that argument to have a chance.

Exercise 4.9.6 Let us recall the functions fq,� of (4.82) where we take r �
(logN)/100. For n ≥ 0, we still consider the natural partition Cn of T into 2n

sets obtained by fixing the first n coordinates of t ∈ T . We consider an integer p
with 2−p � 1/

√
r . For each q , each � ≤ 2q , and each C ∈ Cq+p, we consider

the function fq,�,C on U given by fq,�,C(x, t) = 2−p−20fq,�(x)1C(t). We consider
functions of the type fq = ∑

�≤2q ,C∈Cq+p zq,�,Cfq,�,C where zq,�,C ∈ {0, 1,−1}.
Copy the proof of the lower bound of the AKT theorem to prove that with high
probability, one can construct these functions such that

∑
k≤q fk is 1-Lipschitz, and

for each q ,
∑

i≤N(fq(Xi) −
∫
fqdθ) ≥ √

N/(Lr1/4), where Xi are i.i.d. uniform
on U and θ is the uniform probability measure on U . Summation over q ≤ r yields
the desired result.
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While making futile attempts in the direction of Theorem 4.9.2 arose further
questions which we cannot answer. We describe one of these now. We recall the
functionals γα,β of (4.5) and the uniform measure μm on Tm.

Question 4.9.7 Is it true that for any metric space (T , d) the space U of 1-Lipschitz
maps f from Tm to T , provided with the distance D given by D(f, f ′)2 =∫
Tm

d(f (s), f ′(s))2dμm(s) satisfies γ2(U,D) ≤ Lm3/4γ1,2(T )?

The motivation for this result is that if T is the set of 1-Lipschitz functions on [0, 1],
then γ1,2(T ) ≤ L (using Fourier transform to compare with an ellipsoids), and with
minimal effort, this would provide an alternate and more conceptual proof for the
upper bound of Theorem 4.9.2.

Exercise 4.9.8 In the setting of Question 4.9.7, assume that en(T , d) ≤ 2−n. Prove
that e2n(U,D) ≤ L2−n (and better if n > m). Conclude that

∑
n≥0 2n/2en(U,D) ≤

Lm. Prove that γ2(U,D) ≤ Lmγ1,2(T ).

Key Ideas to Remember

• Ellipsoids in a Hilbert space are in a sense smaller than their entropy numbers
indicate. This is true more generally for sufficiently convex sets in a Banach
space. This phenomenon explains the fractional powers of logarithms occurring
in the most famous matching theorems.

• The size of ellipsoids is sometimes accurately described by using proper
generalizations γα,β(T , d) of the basic functional γ2(T , d).

• Matching theorems are typically proved through a discrepancy bound, which
evaluates the supremum of the empirical process over a class F of functions.

• Bernstein’s inequality is a convenient tool to prove discrepancy bounds. It
involves the control of F both for the L2 and the supremum distance.

• Using two different distances reveals the power of approaching chaining through
sequences of partitions.

4.10 Notes and Comments

The original proof of the Leighton-Shor theorem amounts basically to perform by
hand a kind of generic chaining in this highly non-trivial case, an incredible tour de
force.23 A first attempt was made in [92] to relate (an important consequence of)
the Leighton-Shor theorem to general methods for bounding stochastic processes
but runs into technical complications. Coffman and Shor [26] then introduced the
use of Fourier transforms and brought to light the role of ellipsoids, after which
it became clear that the structure of these ellipsoids plays a central part in these
matching results, a point of view systematically expounded in [114].

23 There is a simple explanation as to why this was possible: as you can check through Wikipedia,
both authors are geniuses.
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Chapter 17 is a continuation of the present chapter. The more difficult material it
contains is presented later for fear of scaring readers at this early stage. A notable
feature of the result presented there is that ellipsoids do not suffice, a considerable
source of complication. The material of Appendix A is closely related to the
Leighton-Shor theorem.

The original results of [3] are proved using an interesting technique called
the transportation method. A version of this method, which avoids many of the
technical difficulties of the original approach, is presented in [134]. With the
notation of Theorem 4.5.1, it is proved in [134] (a stronger version of the fact) that
with probability≥ 9/10, one has

inf
π

1

N

∑

i≤N
exp

(Nd(Xi, Yπ(i))
2

L logN

)
≤ 2 . (4.131)

Since expx ≥ x, (4.131) implies that
∑

i≤N d(Xi, Yπ(i))
2 ≤ L logN and hence

using the Cauchy-Schwarz inequality
∑

i≤N d(Xi, Yπ(i)) ≤ L
√
N logN . More-

over, (4.131) also implies maxi≤N d(Xi, Yπ(i)) ≤ L logN/
√
N . This unfortunately

fails to bring a positive answer to Question 4.9.1.
For results about matching for unbounded distributions, see the work of J. Yukich

[146] as well as the nonstandard results of [133].



Part II
Some Dreams Come True



Chapter 5
Warming Up with p-Stable Processes

Later, in Chap. 11, we will prove far-reaching generalizations of the results of
Chap. 2 to many processes which are not close to Gaussian processes. Getting there
will require many new ideas, and in this chapter, we will present some of them in a
setting which remains close to that of Gaussian processes.

5.1 p-Stable Processes as Conditionally Gaussian Processes

Consider a number 0 < p ≤ 2. A r.v. X is called (real, symmetric) p-stable if for
each λ ∈ R, we have

E exp iλX = exp
(
− σp|λ|p

2

)
, (5.1)

where σ = σp(X) ≥ 0 is called the parameter of X. The name “p-stable” comes
from the fact that if X1 , . . . , Xm are independent and p-stable, then for real
numbers αi , the r.v.

∑
j≤m ajXj is also p-stable and

σp

(∑

j≤m
ajXj

)
=
(∑

j≤m
|aj |pσp(Xj )

p

)1/p

. (5.2)

This is obvious from (5.1).
The reason for the restriction p ≤ 2 is that for p > 2, no r.v. satisfies (5.1). The

case p = 2 is the Gaussian case, which we now understand very well, so from now
on we assume p < 2. Despite the formal similarity, this is very different from the
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Gaussian case. It can be shown that

lim
s→∞ spP(|X| ≥ s) = cpσp(X)p (5.3)

where cp > 0 depends on p only. Thus X does not have moments of order p, but
it has moments of order q for q < p. We refer the reader to [53] for a proof of this
and for general background on p-stable processes.

A process (Xt )t∈T is called p-stable if, for every family (αt )t∈T for which only
finitely many of the numbers αt are not 0, the r.v.

∑
t αtXt is p-stable. We can then

define a (quasi-)distance d on T by

d(s, t) = σp(Xs −Xt) . (5.4)

When p > 1, a p-stable r.v. is integrable, and E|X| is proportional to σp(X). Thus
one can also define an equivalent distance by d ′(s, t) = E|Xs −Xt |.

A typical example of a p-stable process is given by Xt = ∑i≤n tiYi where t =
(ti)i≤n and (Yi)i≤n are independent p-stable r.v.s. It can in fact be shown that this
example is generic in the sense that “each p-stable process (with a finite index set)
can be arbitrarily well approximated by a process of this type”. Assuming further
that σp(Yi) = 1 for each i, (5.2) implies that the distance induced by the process is
then the �p distance, d(Xs,Xt ) = ‖s − t‖p .

At the heart of this chapter is the fact that a p-stable process (Xt) can be
represented as a conditionally Gaussian process. That is, we can find two probability
spaces (Ω , P) and (Ω ′ , P′) and a family (Yt )t∈T of r.v.s on Ω×Ω ′ (provided with
the product probability), such that

Given any finite subset U of T , the joint

laws of (Yt )t∈U and (Xt )t∈U are identical (5.5)

Given ω ∈ Ω , the process ω′ �→ Yt (ω, ω
′)

is a centered Gaussian process. (5.6)

This result holds for any value of p with 1 ≤ p < 2. A proof is given in Sect. C.3.
Our strategy is to study the process (Yt ) as in (5.6) at given ω.1 A remarkable fact
is that we do not need to know precisely how the previous representation of the
process (Xt) arises. More generally, if you are disturbed by the fact that you have no
intuition about p-stable processes, do not be discouraged. Our result will not need
any understanding of p-stable processes beyond what we have already explained.

1 If you have already glanced through the rest of the book, you should be aware that a basic reason
the special case of p-stable processes is simple is that these processes are conditionally Gaussian.
Many more processes of interest (such as infinitely divisible processes) are not conditionally
Gaussian, but are conditionally Bernoulli.
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5.2 A Lower Bound for p-Stable Processes

The main goal of this chapter is to prove the following:

Theorem 5.2.1 For 1 < p < 2, there is a number K(p) such that for any p-stable
process (Xt )t∈T , we have

γq(T , d) ≤ K(p)E sup
t∈T

Xt , (5.7)

where q is the conjugate exponent of p, i.e., 1/q + 1/p = 1, and where d is as
in (5.4).

Certainly this result reminds us of the inequality γ2(T , d) ≤ LE supt∈T Xt of the
majorizing measure theorem (Theorem 2.10.1). A striking difference is that the
tails of p-stable r.v.s are very large (see (5.3)) and are not relevant to (5.7). The
bound (5.7) cannot be reversed.

Exercise 5.2.2

(a) Consider i.i.d. p-stable r.v.s (Yi)i≤N with σp(Yi) = 1. For t ∈ R
N , set Xt =∑

i≤n tiYi . Prove that the distance (5.4) is given by d(s, t) = (
∑

i≤N |si −
ti |p)1/p.

(b) Let T = {(±1, . . . ,±1)}. Prove that in this case the two sides of (5.7) are of the
same order.

(c) Let now T consist of the N sequences (0, . . . , 0, 1, 0, . . . , 0). Prove that the two
sides of (5.7) are not of the same order.

This exercise leaves little hope to computeE supt∈T Xt as a function of the geometry
of (T , d) only.

The bound (5.7) cannot be reversed, but it would be a lethal mistake to think
that it is “weak”. It provides in fact an exact information on some aspects of the
process (Xt)t∈T , but these aspects are not apparent at first sight, and we will fully
understand them only in Chap. 11.

Theorem 5.2.1 has a suitable version for p = 1, which we will state at the end of
this chapter.

5.3 Philosophy

Let us consider the process (Yt ) as in (5.5) and (5.6). We denote by E′ integration in
P′ only. Given ω, we consider the random distance dω on T given by

dω(s, t) =
(
E′(Ys(ω, ω′)− Yt (ω, ω

′))2)1/2
. (5.8)
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It is the canonical distance associated with the Gaussian process (Yt (ω, ·)).
Consider the r.v. Z = supt∈T Yt . Then Theorem 2.10.1 implies

γ2(T , dω) ≤ LE′Z ,

and taking expectation gives

Eγ2(T , dω) ≤ LEE′Z = LE sup
t∈T

Xt . (5.9)

Now, from the information (5.9), how do we gain a control of the size of the metric
space (T , d)? There is a very important principle at work here, which will play a
major part in the book. Suppose that we have a set T and that on T we have a
distance d and a random distance dω.

Principle A If, given s, t ∈ T , it is very rare that the distance dω(s, t) is very much
smaller than d(s, t), then some measure of size of (T , d) is controlled from above
by the typical value of γ2(T , dω).

We do not expect the reader to fully understand this principle now, but it will
become clearer as we repeatedly apply it. In the present case, the property that
it is very rare that dω(s, t) is very much smaller than d(t, s) is expressed by the
following:

Lemma 5.3.1 Define α by

1

α
:= 1

p
− 1

2
. (5.10)

Then for all s, t ∈ T and ε > 0, we have

P(dω(s, t) ≤ εd(s, t)) ≤ exp
(
− bp

εα

)
(5.11)

where d is the distance (5.4) and where bp > 0 depends on p only.

Thus, given a pair (s, t), it is rare that dω(s, t) is much smaller than d(s, t). Given
two pairs (s, t) and (s′, t ′), we however know nothing about the joint distribution of
the r.v.s dω(s, t) and dω(s

′, t ′). Still the information contained in this lemma suffices
to deduce Theorem 5.2.1 from the majorizing measure theorem (Theorem 2.10.1).
This is an occurrence of Principle A.

Proof Since the process Yt (ω, ·) is Gaussian, we have

E′ exp iλ(Ys − Yt ) = exp
(
− λ2

2
d2
ω(s, t)

)
.
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Taking expectation, using (5.1), and since the pair (Ys, Yt ) has the same law as the
pair (Xs,Xt ), we get

exp
(
− |λ|p

2
dp(s, t)

)
= E exp

(
− λ2

2
d2
ω(s, t)

)
. (5.12)

By Markov’s inequality, for any r.v. Z and any u, we have

P(Z ≤ u) exp
(
− λ2u

2

)
≤ E exp

(
− λ2

2
Z
)
.

Using this for Z = d2
ω(s, t) and u = ε2d2(s, t), we get, using (5.12),

P(dω(s, t) ≤ εd(s, t)) ≤ exp
(1

2

(
λ2ε2d2(s, t)− |λ|pdp(s, t))

)
.

The conclusion follows by optimization over λ. �

5.4 Simplification Through Abstraction

Now that we have extracted the relevant features, Lemma 5.3.1 and Principle A, we
can prove an abstract result.

Theorem 5.4.1 Consider a finite metric space (T , d) and a random distance dω on
T . Assume that for some b > 0, we have

∀s, t ∈ T , ∀ε > 0 , P(dω(s, t) ≤ εd(s, t)) ≤ exp
(
− b

εα

)
, (5.13)

where α > 2. Then

γq(T , d) ≤ KEγ2(T , dω) , (5.14)

where

1

q
= 1

2
− 1

α
,

and where K depends on α and b only.

Proof of Theorem 5.2.1 When T is Finite We apply Theorem 5.4.1 with the value
α given by (5.10), so that the value of q of Theorem 5.4.1 satisfies 1/q = 1− 1/p.
It follows from (5.14) that γq(T , d) ≤ LEγ2(T , dω), and combining with (5.9), this
implies (5.7). �
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Of course T need not be finite and some work would be needed to handle this
case. This work is predictable and tedious, and now is not the time to be distracted
by routine considerations.2 We turn to the proof of Theorem 5.4.1. The main step of
the proof is the following lemma:

Lemma 5.4.2 Consider a probability measure μ on T . Then for each t ∈ T , with
probability ≥ 15/16, we have

∫ ∞

0

(
log

1

μ(Bd(t, ε))

)1/q
dε ≤ K

∫ ∞

0

√

log
1

μ(Bdω(t, ε))
dε +KΔ(T , d) .

(5.15)

Proof We define ε0 = Δ(T , d), and for n ≥ 1, we define εn by

εn = inf{ε > 0 ; μ(Bd(t, ε)) ≥ 1/Nn}

and we prove first that

∫ ∞

0

(
log

1

μ(Bd(t, ε))

)1/q
dε ≤ K

∑

n≥1

2n/qεn +KΔ(T , d) . (5.16)

For this, let us set f (ε) = (log(1/μ(Bd(t, ε))))
1/q and observe that f (ε) = 0 for

ε > ε0 = Δ(T , d). Since f (ε) ≤ K2n/q for ε > εn, we have

∫ ∞

0
f (ε)dε =

∑

n≥0

∫ εn

εn+1

f (ε)dε ≤ K
∑

n≥0

2(n+1)/qεn = K
∑

n≥1

2n/qεn+KΔ(T , d) .

The heart of the argument starts now. By (5.13), it holds that for any s

d(s, t) ≥ εn ⇒ P
(
dω(s, t) ≤ 1

K
2−n/αεn

)
≤ exp(−2n+2) ,

so that by Fubini’s theorem

Eμ({s ; d(s, t) ≥ εn, dω(s, t) ≤ 2−n/αεn/K}) ≤ exp(−2n+2)

and by Markov’s inequality,

P
(
μ({s ; d(s, t) ≥ εn, dω(s, t) ≤ 2−n/αεn/K}) ≥ 1/Nn

)
≤ Nn exp(−2n+2) .

2 It is explained in the proof of Theorem 11.7.1 how to cover the case where T is countable.
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As
∑

n≥0 Nn exp(−2n+2) ≤∑n≥0 exp(−3 · 2n) ≤ 1/16, with probability≥ 15/16
for each n ≥ 1, one has

μ({s ; d(s, t) ≥ εn, dω(s, t) ≤ 2−n/αεn/K}) ≤ 1/Nn .

Since μ({s ; d(s, t) ≤ εn}) ≤ 1/Nn, it follows that

μ(Bdω(t, 2−n/αεn/K)) ≤ 2/Nn .

Consequently for ε ≤ ηn := 2−n/αεn/K , we have (log(1/μ(Bdω(t, ε))))
1/2 ≥

2n/2/K so that

∫ ∞

0

(
log

1

μ(Bdω(t, ε))

)1/2
dε ≥

∑

n≥1

∫ ηn

ηn+1

(
log

1

μ(Bdω(t, ε))

)1/2
dε

≥ 1

K

∑

n≥1

2n/2(ηn − ηn+1) ≥ 1

K

∑

n≥1

(2n/2 − 2(n−1)/2)ηn = 1

K

∑

n≥1

2n/qεn ,

where we use in the last equality that 1/2− 1/α = 1/q . Combining with (5.16) the
proof of (5.15) is finished. �
Proof of Theorem 5.4.1 It follows from (2.7) and (5.15) that

∫ ∞

0

(
log

1

μ(Bd(t, ε))

)1/q
dε ≤ KE

∫ ∞

0

√

log
1

μ(Bdω(t, ε))
dε +KΔ(T , d) ,

(5.17)

so that, integrating with respect to μ and using linearity of expectation,

∫

T

dμ(t)
∫ ∞

0

(
log

1

μ(Bd(t, ε))

)1/q
dε ≤ KΔ(T , d)

+KE
∫

T

dμ(t)
∫ ∞

0

√

log
1

μ(Bdω(t, ε))
dε .

It follows from (3.32) that the last term is ≤ KEγ2(T , dω). This does not depend on
μ so that we have proved that

sup
μ

∫

T

dμ(t)
∫ ∞

0

(
log

1

μ(Bd(t, ε))

)1/q
dε ≤ KEγ2(T , dω)+KΔ(T , d) .

(5.18)

Next, we show that the last term is of smaller order. Given s, t ∈ T ,
from (5.13) with probability≥ 1/2, one has dω(s, t) ≥ d(s, t)/K , and consequently
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Δ(T , dω) ≥ Δ(T , d)/K so that

Δ(T , d) ≤ KΔ(T , dω) ≤ Kγ2(T , dω) ,

and taking expectation, we obtainΔ(T , d) ≤ KEγ2(T , dω). Combining with (5.18),
we finally obtain

sup
μ

∫

T

dμ(t)
∫ ∞

0

(
log

1

μ(Bd(t, ε))

)1/q
dε ≤ KEγ2(T , dω) . (5.19)

Now, just as in the case q = 2 of (3.31), we can use Fernique’s convexity argument
to prove that

γq(T , d) ≤ K sup
μ

∫

T

dμ(t)
∫ ∞

0

(
log

1

μ(Bd(t, ε))

)1/q
dε ,

and combining with (5.19), this concludes the proof. �

5.5 1-Stable Processes

In this section, we state an extension of Theorem 5.4.1 to the case α = 2, and we
explore the consequences of this result on 1-stable processes. According to (5.3),
1-stable r.v.s do not have expectation. This is the main technical difficulty: we
can no longer use expectation to measure the size of 1-stable processes. It seems
counterproductive to spend space and energy at this stage on such a specialized
topic, so we state our results without proofs. Some proofs can be found in [132].3

We set M0 = 1 , Mn = 2Nn for n ≥ 1. Given a metric space (T , d), we define

γ∞(T , d) = inf
B

sup
t∈T

∑

n≥0

2nΔ(Bn(t)) , (5.20)

where the infimum is taken over all increasing families of partitions (Bn) of T with
cardBn ≤ Mn. This new quantity is a kind of limit of the quantities γα(T , d) as
α →∞.

Exercise 5.5.1 Consider the quantity γ ∗(T , d) defined as

γ ∗(T , d) = inf sup
t∈T

∑

n≥0

Δ(An(t)) , (5.21)

3 We know now how to give much simpler proofs than those of [132].
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where the infimum is computed over all admissible sequences of partitions (An).
Prove that

1

L
γ ∗(T , d) ≤ γ∞(T , d) ≤ Lγ ∗(T , d) . (5.22)

Hint: Given an increasing sequence of partitions (Bn) with cardBn ≤ Mn, consider
the increasing sequence of partitions (Am) given by Am = Bn for 2n ≤ m < 2n+1.

Theorem 5.5.2 Consider a finite metric space (T , d) and a random distance dω on
T . Assume that

∀s, t ∈ T , ∀ε > 0 , P(dω(s, t) < εd(s, t)) ≤ exp
(
− 1

ε2

)
.

Then

P
(
γ2(T , dω) ≥ 1

L
γ∞(T , d)

)
≥ 3

4
.

Applying this result to 1-stable processes, we obtain the following:

Theorem 5.5.3 For every 1-stable process (Xt )t∈T and t0 ∈ T , we have

P
(

sup
t∈T

(Xt − Xt0) ≥
1

L
γ∞(T , d)

)
≥ 1

L
.

This result looks weak, but it is hard to improve: when T consists of two points
t0 and t1, then supt∈T (Xt − Xt0) = max(Xt1 − Xt0, 0) is 0 when Xt1 − Xt0 ≤ 0,
which happens with probability 1/2.

Key Ideas to Remember

• We have met the powerful Principle A which lets us deduce some “smallness”
information about a metric space from the existence of a random distance dω
such that we control Eγ2(T , dω) from above.

• We have seen a typical application of this principle to gain information about
p-stable processes, in a way which will be vastly generalized later.

5.6 Where Do We Stand?

We have found an angle of attack on processes which are conditionally Gaussian.
Unfortunately, such processes are uncommon. On the other hand, many processes
are conditionally Bernoulli processes (with a meaning to be explained in the next
chapter). The same line of attack will work on these processes, but this will require
considerable work, as the study of Bernoulli processes is much more difficult than
that of Gaussian processes.



Chapter 6
Bernoulli Processes

6.1 Bernoulli r.v.s

Throughout the book, we denote by εi independent Bernoulli (=coin flipping) r.v.s;
that is,

P(εi = ±1) = 1

2
.

(Thus εi is a r.v., while εi is a small positive number.)
Consider independent symmetric r.v.s ξi . It is fundamental that if (εi) denotes an

independent sequence of Bernoulli r.v.s, which is independent of the sequence (ξi),
then the sequences (ξi) and (εiξi ) have the same distribution. This is obvious since
this is already the case conditionally on the sequence (εi), by the very definition
of the fact that the sequence (ξi) is symmetric. We will spend much time studying
random sums (and series) of functions of the type X(u) = ∑

i ξiχi(u) where χi
are functions on an index set U . This sum has the same distribution as the sum∑

i εiξiχi(u). Given the randomness of the ξi , this is a random sum of the type∑
i εifi(u) where fi(u) are functions. Then, all that matters is the set of coefficients

T = {t = (fi(u))i; u ∈ U}. This motivates the forthcoming definition of Bernoulli
processes.

Given a sequence (ti )i≥1 ∈ �2 = �2(N∗), we define

Xt =
∑

i≥1

tiεi . (6.1)

Consider a subset T of �2. The Bernoulli process defined by T is the family (Xt )t∈T .
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A simple and essential fact is that the r.v. Xt “has better tails than the
corresponding Gaussian r.v.” as is expressed by the following, for which we refer to
[53, page 90] or to Exercise 6.1.2:

Lemma 6.1.1 (The Sub-Gaussian Inequality) Consider independent Bernoulli
r.v.s εi and real numbers ti . Then for each u > 0, we have

P
(∣
∣
∣
∑

i

εi ti

∣
∣
∣ ≥ u

)
≤ 2 exp

(
− u2

2
∑

i t
2
i

)
. (6.2)

Exercise 6.1.2

(a) Use Taylor series to prove that for λ ∈ R

E expλεi = coshλ ≤ exp
λ2

2
.

(b) Prove that

E exp
(
λ
∑

i

εi ti

)
≤ exp

(λ2

2

∑

i

t2
i

)
,

and prove (6.2) using the formula P(X ≥ u) ≤ exp(−λu)E expλX for u > 0
and λ > 0.

Corollary 6.1.3 (Khintchin’s Inequality) Consider complex numbers ti , indepen-
dent Bernoulli r.v.s εi , and p ≥ 1. Then

(
E
∣
∣
∑

i

εi ti
∣
∣p
)1/p ≤ L

√
p
(∑

i

|ti |2
)1/2

. (6.3)

Proof We reduce to the case of real numbers, and we combine the sub-Gaussian
inequality with (2.24). �
In the case where ti = 1 for i ≤ N and ti = 0 otherwise, (6.2) gives a strong
quantitative form to the well-known statement that

∑
i≤N εi is typically of order√

N . The reason why the sum of N numbers of absolute value 1 can be of order
√
N

is because there is cancellation between the terms. It is completely wrong when no
such cancellation occurs, e.g., in the exceptional case where all the εi equal 1. In
contrast, a bound such as |∑i εi ti | ≤

∑
i |ti |, which we will massively use below,

does not rely on cancellation, since it holds even if all terms are of the same sign.

More generally, there is typically cancellation in a sum
∑

i εi ti when
√∑

i |ti |2 �∑
i |ti |.
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6.2 Boundedness of Bernoulli Processes

Considering a subset T of �2 = �2(N∗) and the corresponding Bernoulli process
(Xt)t∈T , we set

b(T ) := E sup
t∈T

Xt = E sup
t∈T

∑

i≥1

tiεi . (6.4)

We observe that b(T ) ≥ 0, that b(T ) ≤ b(T ′) if T ⊂ T ′, and that b(T + t0) = b(T ),
where T + t0 = {t + t0; t ∈ T }.

We would like to understand the value of b(T ) from the geometry of T , as we
did in the case of Gaussian processes. Lemma 6.1.1 states that the process (Xt )t∈T
satisfies the increment condition (2.4) so that Theorem 2.7.11 implies

b(T ) ≤ Lγ2(T ) , (6.5)

where we remind the reader that we often write γ2(T ) instead of γ2(T , d) when d

is the �2 distance.1 Let us now write

g(T ) = E sup
t∈T

∑

i≥1

tigi .

Since γ2(T ) ≤ Lg(T ) by Theorem 2.10.1, Bernoulli processes “are smaller than
the corresponding Gaussian processes”. There is a much simpler direct proof of this
fact.

Exercise 6.2.1 (Review of Jensen’s Inequality) In this exercise, we review
Jensen’s inequality, a basic tool of probability theory. It states that if X is a r.v.
valued in vector space W and Φ a convex function on W , then Φ(EX) ≤ EΦ(X).
When using this inequality, we will use the sentence “we lower the value by taking
expectation inside Φ rather than outside”.

(a) If you know the Hahn-Banach theorem, convince yourself (or learn in a book)
that Φ(x) = supf∈C f (x) where C is the class of affine functions (the sum of
a constant and a linear function) which are ≤ Φ. Thus, for f ∈ C, we have
Ef (X) = f (E(X)). Deduce Jensen’s inequality from this fact.

(b) For a r.v. X and p ≥ 1, prove that |x + EX|p ≤ E|x +X|p.
(c) If X, Y and θ ≥ 0 are independent r.v.s, prove that Eθ |X+EY |p ≤ Eθ |X+Y |p.

1 Since (6.5) makes a massive use of the sub-Gaussian inequality (6.2) to control the increments
along the chaining, it will be natural to say that this bound relies on cancellation, in sharp contrast
with the bound (6.8) below.
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Proposition 6.2.2 It holds that

b(T ) ≤
√
π

2
g(T ) . (6.6)

Proof If (εi)i≥1 is an i.i.d. Bernoulli sequence that is independent of the sequence
(gi)i≥1, then the sequence (εi |gi |)i≥1 is i.i.d. standard Gaussian. Thus

g(T ) = E sup
t∈T

∑

i≥1

εi |gi |ti .

Denoting by Eg expectation in the r.v.s. gi only (given the r.v.s εi) and since
Eg |gi | = √

2/π , we get

g(T ) = EEg sup
t∈T

∑

i≥1

ti |gi |εi ≥
√

2

π
E sup

t∈T

∑

i≥1

tiεi =
√

2

π
b(T ) ,

where in the second inequality we apply Jensen’s inequality to take the expectation
Eg inside the supremum rather than outside. �

It is worth making a detour to state a general result in the direction of (6.6).

Lemma 6.2.3 Consider vectors xi in a complex Banach space and independent
symmetric real-valued r.v.s ξi . Then, if εi denote independent Bernoulli r.v.s, we
have

E
∥
∥
∑

i

ξixi
∥
∥ ≥ E

∥
∥
∑

i

(E|ξi |)εixi
∥
∥ . (6.7)

Proof Assuming without loss of generality that the r.v.s ξi and εi are independent,
we use the symmetry of the r.v.s ξi to write

E
∥
∥
∑

i

ξixi
∥
∥ = E

∥
∥
∑

i

εi |ξi |xi
∥
∥ .

Now E‖∑i εi |ξi |xi‖ ≥ E‖∑i (E|ξi |)εixi‖ as a consequence of Jensen’s
inequality. �

Thus to find a lower bound to E‖∑i ξixi‖, we can reduce to the case where ξi is
of the type aiεi .2

We go back to Bernoulli processes. We can bound a Bernoulli process by
comparing it with a Gaussian process or equivalently by using (6.6). There is

2 But this method is not always sharp.
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however a completely different method to bound Bernoulli processes. Denoting by
‖t‖1 =∑i≥1 |ti | the �1 norm of t , the following proposition is trivial:

Proposition 6.2.4 We have

b(T ) ≤ sup
t∈T

‖t‖1 . (6.8)

We have found two very different ways to bound b(T ), namely, (6.6) and (6.8).

Exercise 6.2.5 Convince yourself that these two ways are really different from each
other by considering the following two cases: T = {u, 0} where u �∈ �1 and T the
unit ball of �1.

We recall the Minkowski sum T1 + T2 = {t1 + t2 ; t1 ∈ T1, t
2 ∈ T2}. The

following definition and proposition formalize the idea that we can also bound b(T )

through mixtures of the previous situations.

Definition 6.2.6 For a subset T of �2, we set3

b∗(T ) := inf
{
γ2(T1)+ sup

t∈T2

‖t‖1 ; T ⊂ T1 + T2

}
. (6.9)

Since Xt1+t2 = Xt1 +Xt2 , we have

sup
t∈T1+T2

Xt = sup
t∈T1

Xt + sup
t∈T2

Xt .

Taking expectation yields b(T ) ≤ b(T1+T2) = b(T1)+b(T2). Combining with (6.5)
and (6.8), we have proved the following:

Proposition 6.2.7 We have

b(T ) ≤ Lb∗(T ) . (6.10)

It is natural to conjecture that the previous bound on b(T ) is sharp, that is, that
there exist no other way to bound Bernoulli processes than the previous two methods
and the mixtures of them. This was known as the Bernoulli conjecture. It took nearly
25 years to prove it.4

3 You may find the notation silly, since T1 is controlled by the �2 norm and T2 by the �1 norm.
The idea underlying my notation, here and in similar situations, is that T1 denotes what I see as the
main part of T , whereas T2 is more like a perturbation term.
4 Please see Footnote 2 on page 326 concerning the name I give to this result.
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Theorem 6.2.8 (The Latała-Bednorz Theorem) There exists a universal constant
L such that given any subset T of �2, we have

b∗(T ) ≤ Lb(T ) . (6.11)

The proof of Theorem 6.2.8 will consist in describing a procedure to decompose
each point t ∈ T as a sum t = t1 + t2 where ‖t2‖1 ≤ Lb(T ) and T1 = {t1; t ∈ T }
satisfies γ2(T1) ≤ Lb(T ). This procedure makes T naturally appear as a subset
of a sum T1 + T2, even though T may be very different itself from such a sum.
The intrinsic difficulty is that this decomposition is neither unique nor canonical.
To illustrate the difficulty, consider a set T1 with γ2(T1) ≤ 1, so that b(T1) ≤ L.
To each point t of T1, let us associate a point ϕ(t) with ‖ϕ(t)‖1 ≤ 1, and let T =
{t + ϕ(t); t ∈ T1}. Thus b(T ) ≤ L. Now, we are only given the set T . How do we
reconstruct the set T1?

The proof of the Latała-Bednorz result involves a number of deep ideas. These
are better presented gradually on simpler situations (following the path by which
they were discovered), and the proof of the theorem is delayed to Chap. 10. In the
rest of the present chapter, we build our understanding of Bernoulli processes. In
the next section, we present three fundamental results for Bernoulli process, two of
which have close relationships with properties of Gaussian processes. We then start
developing the leading idea: to control Bernoulli processes, one has to control the
index set T with respect to the supremum norm.

6.3 Concentration of Measure

The following “concentration of measure” result should be compared with
Lemma 2.10.6:

Theorem 6.3.1 Consider a subset T ⊂ �2, and assume that for a certain σ > 0 ,
we have T ⊂ B(0, σ ). Consider numbers (a(t))t∈T , and let M be a median of the
r.v. supt∈T (

∑
i εi ti + a(t)). Then

∀ u > 0 , P
(∣
∣
∣ sup
t∈T
(∑

i≥1

εiti + a(t)
)−M

∣
∣
∣ ≥ u

)
≤ 4 exp

(
− u2

8σ 2

)
. (6.12)

In particular,

∣
∣
∣E sup

t∈T
(∑

i≥1

εiti + a(t)
)−M

∣
∣
∣ ≤ Lσ (6.13)
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and

∀u > 0,P
(∣
∣
∣ sup
t∈T
(∑

i≥1

εi ti + a(t)
)− E sup

t∈T
(∑

i≥1

εiti + a(t)
)∣∣
∣ ≥ u

)
≤ L exp

(
− u2

Lσ 2

)
.

(6.14)

The proof relies on the fact that the function ϕ(x) = supt∈T (
∑

i≤N xiti + a(t))

on �2 is convex and has a Lipschitz constant ≤ σ . Such a function always satisfies
a deviation inequality P(|ϕ((εi)i≥1) − M| ≥ u) ≤ 4 exp(−u2/(8σ 2)) when M

is a median of ϕ((εi)i≥1). This fact has a short and almost magic proof (see, for
example, [53] (1.9)). We do not reproduce this proof for a good reason: the reader
must face the fact that if she intends to become fluent in the area of probability
theory we consider here, she must learn more about concentration of measure and
that this is better done by looking, for example, at [121] and [52] rather than just at
the proof of Theorem 6.3.1.

We end this section with a few simple important facts. We first recall the Paley-
Zygmund inequality (sometimes called also the second moment method): for a r.v.
X ≥ 0, with EX2 > 0,

P
(
X ≥ 1

2
EX
)
≥ 1

4

(EX)2

EX2 . (6.15)

Exercise 6.3.2 Prove (6.15). Hint: Let A = {X ≥ EX/2}. Show that EX1Ac ≤
EX/2. Show that EX/2 ≤ E(X1A) ≤ (EX2P(A))1/2.

Corollary 6.3.3 If εi are independent Bernoulli r.v.s and ti are numbers, it holds
that

P
(∣
∣
∑

i≥1

εiti
∣
∣ ≥ 1

L

(∑

i≥1

|ti |2
)1/2
)
≥ 1

L
. (6.16)

Proof By the sub-Gaussian inequality and (2.24), the r.v. X = |∑i≥1 εiti |2
satisfies EX2 ≤ L(

∑
i≥1 |ti |2)2 = L(EX)2. We then apply the Paley-Zygmund

inequality (6.15). �
Exercise 6.3.4 As a consequence of (6.16), prove that if the series

∑
n≥1 εiti

converges a.s., then
∑

i≥1 t
2
i <∞.

As a consequence of (6.16), we have

E
∣
∣
∑

i≥1

εiti
∣
∣ ≥ 1

L
‖t‖2 . (6.17)

Exercise 6.3.5 Prove that for a r.v. Y ≥ 0 with EY > 0, one has EYEY 3 ≥ (EY 2)2,
and find another proof of (6.17).
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Lemma 6.3.6 For a subset T of �2, we have

Δ(T , d2) ≤ Lb(T ) . (6.18)

Proof Assuming without loss of generality that 0 ∈ T , we have

∀t ∈ T , b(T ) ≥ Emax
(

0,
∑

i≥1

εiti

)
= 1

2
E
∣
∣
∣
∑

i≥1

εiti

∣
∣
∣ ≥ 1

L
‖t‖2 ,

using that max(x, 0) = (|x| + x)/2 in the equality and (6.17) in the last inequality.
This proves (6.18). �

6.4 Sudakov Minoration

In this section, we prove a version of Lemma 2.10.2 (Sudakov minoration) for
Bernoulli processes. This will be our first contact with the essential idea that when
all the coefficients ti are small (say, compared to ‖t‖2), the r.v.

∑
i≥1 tiεi resembles

a Gaussian r.v., by the central limit theorem. Therefore one expects that when, in
some sense, the set T is small for the �∞ norm, g(T ) (or, equivalently, γ2(T )) is not
too much larger than b(T ). This will also be the main idea of Sect. 6.6.

Theorem 6.4.1 Consider t1, . . . , tm in �2, and assume that

� �= �′ ⇒ ‖t� − t�′ ‖2 ≥ a . (6.19)

Assume moreover that

∀� ≤ m , ‖t�‖∞ ≤ b . (6.20)

Then

E sup
�≤m

∑

i≥1

εit�,i ≥ 1

L
min

(
a
√

logm,
a2

b

)
. (6.21)

For a first understanding of this theorem, one should consider the case where ti is the
i-th element of the basis of �2. One should also compare (6.21) with Lemma 2.10.2,
which in the present language asserts that

E sup
�≤m

∑

i≥1

gi t�,i ≥ a

L1

√
logm , (6.22)
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and will be the basis of the proof of (6.21). To understand the need of the minimum
in (6.21), you should solve the next exercise.

Exercise 6.4.2 Convince yourself that in (6.21) the term a2/b is of the correct
order. Hint: Remember that

∑
i εi t�,i ≤

∑
i |t�,i|. Look for examples where t�,i ∈

{0, b}.
Corollary 6.4.3 For a set T ⊂ �2 such that

∀t ∈ T ; ‖t‖∞ ≤ b

and for any a > 0, we have

b(T ) ≥ 1

L
min

(
a
√
N(T , d2, a),

a2

b

)
. (6.23)

Proof By Lemma 2.9.3(a) for m = N(T , d2, a), we can find points (t�)�≤m, as
in (6.20). �

We start the preparations for the proof of (6.21).

Lemma 6.4.4 (The Contraction Principle) Consider independent and symmetric
r.v.s ηi valued in a Banach space and numbers αi with |αi | ≤ 1. Then

E
∥
∥
∑

i≥1

αiηi
∥
∥ ≤ E

∥
∥
∑

i≥1

ηi
∥
∥ . (6.24)

Proof We consider the quantity E‖∑i≥1 αiηi‖ as a function of the numbers αi . It
is convex, and its domain is a convex compact set. Therefore it attains its maximum
at an extreme point of its domain. For such an extreme point, αi = ±1 for each i,
and in that case, the left- and right-hand sides of (6.24) coincide. �

We will also need the following variation of Bernstein’s inequality:

Lemma 6.4.5 Consider centered independent r.v.s Wi and numbers ai such that
E exp(|Wi |/ai) ≤ 2. Then for v > 0, we have

P
(∑

i≥1

Wi ≥ v
)
≤ 2 exp

(
− 1

L
min

( v2

∑
i≥1 a

2
i

,
v

supi≥1 ai

))
. (6.25)

Proof We write

| exp x − 1− x| ≤
∑

k≥2

|x|k
k! ≤ |x|2 exp |x|,
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so that, using the Cauchy–Schwarz inequality in the second inequality,

E expλWi ≤ 1+ λ2EW 2
i exp |λWi | ≤ 1+ λ2(EW 4

i )
1/2(E exp 2|λWi |)1/2 .

Now for |λ|ai ≤ 1/2, we have E exp 2|λWi | ≤ 2. Since E exp(|Wi |/ai) ≤ 2, we
also have EW 4

i ≤ La4
i . Thus, for |λ|ai ≤ 1/2, we have

E expλWi ≤ 1+ Lλ2a2
i ≤ expLλ2a2

i ,

from which the conclusion follows as in the proof of (4.44). �
A technical ingredient of the proof of Theorem 6.4.1 is the following consequence
of Lemma 6.4.5:

Corollary 6.4.6 Consider independent standard Gaussian r.v.s (gi). Given a num-
ber A > 0, we may find a number c large enough such that the r.v.s ξi = gi1{|gi |>c}
satisfy the following property. Consider an integer N and numbers a, b > 0 such
that

√
logN ≤ a

b
. (6.26)

For � ≤ N , consider t� = (t�,i)i≥1 with ‖t�‖2 ≤ 2a and ‖t�‖∞ ≤ b. Then

E sup
�≤N

∑

i≥1

ξi t�,i ≤ a

A

√
logN . (6.27)

If, instead of ξi we had gi in the left-hand side, we would obtain a bound La
√

logN
(see (2.15)). The content of the lemma is that we can improve on that bound by a
large constant factor by taking c large.

Proof Given a number B > 0, we have E expB|gi | < ∞, and it is obvious that
for c large enough we have E expB|ξi | ≤ 2. Given �, we use the Bernstein-like
inequality (6.25) with Wi = ξi t�,i and ai = |t�,i |/B, so that

∑
i≥1 a

2
i ≤ 4a2/B2 and

supi≥1 |ai | ≤ b/B, and we obtain

P
(∑

i≥1

ξi t�,i ≥ v
)
≤ L exp

(
− 1

L
min

(v2B2

a2 ,
vB

b

))
,

so that, using (6.26) in the first inequality, for vB ≥ a
√

logN , we have

P
(

sup
�≤N

∑

i≥1

ξi t�,i ≥ v
)
≤ LN exp

(
− 1

L
min

(v2B2

a2 ,
vB
√

logN

a

))

≤ LN exp
(
− vB

√
logN

a

)
, (6.28)

and (2.6) implies that E sup�≤N
∑

i≥1 ξi t�,i ≤ La
√

logN/B. �
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We are now ready to perform the main step of the proof of Theorem 6.4.1.

Proposition 6.4.7 Assume the hypotheses of Theorem 6.4.1 and that furthermore

√
logm ≤ a

b
(6.29)

∀� ≤ m ; ‖t�‖2 ≤ 2a . (6.30)

Then (6.21) holds.

Condition (6.29) is motivated by the important idea that the critical case of
Theorem 6.4.1 is where the two terms in the minimum in the right-hand side
of (6.21) are nearly equal.

Proof Consider a parameter c > 0 and define ξi = gi1{|gi |>c} and ξ ′i = gi1{|gi |≤c}.
Thus, using (6.22) in the first inequality,

a

L1

√
logm ≤ E sup

�≤m

∑

i≥1

gi t�,i ≤ E sup
�≤m

∑

i≥1

ξ ′i t�,i + E sup
�≤m

∑

i≥1

ξi t�,i . (6.31)

Now, using Corollary 6.4.6 for A = 2L1 shows that if c is a large enough constant,
we have

E sup
�≤m

∑

i≥1

ξit�,i ≤ a

2L1

√
logm , (6.32)

so that (6.31) implies

a

2L1

√
logm ≤ E sup

�≤m

∑

i≥1

ξ ′i t�,i ≤ cE sup
�≤m

∑

i≥1

εit�,i , (6.33)

where the last inequality is obtained by copying the argument of (6.24). Using (6.29)
shows that min(a

√
logm, a2/b) = a

√
logm so that (6.33) implies (6.21). �

Proposition 6.4.8 The conclusion of Theorem 6.4.1 holds true if we assume
moreover that ‖t�‖2 ≤ 2a for each � ≤ m.

The improvement over Proposition 6.4.7 is that we no longer assume (6.29).

Proof It follows from Lemma 6.3.6 and (6.19) that

E sup
�≤m

∑

i≥1

t�,iεi ≥ a

L
, (6.34)

Assume first that a/b ≤ √log 2. Then a ≥ a2/(Lb) and (6.34) implies (6.21). Thus,
it suffices to prove (6.21) when a/b ≥ √log 2. For this, consider the largest integer
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N ≤ m for which

√
logN ≤ a

b
. (6.35)

Then N ≥ 2. Next we prove that

a
√

logN ≥ 1

L
min

(
a
√

logm,
a2

b

)
. (6.36)

Indeed this is obvious if N = m. When N < m, the definition of N shows that√
log(N + 1) ≥ a/b, so that a

√
logN ≥ a2/(Lb), proving (6.36). Consequently,

it suffices to prove (6.21) when m is replaced by N , and then (6.29) is satisfied
according to (6.35). The conclusion follows from Proposition 6.4.7. �
Proof of Theorem 6.4.1 Let T = {t1, . . . , tm}, so that we want to prove (6.21), i.e.,

b(T ) ≥ 1

L
min

(
a
√

logm,
a2

b

)
. (6.37)

We have proved in Proposition 6.4.8 that when furthermore we have ‖t�‖2 ≤ 2a for
each �, then

b(T ) ≥ 1

L2
min

(
a
√

logm,
a2

b

)
. (6.38)

To prove (6.37), we may assume that

b(T ) ≤ a2

8L2b
(6.39)

because there is nothing to prove otherwise. Consider a point t ∈ T and an integer
k ≥ 0. The proof then relies on a simple iteration procedure. Assume that in the ball
B(t, 2ka), we can find points u1, . . . , uN ∈ T with d(u�, u�′) ≥ 2k−1a whenever
� �= �′. We can then use (6.38) for the points u1− t, . . . , uN − t , with 2k−1a instead
of a and 2b instead of b to obtain

b(T ) ≥ 1

L2
min

(
2k−1a

√
logN,

22k−2a2

2b

)
.

Using (6.39), this implies that Lb(T ) ≥ 2ka
√

logN . Hence, N ≤ Mk :=
exp(L2−2kb(T )2/a2). Thus any ball B(t, 2ka) of T can be covered using at most
Mk balls of T radius 2k−1a. We then iterate this result as follows: Consider any
number k0 large enough so that T ⊂ B(t, 2k0a) for a certain t ∈ T . Then we can
cover T by at most Mk0 balls centered in T of radius 2k0−1a. Each of these balls
can in turn be covered by at most Mk0−1 balls of T of radius 2k0−2a, so that T
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can be covered by at most Mk0Mk0−1 such balls. Continuing in this manner until
we cover T by balls of radius a/2 requires at most

∏
k≥0 Mk balls of radius a/2.

Since t� �∈ B(t�′ , a/2) for � �= �′, these balls of radius a/2 contain a single point
of T , and we have shown that m ≤ ∏

k≥0 Mk ≤ exp(Lb(T )2/a2), i.e., b(T ) ≥
a
√

logm/L. �
Combining our results, we may now prove a version of Proposition 2.10.8 for

Bernoulli processes.

Proposition 6.4.9 There exist constants L1 and L2 with the following properties.
Consider numbers a, b, σ > 0, vectors t1, . . . , tm ∈ �2, that satisfy (6.19)
and (6.20). For � ≤ m, consider sets H� with H� ⊂ B2(t�, σ ). Then

b
( ⋃

�≤m
H�

)
≥ 1

L1
min

(
a
√

logm,
a2

b

)
− L2σ

√
logm+min

�≤m b(H�) . (6.40)

The proof is identical to that of Proposition 2.10.8, if one replaces Lemmas 2.10.2
and 2.10.6, respectively, by Theorems 6.4.1 and 6.3.1.

Corollary 6.4.10 There exists a constant L0 with the following property. Consider
a set D with Δ(D, d∞) ≤ 4a/

√
logm, and for � ≤ m, consider points t� ∈ D

that satisfy (6.19), i.e., ‖t� − t�′‖2 ≥ a for � �= �′. Consider moreover sets H� ⊂
B2(t�, a/L0). Then

b
( ⋃

�≤m
H�

)
≥ a

L0

√
logm+min

�≤m b(H�) . (6.41)

Proof Since b(T − t1) = b(T ), we may assume without loss of generality that
t1 = 0. Since Δ(D, d∞) ≤ b := 4a/

√
logm, we have ‖t�‖∞ ≤ b for all � ≤ m,

and (6.40) used for σ = a/L0 gives

b
( ⋃

�≤m
H�

)
≥ 1

4L1
a
√

logm− aL2

L0

√
logm+min

�≤m b(H�) ,

so that if L0 ≥ 8L1L2 and L0 ≥ 8L1 we get (6.41). �
This corollary will be an essential tool to prove the Latała-Bednorz theorem.

6.5 Comparison Principle

Our last fundamental result is a comparison principle. Let us say that a map θ from
R to R is a contraction if |θ(s)− θ(t)| ≤ |s − t| for each s, t ∈ R.
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Theorem 6.5.1 For i ≥ 1, consider contractions θi with θi(0) = 0. Then for each
(finite) subset T of �2, we have

E sup
t∈T

∑

i≥1

εiθi(ti) ≤ b(T ) = E sup
t∈T

∑

i≥1

εiti . (6.42)

A more general comparison result may be found in [112, Theorem 2.1]. We give
here only the simpler proof of the special case (6.42) that we need.

Proof The purpose of the condition θi(0) = 0 is simply to ensure that (θi(ti )) ∈ �2

whenever (ti ) ∈ �2. A simple approximation procedure shows that it suffices to
show that for each N , we have

E sup
t∈T

∑

1≤i≤N
εiθi(ti) ≤ E sup

t∈T

∑

1≤i≤N
εiti .

By iteration, it suffices to show that E supt∈T
∑

1≤i≤N εiti decreases when t1 is
replaced by θ1(t1). By conditioning on ε2, ε3, . . . , εN , it suffices to prove that for a
subset T of R2 and a contraction θ , we have

E sup
t=(t1,t2)∈T

(ε1θ(t1)+ t2) ≤ E sup
t=(t1,t2)∈T

(ε1t1 + t2) . (6.43)

Now

2E sup
t=(t1,t2)∈T

(ε1θ(t1)+ t2) = sup
s ′∈T

(θ(s′1)+ s′2)+ sup
s∈T

(−θ(s1)+ s2) .

Thus to prove (6.43) it suffices to show that for s, s′ ∈ T , we have

θ(s′1)+ s′2 − θ(s1)+ s2 ≤ 2E sup
t=(t1,t2)∈T

(ε1t1 + t2) . (6.44)

To bound the right-hand side from below, we may take either t = s′ when ε1 = 1
and t = s when ε1 = −1 or the opposite:

2E sup
t=(t1,t2)∈T

(ε1t1 + t2)

≥ max(s′1 + s′2 − s1 + s2, s1 + s2 − s′1 + s′2) = s2 + s′2 + |s′1 − s1| ,

so that (6.44) simply follows from the fact that θ(s′1)− θ(s1) ≤ |s′1 − s1| since θ is
a contraction. �
Corollary 6.5.2 For each subset T of �2, we have

E sup
t∈T
∣
∣
∑

i≥1

εi|ti |
∣
∣ ≤ 2E sup

t∈T
∣
∣
∑

i≥1

εiti
∣
∣ .
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Proof Writing x+ = max(x, 0), we have |x| = x+ + (−x)+ so that by symmetry

E sup
t∈T
∣
∣
∑

i≥1

εi |ti |
∣
∣ = 2E sup

t∈T
(∑

i≥1

εi |ti |
)+ = 2E sup

t∈T ′
∑

i≥1

εi |ti |

where T ′ = T ∪ {0}. Now, using (6.42) in the first inequality, we have

E sup
t∈T ′

∑

i≥1

εi|ti | ≤ E sup
t∈T ′

∑

i≥1

εiti ≤ E sup
t∈T
∣
∣
∑

i≥1

εiti
∣
∣ . �

6.6 Control in �∞ Norm

Bernoulli processes are much easier to understand when the index set is small in the
supremum norm. The main result of this section goes in this direction. It is weaker
than Theorem 6.2.8 (the Latała-Bednorz Theorem), but the proof is much easier.

Theorem 6.6.1 There exists a universal constant L such that for any subset T of
�2, we have

γ2(T ) ≤ L
(
b(T )+√b(T )γ1(T , d∞)

)
. (6.45)

Corollary 6.6.2 We have

b(T ) ≥ 1

L
min

(
γ2(T ),

γ2(T )
2

γ1(T , d∞)

)
. (6.46)

Proof Denoting by L∗ the constant of (6.45), if b(T ) ≤ γ2(T )/(2L∗), then (6.45)
implies

γ2(T ) ≤ γ2(T )/2+ L∗
√
b(T )γ1(T , d∞) ,

hence b(T ) ≥ γ2(T )
2/4(L∗)2γ1(T , d∞). �

Exercise 6.6.3 Find examples of situations where γ2(T )� γ1(T , d∞) and b(T ) is
of order γ2(T )

2/γ1(T , d∞), not γ2(T ). Hint: Try cases where ti ∈ {0, 1} for each i

and each t .

We recall the constant L0 of Corollary 6.4.10. The next lemma is our main tool.

Lemma 6.6.4 Consider a number r ≥ 2L0. Consider B ⊂ �2 such that
Δ(B, d∞) ≤ 4a/

√
logm. Then we can find a partition (A�)�≤m of B into sets which

have either of the following properties:

Δ(A�, d2) ≤ 2a , (6.47)



190 6 Bernoulli Processes

or else

t ∈ A� ⇒ b(B ∩ B2(t, 2a/r)) ≤ b(B)− a

L0

√
logm . (6.48)

Proof The proof is almost identical to that of Lemma 2.9.4, using now Corol-
lary 6.4.10. Consider the set

C =
{
t ∈ B ; b(B ∩ B2(t, 2a/r)) > b(B)− a

L0

√
logm

}
.

Consider points (t�)�≤m′ in C such that d2(t�, t�′) ≥ a for � �= �′. Since 2/r ≤
1/L0, using (6.41) for the sets H� := B ∩ B(t�, 2a/r) shows that

b(B) ≥ b
( ⋃

�≤m
H�

)
≥ a

L0

√
logm′ + min

�≤m′
b(B ∩ B2(t, 2a/r))

>
a

L0

√
logm′ + b(B)− a

L0

√
logm (6.49)

and thus m′ < m. Consequently by Lemma 2.9.3(b), we may cover C by m′ < m

balls B� of radius a. We then set A� = C ∩ (B� \ ∪�′<�B�′) for � ≤ m′, A� = ∅ for
m′ < � < m and Am = B \ C. �
Proof of Theorem 6.6.1 The reader should review the proof of Theorem 2.9.1 now.
We fix r as in Lemma 6.6.4. We consider an integer τ ≥ 2 to be specified later and
an admissible sequence of partitions (Dn) of T such that

sup
t∈T

∑

n≥0

2nΔ(Dn(t), d∞) ≤ 2γ1(T , d∞) . (6.50)

By induction over n, we construct an admissible sequence (An) of partitions of T ,
and for A ∈ An, an integer jn(A) ∈ Z such that Δ(A, d2) ≤ 2r−jn(A). For n ≤ τ ,
we set An = {T }, and for A ∈ An, we set jn(A) = j0 where j0 is the largest integer
with Δ(T , d2) ≤ 2r−j0 .

Assuming now thatAn has been constructed for some n ≥ τ , with cardAn ≤ Nn,
we consider B ∈ An, and we proceed to partition it. First we partition B into the
elements B ∩D for D ∈ Dn−1. Consider such a set B ∩D.

First Case Assume that

Δ(D, d∞) ≤ 2r−jn(B)−1

√
logNn−τ

. (6.51)

We may then apply Lemma 6.6.4 with a = r−jn(B)−1 to partition B ∩ D into
sets (A�,B,D)�≤Nn−τ such that either Δ(A�,B,D, d2) ≤ 2r−jn(B)−1 (and we then
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set jn+1(A�,B,D) = jn(B)+ 1) or else

t ∈ A�,B,D ⇒ b(B ∩D∩B2(t, 2r−jn(B)−2)) ≤ b(B ∩D)− 1

L0
2(n−τ )/2r−jn(B)−1 ,

and we then set jn+1(A�,B,D) = jn(B). In that second case, we have in particular

t ∈ A�,B,D ⇒ b(A�,B,D ∩ B2(t, 2r−jn(B)−2)) ≤ b(B)− 1

L0
2(n−τ )/2r−jn(B)−1 .

(6.52)

Second Case Assume that (6.51) fails. In this case, we decide that B ∩D ∈ An+1,
and we set jn+1(B ∩D) = jn(B). Since (6.51) fails, we then have

2(n−τ+1)/2r−jn+1(B∩D) ≤ Lr2n−τΔ(D, d∞) , (6.53)

To sum up, the partition An+1 consists of all the sets B ∩D (with B ∈ An,D ∈
Dn−1) for which (6.51) fails, as well as of all the sets A�,B,D ⊂ B∩D for pairs B,D
(with B ∈ An,D ∈ Dn−1) which satisfy (6.51). This completes the construction.
We have as desired cardAn+1 ≤ NnNn−1Nn−τ ≤ NnN

2
n−1 = Nn+1.

Let us fix t ∈ T and set j (n) = jn(An(t)). Let a(n) = 2n/2r−j (n). We are going
to prove that

2−τ/2
∑

n≥0

a(n) ≤ Lr(b(T )+ 2−τ γ1(T , d∞)) . (6.54)

It then follows that

γ2(T , d2) ≤ Lr(2τ/2b(T )+ 2−τ/2γ1(T , d∞)) ,

and we finish the proof by optimization over τ : if γ1(T , d∞) ≤ 4b(T ), we take
τ = 2; otherwise, we take 2τ about γ1(T , d∞)/b(T ).

The key property of the construction is that if B ∈ An, A ∈ An+1, A ⊂ B, and
jn(B) = jn+1(A) then either (by (6.53)), there exists D ∈ Dn−1 with B ⊂ D and

2(n−τ+1)/2r−jn+1(A) ≤ Lr2n−τΔ(D, d∞) , (6.55)

or else by (6.52)

t ∈ A⇒ b(A ∩ B2(t, 2r−jn(B)−2)) ≤ b(B)− 1

L
2(n−τ )/2r−jn(B)−1 . (6.56)

The proof of (6.54) is nearly identical to the part of the proof of Theorem 2.9.1
following Eq. (2.88). We let the reader prove that the sequence (a(n)) is bounded.
Consider then the set I as provided by Lemma 2.9.5 for α = √

2. It suffices to
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prove (6.54) when the sum over n ≥ 0 is replaced by the sum over n ∈ I \ {0}. As
in (2.91) for n ∈ I \ {0}, we have j (n− 1) = j (n) and j (n+ 1) = j (n)+ 1. Let us
enumerate the elements5 of I \ {0} as n1 < n2 < . . ., so that j (nk+1) ≥ j (nk)+ 1.

We consider k ≥ 1 (so that nk ≥ 1), and we proceed to bound a(nk). Since
j (nk+2) ≥ j (nk+1)+ 1 ≥ j (nk)+ 2,, we have

Δ(Ank+2(t)) ≤ 2r−j (nk+2) ≤ 2r−j (nk)−2 . (6.57)

Let us define n = nk − 1, so that j (n + 1) = j (n), and define also B = An(t),
A = Ank (t) = An+1(t), so that jn(B) = j (n) = j (n+ 1) = j (nk) = jn+1(A). We
know that either (6.55) or (6.56) hold. If (6.56) holds, we conclude by (6.57) that
Ank+2(t) ⊂ A ∩ B2(t, 2r−jn(B)−2) so that

2−τ/2a(nk) ≤ Lr(b(An(t))− b(Ank+2(t))) . (6.58)

If, on the other hand, (6.55) holds, we obtain

a(nk) ≤ Lr2n−τ/2Δ(Dn−1(t), d∞) . (6.59)

As in Theorem 2.9.1, summation of these inequalities concludes the proof
of (6.54). �

6.7 Peaky Parts of Functions

One basic idea underlying the Bernoulli conjecture is that a sequence (ti) has
a “spread out part” and a “peaky part”. The r.v.s

∑
i≥1 εiti are controlled by

comparison with Gaussian processes for the spread out parts and by taking absolute
values for the peaky parts. The notions of “spread out” and “peaky” parts refer to the
space �2(N). In this section, we study how to perform the same decomposition for
functions in L2(ν), where ν is a positive measure (which need not be a probability).
The case where the measure space is N and ν is the counting measure ν(A) = cardA
is the previous case of �2(N). In this section, the distances d2 and d∞ refer to the
distances induced by the norms in L2(ν) and L∞(ν).

For a single function, it is quite obvious what to do, and this is spelled out in the
next lemma.

5 We assume here that I is infinite, leaving the necessary simple modifications of the argument
when I is finite to the reader.
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Lemma 6.7.1 Consider f ∈ L2(ν) and u > 0. Then we can write f = f1 + f2
where

‖f1‖2 ≤ ‖f ‖2 , ‖f1‖∞ ≤ u ; ‖f2‖2 ≤ ‖f ‖2 , ‖f2‖1 ≤ ‖f ‖2
2

u
. (6.60)

Proof We set f1 = f 1{|f |≤u}, so that the first part of (6.60) is obvious. We set
f2 = f 1{|f |>u} = f − f1, so that

u‖f2‖1 =
∫

u|f |1{|f |>u}dν ≤
∫

f 2dν = ‖f ‖2
2 . �

Matters are very much more difficult when one deals with a class of functions
and where the goal is to simultaneously decompose all functions in the class. Our
top-of-the-line result in this direction is surprisingly sophisticated, so we start here
by a simpler, yet non-trivial result. This result has its own importance, as it will be
used to study empirical processes. We denote by B1 the unit ball of L1(ν).

Theorem 6.7.2 Consider a countable set T ⊂ L2(ν) and a number u > 0. Assume
that S = γ2(T , d2) <∞. Then there is a decomposition T ⊂ T1 + T2 where

γ2(T1, d2) ≤ LS ; γ1(T1, d∞) ≤ LSu (6.61)

γ2(T2, d2) ≤ LS ; T2 ⊂ LS

u
B1 . (6.62)

Here as usual T1 + T2 =
{
t1 + t2 ; t1 ∈ T1 , t2 ∈ T2

}
. The sets T1 and T2 are

not really larger than T with respect to γ2. Moreover, for each of them, we have
some extra information: we control γ1(T1, d∞), and we control the L1 norm of the
elements of T2. In some sense, Theorem 6.7.2 is an extension of Lemma 6.7.1, which
deals with the case where T consists of a single function.

We will present two proofs of the theorem: The first proof is easy to discover, as it
implements what is the most obvious approach. The second proof, while somewhat
simpler, is far less intuitive. It is the second proof which will be useful in the long
run.

Proof The idea is simply to write an element of T as the sum of the increments
along a chain and to apply Lemma 6.7.1 to each of these increments. We will also
take advantage of the fact that T is countable to write each element of T as the sum
of the increments along a chain of finite length, but this is not an essential part of
the argument.

As usual, Δ2(A) denotes the diameter of A for the distance d2. We consider an
admissible sequence of partitions (An)n≥0 with

sup
t∈T

∑

n≥0

2n/2Δ2(An(t)) ≤ 2γ2(T , d2) . (6.63)
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For each n ≥ 0 and each A ∈ An, we are going to pick a point tn,A ∈ A. It
will be convenient to ensure that each point of T is of the type tn,A for a certain n

and a certain A ∈ An. To ensure this, we enumerate T as (tn)n≥0. For A ∈ An, we
choose for tn,A ∈ A any point we want unless A = An(tn), in which case we choose
tn,A = tn. For t ∈ T and n ≥ 0, let us define πn(t) = tn,A where A = An(t). Thus,
if t = tn, then A = An(tn), and by construction, πn(t) = tn,A = tn. For n ≥ 1, let
us set ft,n = πn(t)− πn−1(t). Thus

‖ft,n‖2 ≤ Δ2(An−1(t)) . (6.64)

Moreover, ft,n depends only on An(t): if An(s) = An(t), then An−1(t) = An−1(s)

and ft,n = fs,n. Thus as t varies in T , there are at most Nn different functions ft,n.
Using Lemma 6.7.1 with 2−n/2u‖ft,n‖2 instead of u, we can decompose ft,n =
f 1
t,n + f 2

t,n where

‖f 1
t,n‖2 ≤ ‖ft,n‖2 , ‖f 1

t,n‖∞ ≤ 2−n/2u‖ft,n‖2 (6.65)

‖f 2
t,n‖2 ≤ ‖ft,n‖2 , ‖f 2

t,n‖1 ≤ 2n/2

u
‖ft,n‖2 . (6.66)

To construct the sets T 1 and T 2, given t ∈ T , we set g1
t,0 = t0,T and g2

t,0 = 0, while
if n ≥ 1, we set

g1
t,n = t0,T +

∑

1≤k≤n
f 1
t,k , g2

t,n =
∑

1≤k≤n
f 2
t,k .

We set

T 1
n =

{
g1
t,m ; m ≤ n , t ∈ T

} ; T 2
n =

{
g2
t,m ; m ≤ n , t ∈ T

}
,

so that the sequences (T 1
n )n≥1 and (T 2

n )n≥1 are increasing. We set

T1 =
⋃

n≥0

T 1
n ; T2 =

⋃

n≥0

T 2
n .

We prove now that T ⊂ T1 + T2. Indeed, if t ∈ T , then t = tn for some n and we
have arranged that then πn(t) = t . Since π0(t) = t0,T , we have

t − t0,T = πn(t)− π0(t) =
∑

1≤k≤n
πk(t)− πk−1(t)

=
∑

1≤k≤n
ft,k =

∑

1≤k≤n
f 1
t,k +

∑

1≤k≤n
f 2
t,k ,

so that t = g1
t,n + g2

t,n ∈ T1 + T2.
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We now start the proof of (6.61). Since for j = 1, 2 the element gjt,n depends only

on An(t), we have card T j
n ≤ N0 + · · · + Nn, so that card T j

0 = 1 and cardT j
n ≤

Nn+1. Consider t1 ∈ T1, so that t1 = g1
t,m for some m and some t ∈ T . If m ≤ n,

we have t1 = g1
t,m ∈ T 1

n so that d2(t
1, T 1

n ) = 0. If m > n, we have g1
t,n ∈ T 1

n , so
that, using in succession the first part of (6.65) and (6.64) in the third inequality, we
get

d2(t
1, T 1

n ) ≤ d2(g
1
t,m, g

1
t,n) = ‖g1

t,m − g1
t,n‖2 ≤

∑

k>n

‖f 1
t,k‖2 ≤

∑

k>n

Δ2(Ak−1(t)) .

(6.67)

Hence, using (6.63) in the last inequality,

∑

n≥0

2n/2d2(t
1, T 1

n ) ≤
∑

n≥0,k>n

2n/2Δ2(Ak−1(t))

≤ L
∑

k≥1

2k/2Δ2(Ak−1(t)) ≤ LS .

It then follows from Proposition 2.9.7 that γ2(T1, d2) ≤ LS. The proof that
γ2(T2, d2) ≤ LS is identical, using now the first part of (6.66) rather than the first
part of (6.65).

To control γ1(T1, d∞), we use the same approach. We replace (6.67) by

d∞(t1, T 1
n ) ≤ d∞(g1

t,m, g
1
t,n) ≤

∑

k>n

‖f 1
t,k‖∞ ≤

∑

k>n

2−k/2uΔ2(Ak−1(t)) .

Hence

∑

n≥0

2nd∞(t1, T 1
n ) ≤ u

∑

n≥0,k>n

2n−k/2Δ2(Ak−1(t))

≤ Lu
∑

k≥1

2k/2Δ2(Ak−1(t)) ≤ LuS ,

and it follows again from (a suitable version of) Proposition 2.9.7 that γ1(T1, d∞) ≤
LSu. Finally, (6.66) and (6.65) yield

‖g2
t,n‖1 ≤

∑

k≥1

‖f 2
t,k‖1 ≤

∑

k≥1

2k/2

u
Δ2(Ak−1(t)) ≤ LS

u
,

so that T2 ⊂ LSB1/u. This completes the proof. �
Later, in Theorem 9.2.4, we will prove a far-reaching generalization of Theo-

rem 6.7.2 with sweeping consequences. Our proof of Theorem 9.2.4 will be based
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on a slightly different idea. To prepare for this proof, we give an alternate proof of
Theorem 6.7.2 based on the same ideas.

Second proof of Theorem 6.7.2 We keep the notation of the first proof, and we
construct the points πn(t) as we did there. For t ∈ T , we define δn(t) := Δ(An(t)),
so that supt∈T

∑
n≥0 2n/2δn(t) ≤ LS. We denote by Ω the underlying measure

space. Given t ∈ T and ω ∈ Ω , we define

m(t, ω) = inf
{
n ≥ 0 ; |πn+1(t)(ω)− πn(t)(ω)| ≥ u2−n/2δn(t)

}
(6.68)

if the set on the right is not empty and m(t, ω) = ∞ otherwise. For n < n′ ≤
m(t, ω), we have

|πn(t)(ω)− πn′ (t)(ω)| ≤
∑

n≤p<n′
|πp+1(t)(ω)− πp(t)(ω)| ≤ u

∑

n≤p<n′
2−p/2δp(t) .

In particular when m(t, ω) = ∞, the sequence (πn(t)(ω)) of real numbers is a
Cauchy sequence and hence convergent. When m(t, ω) = ∞, we define

t1(ω) = lim
n→∞πn(t)(ω) .

When m(t, ω) <∞ we define

t1(ω) = πm(t,ω)(t)(ω) .

We define

t2 = t − t1 ; T1 := {t1 ; t ∈ T } ; T2 := {t2 ; t ∈ T } ,

and we proceed to prove (6.61) and (6.62). We define

t1
n(ω) = πm(t,ω)∧n(t)(ω) .

To match with the previous notation for n ≥ 1, let us define

f 1
t,n(ω) := t1

n(ω)− t1
n−1(ω) = πm(t,ω)∧n(t)(ω)− πm(t,ω)∧(n−1)(t)(ω)

= (πn(t)(ω)− πn−1(t)(ω))1{m(t,·)≥n}(ω) ,

so that ‖f 1
t,n‖2 ≤ Δ(An−1(t)) = δn−1(t) and ‖f 1

t,n‖∞ ≤ u2(−n+1)/2δn−1(t)

because |πn(t)(ω) − πn−1(t)(ω)| ≤ u2(−n+1)/2δn−1(t) when m(t, ω) ≥ n. Also
t1
n = t1

0 +
∑

1≤m≤n f 1
t,n. The proof of (6.61) is then just as before. Let us now define

t2
n = t21{m(t,·)=n} = (t − πn(t))1{m(t,·)=n} . (6.69)
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On the set {m(t, ω) = ∞}, we have t = t1 a.e. for the measure ν since ‖t −
πn(t)‖2 → 0 as n → ∞. Thus, on that set, we have t2 = 0 a.e., and consequently
a.e. we have

t2 = t21{m(t,.)<∞} = t2
∑

n≥0

t21{m(t,.)=n} =
∑

n≥0

t2
n .

Since ‖t2
n‖2 ≤ ‖t − πn(t)‖2 ≤ δn(t), the proof that γ2(T2, d2) ≤ LS is as before.

Furthermore, using (6.69) and the Cauchy–Schwarz inequality, we have

‖t2
n‖1 ≤ ‖t − πn(t)‖2

√
ν({m(t, ·) = n}) ≤ δn(t)

√
ν({m(t, ·) = n}) .

Since |πn+1(t)−πn(t)| ≥ u2−n/2δ(n) on the set {m(t, ·) = n}, Markov’s inequality
yields

ν({m(t, ·) = n}) ≤ ‖πn+1(t)− πn(t)‖2
2

(u2−n/2δn(t))2
≤ δn(t)

2

(u2−n/2δn(t))2
= 2n

u2
,

and thus ‖t2
n‖1 ≤ 2n/2δn(t)/u and hence ‖t2‖1 ≤ LS/u. �

6.8 Discrepancy Bounds for Empirical Processes

Throughout this section, we consider a probability space (Ω,μ) and (to avoid well-
understood measurability problems) a countable bounded subset of L2(μ), which,
following the standard notation in empirical processes theory, we will denote by F
rather than T . (Since F is countable, there is no need to really distinguish between
actual functions on Ω and classes of functions in L2(μ).) To lighten notation, we
set

μ(f ) =
∫

f dμ .

Consider i.i.d. r.v.s (Xi)i≥1 valued in Ω , distributed like μ and

SN (F) := E sup
f∈F

∣
∣
∑

i≤N
(f (Xi)− μ(f ))

∣
∣ . (6.70)

We have already seen in Chap. 4 the importance of evaluating such quantities. As in
the case of Bernoulli processes, there should be two different reasons why the sum
SN(F) should be small:

• On the one hand, there may be cancellation between the different terms.
• On the other hand, it might happen that the sum

∑
i≤N |f (Xi)−μ(f ))| is already

small without cancellation.
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More specifically, we have the inequality

SN(F) ≤ 2E sup
f∈F

∑

i≤N
|f (Xi)| . (6.71)

To see this, we simply write

SN (F) ≤ E sup
f∈F

∑

i≤N
|f (Xi)− μ(f )| ≤ E sup

f∈F

∑

i≤N
|f (Xi)| + N sup

f∈F
|μ(f )| ,

and we observe that the first term in the previous line is ≥ the second term through
Jensen’s inequality.

We may also bound SN (F) using chaining as follows:

Proposition 6.8.1 If 0 ∈ F , we have

SN (F) ≤ L
(√

Nγ2(F , d2)+ γ1(F , d∞)
)
, (6.72)

where d2 and d∞ are the distances on F induced by the norms of L2 and L∞,
respectively.

Proof This follows from Bernstein’s inequality (4.44) and Theorem 4.5.13 just as
in the case of Theorem 4.5.16. The requirement that 0 ∈ F is made necessary by
considering the case where F consists of one single function f (and because of the
absolute values in (6.70)). �
The bound (6.71) does not involve cancellation, and is of a really different nature
than (6.72), which involves cancellation in an essential way through Bernstein’s
inequality.

Having two completely different methods (6.72) and (6.71) to control SN (F), we
can interpolate between them in the spirit of (6.9) as follows:

Proposition 6.8.2 Consider classes F ,F1 and F2 of functions in L2(μ), and
assume that F ⊂ F1 + F2. Assume that 0 ∈ F1. Then

SN(F) = E sup
f∈F

∣
∣
∑

i≤N
(f (Xi)− μ(f ))

∣
∣ ≤ L

(√
Nγ2(F1, d2)+ γ1(F1, d∞)

)

+ 2E sup
f∈F2

∑

i≤N
|f (Xi)| .

Proof Since F ⊂ F1 + F2, it is clear that SN(F) ≤ SN(F1) + SN(F2). We then
use the bound (6.72) for the first term and the bound (6.71) for the second term. �

It seems worth repeating what we have just said, as this is going to be a major
theme of this work. Given a sum of random functions, depending on a parameter,
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there are two fundamentally different methods to bound the supremum of this sum
over the parameter:

• We may use chaining.
• Or we may forget about possible cancellations and bound the sum of the random

functions by the sum of their absolute values.

It is a rather extraordinary fact that in a wide range of situations, there is no other
way to bound the sum of random functions than interpolating between these two
methods (just as we did in Proposition 6.8.2). This will be proved in Chap. 11.

Our first occurrence of this extraordinary fact is that there is no other way
to control SN(F) than the method of Proposition 6.8.2.6 We formalize this
fundamental result as follows:

Theorem 6.8.3 (The Fundamental Theorem of Empirical Processes) Consider
a class F of functions in L2(μ) with μ(f ) = 0 for f ∈ F and an integer N . Then
we can find a decomposition F ⊂ F1 + F2 with 0 ∈ F1 such that the following
properties hold:

γ2(F1, d2) ≤ L√
N
SN(F) ,

γ1(F1, d∞) ≤ LSN(F) ,

E sup
f∈F2

∑

i≤N
|f (Xi)| ≤ LSN(F) .

We are not ready yet for the proof of this result, which is delayed until Chap. 11.7

Exercise 6.8.4 We say that a countable class F of functions is a Glivenko-Cantelli
class if

lim
N→∞E sup

f∈F

∣
∣ 1

N

∑

i≤N
(f (Xi)− μ(f ))

∣
∣ = lim

N→∞
SN(F)

N
= 0 .

Assuming that F is uniformly bounded, prove that F is a Glivenko-Cantelli class
if and only if for each ε > 0, one can find a decomposition F ⊂ F1 + F2 and an
integer N0 such that F1 is finite and

N ≥ N0 ⇒ E sup
f∈F2

1

N

∑

i≤N
|f (Xi)| ≤ ε .

6 In particular Bernstein’s inequality suffices to perform the chaining.
7 A good path to get a feeling for this theorem is to study Exercise 14.2.3 in due time.
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Hint: Use Theorem 6 of [99] for the “only if” part. Warning: You need good
technique to succeed.

Key Ideas to Remember

• Bernoulli random variables (i.e., independent random signs) are among the
most important probability structures. Their linear combinations satisfy the
fundamental sub-Gaussian inequality (6.2).

• A Bernoulli process is always smaller than the corresponding Gaussian process.
• A Bernoulli process can however be bounded in a trivial way without using

cancellation.
• One may interpolate between the two previous methods to bound a Bernoulli

process. That this interpolation provides the best possible method of bounding a
Bernoulli process is the fundamental Latała-Bednorz theorem.

• Bernoulli processes satisfy concentration of measure properties which are even
better than those of Gaussian processes.

• Bernoulli processes satisfy a suitable version of Sudakov minoration, which
however requires a control in the supremum norm.

• Bernoulli processes satisfy a fundamental comparison principle: contracting the
coefficients decreases the size of the process.

• Elements of a not too large set of functions on a measure space can be split in
their “peaky part” and their “spread out parts”, an idea which we will push very
far.

• When one looks at discrepancy bounds for classes of functions in the spirit of the
Latała-Bednorz theorem, one is lead to formulate amazing conjectures, which
will turn out to be true as we will prove later.

6.9 Notes and Comments

A rather different proof of Proposition 6.4.8 is given in [113]. Probably the proof
of [113] is more elegant and deeper than the proof we give here, but the latter has
the extra advantage of showing the connection between Proposition 6.4.8 and the
Marcus-Pisier theorem, Theorem 7.4.2.



Chapter 7
Random Fourier Series
and Trigonometric Sums

The topic of random Fourier series illustrates well the impact of abstract methods,
and it might be useful to provide an (extremely brief) history of the topic.

In a series of papers in 1930 and 1932, R. Paley and A. Zygmund [78–80] raised
(among other similar problems) the question of the uniform convergence of the
random series

∑

k≥1

akεk exp(ikx) (7.1)

over x ∈ [0, 2π], where ak are real numbers and εk are independent Bernoulli r.v.s
(and where i2 = −1). Considering the numbers sp defined by s2

p =
∑

2p≤k<2p+1 a2
k ,

they prove in particular the necessity of the condition
∑

p sp <∞. Later, R. Salem
and A. Zygmund [94] proved that if the sequence (sp)p≥0 is non-increasing, then,
conversely, the condition

∑
p sp < ∞ suffices for the uniform convergence of the

random Fourier series. The combination of these two results is remarkably sharp,
but certainly does not characterize the series (7.1) which converge uniformly.

The discovery by X. Fernique that Dudley’s bound could be reversed for station-
ary Gaussian processes [32] was a major progress, with considerable influence. The
Dudley-Fernique characterization of boundedness of stationary Gaussian processes
opened the way for M. Marcus and G. Pisier to find necessary and sufficient
conditions for uniform convergence of a large class of random Fourier series. The
conditions of Marcus and Pisier are of the type γ2([0, 2π], d) < ∞ for a certain
distance d , and it is a non-trivial task (which is thoroughly performed in [61] and
will not be repeated here) to show that they improve on the “classical” results of
Paley, Salem, and Zygmund. The results of [61] cover not only the case of series of
the type (7.1) but more general cases such as the series

∑

k≥1

akξk exp(ikx) (7.2)
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where the independent symmetric r.v.s ξk satisfy supk(Eξ
2
k )

1/2/(E|ξk|) < ∞ (and
many other situations).

The work of Marcus and Pisier on random Fourier series was extended by Marcus
[59] to more general situations (that involve the infinitely divisible processes that
we will study in Chap. 12). Marcus fails however to obtain necessary and sufficient
conditions. Obtaining these requires the new idea of “families of distances” which
we develop in Sect. 7.5. In the present chapter, we provide (in a far more general
setting) what is in a sense the final result, necessary and sufficient conditions for
the almost sure convergence of the series (7.2) assuming only that the r.v.s ξk are
independent symmetric.

In retrospect it might be hard to understand why the topic of random Fourier
series was so popular at one point. What is certain is that the interest had already
waned when the author performed his work, and it is doubtful that this work has yet
found even a single reader.

Why, then, should you bother to even read a single line of the present chapter?
First, the title of the chapter is somewhat misleading. The main focus of it is not
to decide whether certain series converge or not, but to provide upper and lower
bounds on the supremum norm of certain random trigonometric sums.1 When one
has obtained upper and lower bounds which are sufficiently close to each other, it
is hardly more than an exercise to obtain necessary and sufficient conditions for
the convergence of random Fourier series. This exercise is carried out in Sect. 7.10.
Why, then, should you be interested in random trigonometric sums? The reason is
very simple. In general, the study of non-Gaussian processes (and in particular the
search for lower bounds) is an order of magnitude harder than the Gaussian case,
because all kinds of difficulties occur simultaneously. One of them (which already
occurs in the Gaussian case) is the need to use “generic chaining ideas” because
covering numbers do not suffice. A fundamental feature of random trigonometric
sums is that this specific difficulty does not occur: in contrast with the case of general
processes, covering numbers do suffice. Random Fourier series provide a simple
setting where we can first learn to face the difficulties inherent to non-Gaussian
processes, before we face these difficulties in the much harder context of the generic
chaining.

The reason why covering numbers suffice to study random Fourier series is
that the distances involved on the underlying group are translation-invariant. As
we will learn in the next section, for translation-invariant distances, not only
covering numbers suffice, but these covering numbers can basically be computed
by evaluating the Haar measure of certain small balls. This is a tremendous
simplification (which explains why very precise results can be proved). And how
could we dream of making progress on general processes if we do not thoroughly

1 These objects will be defined precisely in a few pages.
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understand this much simpler case first? This is why the author concentrated his
efforts for many years on random Fourier series. The strategy paid off: this setting
turned out to be ideal to invent some of the fundamental tools on which the
subsequent chapters are built and first of all the concept of a family of distances.
Furthermore, the ideas used in the present chapter to obtain lower bounds on random
Fourier series will be given a sweeping generalization in Chap. 11, and this will shed
considerable light on the structure of several fundamental processes. So, the reader’s
main motivation need not be the results on random Fourier series per se, but the ideas
she will learn from studying them. In fact, successfully reading the rest of Part II
probably requires reading the present chapter up to Sect. 7.7 inclusive.

We start the chapter by investigating the central structure, translation-invariant
distances. Our first basic results on random Fourier series are proved in Sects. 7.2–
7.4. The main results are stated in Sect. 7.5, where the concept of a family of
distances is also introduced.

7.1 Translation-Invariant Distances

The superiority of the generic chaining bound (2.59) over Dudley’s entropy
bound (2.38) is its ability to take advantage of the fact that the metric space (T , d)

(where the distance d controls the increments of the process as in (2.4)) need not be
“homogeneous” in the sense that at a given scale different regions of the space may
look very different from each other. When, however, this is not the case, the situation
should be simpler and Dudley’s bound should be optimal. A typical such case is
when T is a compact metrizable Abelian group2 and d is a translation-invariant
distance

∀s, t, v ∈ T , d(s + v, t + v) = d(s, t) .

We denote by μ the normalized Haar measure of T , that is, μ(T ) = 1 and μ is
translation-invariant. Thus, all balls for d with a given radius have the same Haar
measure.3

To study the size of the space (T , d), it is very convenient in this setting to use
as a “main parameter” the function ε �→ μ(Bd(0, ε)). We recall that we defined
N0 = 1 and Nn = 22n for n ≥ 1.

2 At the expense of minor complications, the same methods cover the case where T is subset with
non-empty interior of a locally compact group.
3 If you find this setting too abstract, you may assume that T is R/(2πZ). The proofs are identical,
but you will soon realize that cluttering your mind with irrelevant information makes things harder,
illustrating the wisdom of the advice of Gustave Choquet given on page 1.
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Theorem 7.1.1 Consider a continuous4 translation-invariant distance d on T . For
n ≥ 0 define

εn = inf
{
ε > 0 ; μ(Bd(0, ε)) ≥ 2−2n = N−1

n

}
. (7.3)

Then

1

L

∑

n≥0

εn2n/2 ≤ γ2(T , d) ≤ L
∑

n≥0

εn2n/2 . (7.4)

Our first lemma shows that the numbers εn are basically the entropy numbers
of Sect. 2.5, so that (7.4) simply states (as expected in this homogeneous case) that
γ2(T , d) is equivalent to Dudley’s integral.

Lemma 7.1.2 The entropy numbers en(T ) = en(T , d) satisfy

εn ≤ en(T ) ≤ 2εn . (7.5)

This near trivial lemma has staggering consequences: the only characteristic of
the balls Bd(0, ε) which influences the entropy numbers is their measure, entirely
irrespective of their shape. As we will explain soon, it is really child’s play to control
this measure.

Lemma 7.1.2 is in turn based on an even more trivial “volume argument” which
we state separately for further use.

Lemma 7.1.3 Consider a subset B of T . Then there exists a subset U of T with
cardU ≤ 1/μ(B) such that whenever t ∈ T we can find s ∈ U with t ∈ s +B −B,
where B − B = {t1 − t2; t1, t2 ∈ B}.
Proof Any set U such that the sets s + B are disjoint for s ∈ U satisfies cardU ·
μ(B) ≤ 1 because μ(s + B) = μ(B). Thus exists such a set U whose cardinality
is as large as possible. Then for each t ∈ T , there exists s ∈ U for which (t + B) ∩
(s+B) �= ∅ (for otherwise we could add the point t to U ). Then t ∈ s+B−B. �
Corollary 7.1.4 If μ(B) > 1/2 then T = B − B.

Proof In that case cardU = 1 so that U consists of a single point u, and t − u ∈
B − B for each t in T , so that B − B = T . �
Exercise 7.1.5 Find a direct argument. Convince yourself that the conclusion
utterly fails when the distance is not required to be translation-invariant.

Lemma 7.1.6 For any ε > 0, we have B(0, ε)− B(0, ε) ⊂ B(0, 2ε).

4 That is, the function (s, t) �→ d(s, t) is continuous on T 2. This is the case of interest, but much
weaker regularity properties suffice. All we really need is that the balls are measurable.
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Proof If t, t ′ ∈ B(0, ε), then d(t − t ′, 0) ≤ d(t − t ′,−t ′) + d(−t ′, 0) = d(t, 0)+
d(0, t ′) ≤ 2ε using twice that the distance is translation-invariant. �
The previous lemmas play a fundamental role throughout the chapter, where
translation-invariance is constant feature.

Proof of Lemma 7.1.2 Since μ is translation-invariant, all the balls of T with the
same radius have the same measure. Consequently if one can cover T by Nn balls
with radius ε, then εn ≤ ε, and this proves the left-hand side inequality.

To prove the right-hand side, we use Lemma 7.1.3 for B = B(0, εn). Thus we
can cover T by at most cardU ≤ μ(B)−1 ≤ Nn translates s + B − B of the set
B −B. Furthermore s +B −B ⊂ s +B(0, 2εn) = B(s, 2εn) by Lemma 7.1.6. �
Proof of Theorem 7.1.1 The right-hand side inequality follows from (7.5)
and (2.56). To prove the left-hand side inequality, we consider an admissible
sequence (An) of partitions of T with supt∈T

∑
n≥0 2n/2Δ(An(t), d) ≤ 2γ2(T , d).

We construct by induction a decreasing sequence Cn ∈ An with μ(Cn) ≥ N−1
n+1 as

follows. First we choose C0 = T . Having constructed Cn ∈ An, we note that

N−1
n+1 ≤ μ(Cn) =

∑
{μ(A),A ∈ An+1, A ⊂ Cn} ,

and since the sum has at most Nn+1 terms, one of these is ≥ N−2
n+1 = N−1

n+2. Thus

there exists A ∈ An+1 with A ⊂ Cn and μ(A) ≥ N−1
n+2. We choose for Cn+1 such

a set A, completing the induction.
Since d is translation-invariant, it follows from (7.3) that Cn cannot be contained

in a ball with radius < εn+1 and thus that Δ(Cn, d) ≥ εn+1.
Consider now t ∈ Ck . For 0 ≤ n ≤ k, we have t ∈ Cn ∈ An so that An(t) = Cn

and thus

∑

0≤n≤k
εn+12n/2 ≤

∑

0≤n≤k
2n/2Δ(Cn, d) =

∑

0≤n≤k
2n/2Δ(An(t), d) ≤ 2γ2(T , d) .

Since ε0 ≤ Δ(A0, d) this completes the proof of the left-hand side inequality
of (7.4).5 �

Recalling the numbers εn of (7.3), it is very useful for the sequel to form the
following mental picture:

For our purposes, it is the number
∑

n≥0

εn2n/2

which determines the size of the space (T , d) .

5 There is no reason for which the sets of An should be measurable for μ, but our argument works
anyway replacing “measure” by “outer measure”.
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All we will have to do to understand very general random Fourier series is to
discover the proper numerical series whose convergence is equivalent to the almost
sure convergence of the random Fourier series!

Exercise 7.1.7 With the notation of Theorem 7.1.1 prove that for a constant K
depending only on α, for α ≥ 1 we have

1

K

∑

n≥0

εn2n/α ≤ γα(T , d) ≤ K
∑

n≥0

εn2n/α . (7.6)

The following will be used many times:

Exercise 7.1.8 Assume that for n ≥ 0, we have a set Dn ⊂ T with μ(Dn) ≥ N−1
n

and

s ∈ Dn ⇒ d(s, 0) ≤ εn .

Then γ2(T , d) ≤ L
∑

n≥0 2n/2εn.

7.2 Basics

7.2.1 Simplification Through Abstraction

How should one approach the study of the random series (7.2)? To study the uniform
convergence of such a series for x ∈ [0, 2π], we will have to control quantities such
as

sup
0≤x≤2π

∣
∣
∑

k≤n
ξk exp(ikx)

∣
∣ .

Let us observe that t := exp(ix) is a complex number of modulus 1 and that
exp(ikx) = tk so the above quantity is

sup
t∈U

∣
∣
∑

k≤n
ξkt

k
∣
∣ ,

where U is the set of complex numbers of modulus 1. Provided with the multiplica-
tion, U is a compact metrizable group. The functions χk(t) = tk have a very special
property with respect to the group operation: χk(st) = χk(s)χk(t).6

These remarks suggest to think of the series (7.2) as a series
∑

k≥1 ξkχk(t)

of random functions on U. This abstract point of view is extremely fruitful, as

6 If you like big words, they are group homomorphisms from U to U.
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otherwise it would be impossible to resist the temptation to use the special structure
of the set [0, 2π] and its natural distance.7 It took indeed a very long time to
understand that this natural distance is not what is relevant here.

7.2.2 Setting

We consider a compact metrizable Abelian group T .8 Since T is Abelian, we follow
the tradition to denote the group operation additively.9 A character χ on T is a
continuous map from T to C such that |χ(t)| = 1 for each t and χ(s+t) = χ(s)χ(t)

for any s, t ∈ T .10 In particular χ(0) = 1. Under pointwise multiplication, the set of
characters on T form a group G called the dual group of T . The unit element of this
group is the character 1 which takes the value 1 everywhere. If this abstract setting
bothers you, you will lose nothing by assuming everywhere T = U and G = Z,11

except that the extra information will needlessly clutter your mind.
For our purpose, the fundamental property of characters is that for s, t, u ∈ T ,

we have χ(s + u)− χ(t + u) = χi(u)(χ(s)− χ(t)) so that

|χ(s + u)− χ(t + u)| = |χ(s)− χ(t)| . (7.7)

Taking u = −t in (7.7) we get

|χ(s)− χ(t)| = |χ(s − t)− 1| . (7.8)

A random Fourier series is a series

∑

i≥1

ξiχi

where ξi is a complex-valued r.v. and χi is a (nonrandom) character. We assume
that (ξi)i≥1 are symmetric independent r.v.s. It is not required that χi �= χj for
i �= j , although one may assume this condition without loss of generality. We will
study the convergence of such series in Sect. 7.10, and for now we concentrate on
the central part of this study, i.e., the study of finite sums

∑
i ξiχi , which we call

random trigonometric sums. Thus finite sums are denoted by
∑

i , as a short hand

7 Let us remember that going to an abstract setting was also a very important step in the
understanding of the structure of Gaussian processes.
8 It requires only minor complications (but no new idea) to develop the theory in locally compact
groups.
9 In contrast with the case of the group U where multiplicative notation is more natural.
10 So that χ is simply a group homomorphism form T to U.
11 To k ∈ Z corresponds the character χk(t) = tk .
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for
∑

i∈I where I is a set of indices, whereas infinite series are denoted by
∑

i≥1.
We denote by ‖ · ‖ the supremum norm of such a sum, so that

∥
∥
∑

i

ξiχi
∥
∥ = sup

t∈T
∣
∣
∑

i

ξiχi(t)
∣
∣ .

This notation is used throughout this chapter and must be learned now. Our ultimate
goal is to find upper and lower bounds for the quantity ‖∑i ξiχi‖ that are of the
same order in full generality, but we first state some simple facts.

7.2.3 Upper Bounds in the Bernoulli Case

Particularly important random trigonometric sums are sums of the type
∑

i aiεiχi ,
where ai are numbers, χi are characters, and εi are independent Bernoulli r.v.s.12

For such a sum let us consider the distance d on T defined by

d(s, t)2 =
∑

i

|ai |2|χi(s)− χi(t)|2 , (7.9)

which is translation-invariant according to (7.7).

Exercise 7.2.1 Convince yourself that in the case where T = U is the group of
complex numbers of modulus 1, there need not by a simple relation between the
distance of (7.9) and the natural distance of U induced by the distance on C. Hint:
If χi(t) = t i consider the case where only one of the coefficients ai is not zero.

Proposition 7.2.2 Consider the numbers εn defined in (7.3) with respect to the
distance d(s, t) of (7.9). Then13

(
E
∥
∥
∑

i

aiεiχi
∥
∥2
)1/2 ≤ L

∑

n≥0

2n/2εn +
(∑

i

|ai|2
)1/2

. (7.10)

Proof Consider real-valued functions ηi on T and the process

Xt =
∑

i

ηi (t)εi . (7.11)

12 So that, in the previous notation, ξi = aiεi .
13 There is nothing magical in the fact that we use the L2 norm rather than the L1 norm in the
left-hand side of (7.10). We will need this once later. It is known from general principles that these
two norms are equivalent for random trigonometric sums of type

∑
i aiεiχi .
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Using the subgaussian inequality (6.2), this process satisfies the increment condi-
tion (2.4) with respect to the distance d∗ given by

d∗(s, t)2 :=
∑

i

|ηi(s)− ηi(t)|2 ,

and therefore from (2.66),

(
E sup

s,t∈T
|Xs −Xt |2

)1/2 ≤ Lγ2(T , d
∗) . (7.12)

Furthermore (7.12) holds also for complex-valued functions ηi . This is seen simply
by considering separately the real and imaginary parts. When ηi = aiχi we have
d∗ = d , and the result follows from the right-hand side of (7.4), using also that
(E supt∈T |Xt |2)1/2 ≤ (E sups,t∈T |Xs − Xt |2)1/2 + (E|X0|2)1/2 and E|X0|2 =
∑

i |ai|2.14 �
The previous result may sound simple, but it is essential to fully understand what
was the central step in the argument, because it is the very same phenomenon
which is at the root of the upper bounds we will prove later. This central step is
Lemma 7.1.3: when the Haar measure of a set B is not too small, one may cover T
by not too many translates of B − B. This uses translation invariance in a crucial
way.

7.2.4 Lower Bounds in the Gaussian Case

We turn to a lower bound in the case where the r.v.s ξi are i.i.d. Gaussian. It is a
simple consequence of the majorizing measure theorem, Theorem 2.10.1.

Lemma 7.2.3 Consider a finite number of independent standard normal r.v.s gi and
complex numbers ai . Then

1

L
γ2(T , d) ≤ E

∥
∥
∑

i

aigiχi
∥
∥ , (7.13)

14 Exactly the same result holds when we replace the independent Bernoulli r.v.s εi by independent
Gaussian r.v.s. Moreover, as we will see in (7.40), it is a general fact that “Gaussian sums are larger
than Bernoulli sums”, so that considering Gaussian r.v.s yields a stronger result than considering
Bernoulli r.v.s. We are here using Bernoulli r.v.s as we will apply the exact form (7.10) .
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where d is the distance on T given by

d(s, t)2 =
∑

i

|ai|2|χi(s)− χi(t)|2 . (7.14)

We cannot immediately apply the majorizing measure theorem here, because it deals
with real-valued processes, while here we deal with complex-valued ones. To fix
this, we denote by "z and #z the real part and the imaginary part of a complex
number z.

Lemma 7.2.4 Consider a complex-valued process (Xt)t∈T , and assume that both
("Xt)t∈T and (#Xt)t∈T are Gaussian processes. Consider the distance d(s, t) =
(E|Xs −Xt |2)1/2 on T . Then

1

L
γ2(T , d) ≤ E sup

s,t∈T
|Xs −Xt | ≤ Lγ2(T , d) . (7.15)

Proof Consider the distances d1 and d2 on T given respectively by

d1(s, t)
2 = E

("(Xs −Xt)
)2

and

d2(s, t)
2 = E

(#(Xs −Xt)
)2

.

Combining the left-hand side of (2.114) with Lemma 2.2.1 implies

γ2(T , d1) ≤ LE sup
s,t∈T

|"Xs −"Xt | ≤ LE sup
s,t∈T

|Xs −Xt |

and similarly γ2(T , d2) ≤ LE sups,t∈T |Xs −Xt |. Since d ≤ d1+d2, (4.55) implies
that γ2(T , d) ≤ LE sups,t∈T |Xs − Xt |. To prove the right-hand side inequality
of (7.15), we simply use (2.59) separately for the real and the imaginary part
(keeping Lemma 2.2.1 in mind). �
Proof of Lemma 7.2.3 It follows from (7.15), since E sups,t∈T |Xs − Xt | ≤
2E supt∈T |Xt |. �

7.3 Random Distances

7.3.1 Basic Principles

Without giving details yet, let us sketch some of the main features of our approach
to a trigonometric sum

∑
i ξiχi . It has the same distribution as the sum

∑
i εiξiχi



7.3 Random Distances 211

where (εi) are independent Bernoulli r.v.s which are also independent of the ξi .
Such a random series will be studied conditionally on the values of the r.v.s ξi . This
will bring in the distance corresponding to (6.2), namely, the distance dω (where the
subscript ω symbolizes the randomness of the ξi ) given by

dω(s, t)
2 =

∑

i

|ξi |2|χi(s)− χi(t)|2 . (7.16)

We will then try to relate the typical properties of the metric space (T , dω) with the
properties of the metric space (T , d) where

d(s, t)2 = Edω(s, t)2 =
∑

i

E|ξi |2|χi(s)− χi(t)|2 . (7.17)

We now try to formulate in a rather imprecise way two key ideas of our approach.15

You should not expect at this stage to fully understand them. Real understanding will
come only after a detailed analysis of the forthcoming proofs. Yet, keeping these
(imprecise) ideas in your mind may help to grasp the overall directions of these
proofs. We have already met the first principle on page 168, but it bears repetition.

Principle A If, given s, t ∈ T , it is very rare that the distance dω(s, t) is very much
smaller than d(s, t), some measure of size of (T , d) is controlled from above by the
typical value of γ2(T , dω).

In other words, the balls Bd(0, ε) cannot be too small. The reason for this is
simple. If this were the case, since dω(s, t) is not much smaller than d(s, t), the balls
Bdω(0, ε) would also typically be very small, and then γ2(T , dω) would typically be
very large. This principle is adapted to finding lower bounds.

We will be able to use a suitable version of Principle A in cases where there is
no translation invariance, and it is at the root of the results of Chap. 11.

An equally simple principle works the other way around and is adapted to find
upper bounds on trigonometric sums.

Principle B If, given s, t ∈ T , the distance dω(s, t) is typically not too much
larger than d(s, t), then the typical value of γ2(T , dω) is controlled from above by
γ2(T , d).

The reason is that γ2(T , d) controls from below the size of the balls Bd(0, ε),
in the sense that at a given value of γ2(T , d) the measure of these balls cannot
be very small. This in turn implies that the balls Bdω cannot be too small because
dω is typically not much larger than d . But this controls from above the size of
γ2(T , dω).16

15 The setting for these ideas is somewhat general that the specific situation considered above.
16 This last step is unfortunately specific to the case of translation-invariant distances.
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The following theorem is an implementation of Principle B and is at the root of
a main result of this chapter, the Marcus-Pisier theorem, Theorem 7.4.2:17

Theorem 7.3.1 Consider a translation-invariant distance dω on T that depends on
a random parameter ω. Assuming enough measurability and integrability, consider
the distance d̄ given by

d̄(s, t) = Edω(s, t) . (7.18)

Then

Eγ2(T , dω) ≤ Lγ2(T , d̄)+ LEΔ(T , dω) . (7.19)

Proof It is obvious that d̄ is a distance. Consider the corresponding numbers ε̄n
as in (7.3). For each n ≥ 1 let us set Bn := Bd̄(0, ε̄n), so that μ(Bn) ≥ N−1

n by
definition of ε̄n. Let us define

bn(ω) = 1

μ(Bn)

∫

Bn

dω(0, t)dμ(t) . (7.20)

Markov’s inequality used for the measure μ at the given ω implies μ({t ∈
Bn; dω(0, t) ≥ 2bn(ω)}) ≤ μ(Bn)/2. Consequently

μ({t ∈ Bn ; dω(0, t) ≤ 2bn(ω)}) ≥ 1

2
μ(Bn) ≥ 1

2
N−1
n ≥ N−1

n+1 ,

so that εn+1(ω) ≤ 2bn(ω), where of course εn+1(ω) is defined as in (7.3) for the
distance dω. Also, ε0(ω) ≤ Δ(T , dω), so that

∑

n≥0

εn(ω)2n/2 ≤ LΔ(T , dω)+ L
∑

n≥1

εn(ω)2n/2

= LΔ(T , dω)+ L
∑

n≥0

εn+1(ω)2(n+1)/2

≤ LΔ(T , dω)+ L
∑

n≥0

bn(ω)2
n/2 .

Thus (7.4) implies

γ2(T , dω) ≤ LΔ(T , dω)+ L
∑

n≥0

bn(ω)2n/2 .

17 We will not need Principle A for this result, as in the special situation considered there one may
find specific arguments for lower bounds.
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Taking expectations yields

Eγ2(T , dω) ≤ LEΔ(T , dω)+ L
∑

n≥0

Ebn(ω)2n/2 . (7.21)

For t ∈ Bn we have Edω(0, t) = d̄(0, t) ≤ ε̄n so that taking expectation in (7.20),
we obtain Ebn(ω) ≤ ε̄n. Thus (7.19) follows from (7.21) and (7.4). �
Exercise 7.3.2

(a) Use Lemma 7.1.3 to prove that μ(Aω) ≤ 1/2, where Aω = {t ∈ T ; dω(0, t) ≤
Δ(T , dω)/4}.

(b) Prove that the last term is not necessary in (7.19). Hint: This is harder.

Exercise 7.3.3 Show that if T is an arbitrary metric space and dω an arbitrary
random metric, then (7.19) need not hold. Caution: This is not trivial.

7.3.2 A General Upper Bound

We turn to upper bounds, which are a rather simple consequence of the work of
the previous subsection. Not only these bounds are interesting in their own right,
they are a basic ingredient of the Marcus-Pisier theorem, the central result of next
section.

Theorem 7.3.4 Assume that the r.v.s ξi are symmetric and independent and have a
second moment, and consider on T the distance d given by

d(s, t)2 =
∑

i

E|ξi |2|χi(s)− χi(t)|2 . (7.22)

Then

E
∥
∥
∑

i

ξiχi
∥
∥ ≤ Lγ2(T , d)+ L

(∑

i

E|ξi |2
)1/2

. (7.23)

If Xt = ∑
i ξiχi(t), (7.22) implies E|Xs − Xt |2 ≤ d(s, t)2, but it does not

seem possible to say much more (such as controlling higher moments of the r.v.s
|Xs−Xt |) unless one assumes more on the r.v.s ξi , e.g., that they are Gaussian. Also,
as we will learn in Sect. 16.8, the condition E|Xs −Xt |2 ≤ d(s, t)2 is way too weak
by itself to ensure the regularity of the process. Therefore it is at first surprising
to obtain a conclusion as strong as (7.23). Theorem 7.3.4 is another deceptively
simple-looking result on which the reader should meditate.
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Proof of Theorem 7.3.4 We write

E sup
t

∣
∣
∑

i

ξiχi(t)
∣
∣ ≤ E sup

t

∣
∣
∑

i

(ξiχi(t) − ξiχi(0))
∣
∣ + E

∣
∣
∑

i

ξiχi(0)
∣
∣ .

(7.24)

Since for each character χ we have χ(0) = 1, using the Cauchy-Schwarz inequality
we have E|∑i ξiχi(0)| ≤ (E|∑i ξi |2)1/2 = (

∑
i E|ξi |2)1/2 so that it suffices to

prove that

E sup
t,s

∣
∣
∑

i

(ξiχi(t)− ξiχi(s))
∣
∣ ≤ Lγ2(T , d)+ L

(∑

i

E|ξi |2
)1/2

. (7.25)

Since the r.v.s ξi are symmetric, the sum
∑

i ξiχi has the same distribution as the
sum

∑
i εiξiχi , where the Bernoulli r.v.s εi are independent and independent of the

r.v.s ξi , and in particular18

E sup
t,s

∣
∣
∑

i

(ξiχi(t)− ξiχi(s))
∣
∣ = E sup

t,s

∣
∣
∑

i

(εiξiχi(t)− εiξiχi(s))
∣
∣ . (7.26)

For clarity let us assume that the underlying probability space is a product Ω ×
Ω ′, with a product probability P = Pξ ⊗ Pε , and that if (ω, ω′) is the generic point
of this product, then ξi = ξi,ω depends on ω only and εi = εi,ω′ depends on ω′ only.
For each ω define the distance dω on T by

dω(s, t)
2 =

∑

i

|ξi,ω|2|χi(s)− χi(t)|2 ,

so that

Δ(T , dω)
2 ≤ 4

∑

i

|ξi,ω|2 (7.27)

and

E dω(s, t)
2 =

∑

i

E|ξi |2|χi(s)− χi(t)|2 = d(s, t)2 . (7.28)

18 Maybe here is a place to stress the obvious. When there are several sources of randomness, such
as in the second term below, the operator E takes expectation over all of them.
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The Cauchy-Schwarz inequality shows that the distance d̄ given by d̄(s, t) =
Edω(s, t) satisfies d̄ ≤ d and also from (7.27) that

EΔ(T , dω) ≤ 2
(∑

i

E|ξi |2
)1/2

. (7.29)

Next, denoting by Eε expectation in ω′ only,19 we use (7.12) with ηi(s) = ξi,ωχi(s)

(so that then d∗ = dω) to obtain that for each ω we have

Eε sup
t,s

∣
∣
∣
∑

i

(
εi,ω′ξi,ωχi(t)− εi,ω′ξi,ωχi(s)

)∣∣
∣ ≤ Lγ2(T , dω) .

Taking expectation and using (7.26) we obtain

E sup
t,s

∣
∣
∑

i

(ξiχi(t)− ξiχi(s))
∣
∣ ≤ LEγ2(T , dω) . (7.30)

The distances dω are translation-invariant, as follows from the facts that χi(s +
u) = χi(s)χi(u) and |χi(u)| = 1 for each i, so that (7.19) implies

Eγ2(T , dω) ≤ Lγ2(T , d̄)+ LEΔ(T , dω) ≤ Lγ2(T , d)+ LEΔ(T , dω) .

The desired inequality (7.25) then follows combining this with (7.29). �

7.3.3 A Side Story

Let us now start a side story and discuss the second term in the right-hand side
of (7.23). If we consider the case where for all i, χi = 1, the character taking value
1 everywhere, then d ≡ 0 and this second term is really needed. This is however
basically the only case where this term is needed, as the following shows:

Lemma 7.3.5 Assume

∀i ; χi �= 1 . (7.31)

Then, recalling the distance d of (7.22),

2
∑

i

E|ξi |2 ≤ Δ(T , d)2 (7.32)

19 The idea behind the notation Eε is that “we take expectation in the randomness of the εi only”.
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and in particular we may replace (7.23) by

E
∥
∥
∑

i

ξiχi
∥
∥ ≤ Lγ2(T , d) . (7.33)

Lemma 7.3.6 Two different characters are orthogonal in L2(T , dμ).

Proof Consider two such characters χ and γ . Then for any s ∈ T ,

∫

χ̄(t)γ (t)dμ(t) =
∫

χ̄(s + t)γ (s + t)dμ(t) = χ̄(s)γ (s)

∫

χ̄(t)γ (t)dμ(t) .

Thus, either χ and γ are orthogonal in L2(T , dμ) or else χ̄(s)γ (s) = 1 for all s,
i.e., χ = γ . �
Corollary 7.3.7 For each character χ �= 1 it holds that

∫

|χ(s)− 1|2dμ(s) = 2 . (7.34)

Proof of Lemma 7.3.5 We integrate in s the equality
∑

i E|ξi |2|χi(s) − χi(0)|2 =
d(s, 0)2 to obtain

2
∑

i

E|ξi |2 =
∫

T

d(s, 0)2dμ(s) ≤ Δ(T , d)2 . �

We lighten the exposition by always assuming (7.31) .

This holds even when we forget to repeat it. The only difference this assumption
makes is that we no longer have to bother writing the term (

∑
i E|ξi |2)1/2. For

example, (7.23) becomes

E
∥
∥
∑

i

ξiχi
∥
∥ ≤ Lγ2(T , d) . (7.35)

The following exercise insists on the fact that assuming (7.31) looses no real
information. It simply avoids writing an extra term E|ξi0 | both in the upper and
lower bounds.

Exercise 7.3.8 Assume that χi0 = 1 and that χi �= 1 when i �= i0. Prove that

E|ξi0 | ≤ E
∥
∥
∑

i

ξiχi
∥
∥ ≤ E|ξi0 | + Lγ2(T , d) . (7.36)

Exercise 7.3.9 The present exercise deduces classical bounds for trigonometric
sums from (7.33). (If it is not obvious that it deals with these, please read Sect. 7.2.1



7.3 Random Distances 217

again.) We consider the case where T = U is the set of complex numbers of modulus
1 and where χi(t) = t i , the i-th power of t . We observe the bound

|si − t i | ≤ min(2, |i||s − t|) . (7.37)

Let ci = E|ξi |2, and consider the distance d of (7.22), d(s, t)2 = ∑i ci |si − t i |2.
Let b0 =∑|i|≤3 ci and for n ≥ 1, let bn =∑Nn≤|i|≤Nn+1

ci. Prove that

γ2(T , d) ≤ L
∑

n≥0

2n/2
√
bn , (7.38)

and consequently from (7.23)

E
∥
∥
∑

i

ξiχi
∥
∥ ≤ L

∑

n≥0

2n/2
√
bn . (7.39)

Hint: Here since the group is in multiplicative form, the unit is 1 rather than 0.
Observe that d(t, 1)2 ≤∑i ci min(4, |i|2|t − 1|2). Use this bound to prove that the

quantity εn of Theorem 7.1.1 satisfies ε2
n ≤ L

∑
i ci min(1, |i|22−2n+1

) and conclude
using (7.4). If you find this exercise too hard, you will find its solution in Sect. 7.12.

Exercise 7.3.10 For a trigonometric polynomial A =∑i aiχi (where the χi are all
distinct), let us set N (A) = E‖∑i aigiχi‖ where the gi are independent standard
r.v.s and ‖A‖P = N (A)+‖A‖. This exercise is devoted to the proof that ‖AB‖P ≤
L‖A‖P ‖B‖P , a result of G. Pisier proved in [83].

(a) Prove that the distance (7.14) satisfies d(s, t) = ‖As − At‖2 where As(u) =
A(s + u) for s, x ∈ T .

(b) If χi0 = 1 prove that |ai0| ≤ ‖A‖.
(c) Prove that ‖A‖ + γ2(T , d) ≤ L‖A‖P ≤ L(‖A‖ + γ2(T , d)). Hint: Use (7.36).
(d) Prove the desired result. Hint AsBs − AtBt = (As − At)Bs + At(Bs − Bt ).

Use also (4.55) and Exercise 2.7.4.

Exercise 7.3.11 This exercise continues the previous one. It contains part of the
work needed to compute the dual norm of N , as also achieved in [83].

(a) Prove that if a linear operator U on the space of trigonometric polynomials
into itself commutes with translations (in the sense that (U(A))s = U(As)

with the notation of the previous exercise, then for each character χ one has
U(χ) = uχχ for a certain uχ . (In words: U is a “multiplier”.)

(b) For a function f on T consider the norm

‖f ‖ψ2 = inf
{
c > 0;

∫

exp(|f |2/c2)dμ ≤ 2
}
.
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and for a linear operator U as in (a) let

‖U‖2,ψ2 = inf
{
C > 0 ; ∀A , ‖U(A)‖ψ2 ≤ C‖A‖2

}
.

Given a trigonometric polynomialA, think of Xt := U(A)t as a r.v. on the space
(T , μ). Use (a) of the previous exercise to prove that it satisfies the increment
condition ‖Xs − Xt‖ψ2 ≤ L‖U‖2,ψ2d(s, t). Relate this to (2.4) and use (2.60)
to prove that sups,t∈T |U(A)(s)− U(A)(t)| ≤ LN (A)‖U‖2,ψ2 .

(c) Prove that |U(A)(0)| ≤ LN (A)‖U‖2,ψ2 .

7.4 The Marcus-Pisier Theorem

7.4.1 The Marcus-Pisier Theorem

As a special case of (6.7), since E|g| = √
2/π when g is a standard Gaussian r.v.,

we get the following version of (6.6):

E
∥
∥
∑

i

εixi
∥
∥ ≤

√
π

2
E
∥
∥
∑

i

gixi
∥
∥ . (7.40)

Exercise 7.4.1 Prove that the inequality (7.40) cannot be reversed in general. More
precisely find a situation where the sum is of length n and the right-hand side is
about

√
logn times larger than the left-hand side.

In this subsection we prove the fundamental fact that in the setting of random
trigonometric sums, where the Banach space is the space of continuous functions
of T provided with the supremum norm, and when xi is the function aiχi , we can
reverse the general inequality (7.40). As a consequence we obtain in Corollary 7.4.5
below the estimate for E‖∑i aiεiχi‖ on which all our further work relies.

Once this difficult result has been obtained, it is a very easy matter to achieve
our goal of finding upper and lower bounds on the quantities E‖∑i ξiχi‖ under the
extra condition that the r.v.s “ξi have L1 and L2 norms of the same order”. This
assumption will later be removed, but this requires considerable work.

Theorem 7.4.2 (The Marcus-Pisier Theorem [61]) Consider complex numbers
ai , independent Bernoulli r.v.s εi , and independent standard Gaussian r.v.s gi . Then

E
∥
∥
∑

i

aigiχi
∥
∥ ≤ LE

∥
∥
∑

i

aiεiχi
∥
∥ . (7.41)
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Proof The argument resembles that of Theorem 6.4.1.20 Consider a number c > 0.
Then

E
∥
∥
∑

i

aigiχi
∥
∥ ≤ I+ II , (7.42)

where

I = E
∥
∥
∑

i

aigi1{|gi |≤c}χi
∥
∥

and

II = E
∥
∥
∑

i

aigi1{|gi |>c}χi
∥
∥ .

Let us define u(c) = (Eg21{|g|≥c})1/2. Consider the distance d given by (7.14).
When ξi = aigi1{|gi |≥c}, we have E|ξi |2 = |ai|2u(c)2 so that the distance d ′ given
by (7.22) satisfies d ′ = u(c)d . Thus γ2(T , d

′) = u(c)γ2(T , d) and (7.35) implies

II ≤ Lu(c)γ2(T , d) . (7.43)

Recalling the lower bound (7.13), it follows that we can choose c a universal
constant large enough that II ≤ (1/2)E‖∑i aigiχi‖. We fix such a value of c.
Then (7.42) entails

E
∥
∥
∑

i

aigiχi
∥
∥ ≤ 2 I .

Consider independent Bernoulli r.v.s εi that are independent of the r.v.s gi , so that
by symmetry

I = E
∥
∥
∑

i

aiεigi1{|gi |<c}χi
∥
∥ .

The contraction principle (Lemma 6.4.4) used given the randomness of the variables
gi yields I ≤ cE‖∑i aiεiχi‖, which completes the proof. �
Exercise 7.4.3 Show that (7.41) does not hold when χi are general maps from T to
C with |χi(t)| = 1.

Exercise 7.4.4 In this exercise we deduce the Marcus-Pisier theorem from Theo-
rem 6.2.8 (the Latała-Bednorz theorem). This is not an economical way to proceed,

20 This is not a coincidence. I studied the Marcus-Pisier theorem before I invented Theorem 6.4.1.
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since the proof of the Latała-Bednorz theorem is very much harder than the proof of
the Marcus-Pisier theorem. Nonetheless the argument is very instructive as to what
role translation invariance plays. We set S = E‖∑i aiεiχi‖.

(a) Use Theorem 6.2.8 to show that we have a decomposition aiχi(t) = ui(t) +
vi(t) where

∑
i |vi(t)| ≤ LS and E supt∈T |

∑
i giui(t)| ≤ LS.

(b) Apply the previous decomposition to t + s instead of t and average
over s to prove that we have ai = ui + vi where

∑
i |vi | ≤ LS and

E supt∈T |
∑

i giuiχi(t)| ≤ LS. Conclude.

Combining (7.41) with (7.13), recalling the distance d of (7.14), and using (7.33)
for the upper bound, we obtain the following fundamental result:

Corollary 7.4.5 We have

1

L
γ2(T , d) ≤ E

∥
∥
∑

i

aiεiχi
∥
∥ ≤ Lγ2(T , d) . (7.44)

The next technical lemma makes the left-hand side of (7.44) more precise. Its
proof reveals why we controlled the squares in (7.10). The relevance of this lemma
will become clear only later.

Lemma 7.4.6 We have

P
(∥
∥
∑

i

aiεiχi
∥
∥ ≥ 1

L
γ2(T , d)

)
≥ 1

L
. (7.45)

The r.v. X = ‖∑i εiaiχi
∥
∥ satisfies EX ≥ γ2(T , dω)/L by (7.44). Combin-

ing (7.6), (7.10), and (7.32), it also satisfies EX2 ≤ Lγ2(T , d)
2. The conclusion

follows from the Paley-Zygmund inequality (6.15).

7.4.2 Applications of the Marcus-Pisier Theorem

It is now easy to complete the goal of providing upper and lower bounds of
‖∑i ξiχi‖ which are of the same order when the L1 and L2 norms of the ξi are
of the same order.

Proposition 7.4.7 Consider independent symmetric real valued random variables
ξi and characters χi . Consider on T the two distances given by

d1(s, t)
2 =

∑

i

(E|ξi |)2|χi(s)− χi(t)|2
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and

d2(s, t)
2 =

∑

i

(E ξ2
i )|χi(s)− χi(t)|2 .

Then, assuming (7.31), we have

1

L
γ2(T , d1) ≤ E

∥
∥
∑

i

ξiχi
∥
∥ ≤ Lγ2(T , d2) . (7.46)

Proof The right-hand side of (7.46) simply reproduces (7.33). The left-hand side
follows by combining (6.7) and (7.44) for ai = E|ξi |. �
Let us set

A = sup
i

(Eξ2
i )

1/2

E|ξi | . (7.47)

Then γ2(T , d2) ≤ Aγ2(T , d1) and we have obtained upper and lower estimates of
the quantity E‖∑i aiξiχi‖ whose ratio is ≤ LA. In the case where the r.v.s ξi are
not square-integrable, we will obviously need other methods. We shall return to this
topic later, where we shall be able to estimate the quantity E‖∑i aiξiχi‖ under
the only assumption that the r.v.s ξi are independent and symmetric. We shall also
investigate the convergence of random Fourier series. We simply mention here that
for such a series where the quantity A of (7.47) is finite, Proposition 7.4.7 allows us
to show that the necessary and sufficient condition for convergence is γ2(T , d2) <

∞. For further use, let us draw a simple consequence of Proposition 7.4.7, whose
proof should now be obvious.

Corollary 7.4.8 With the notations of Proposition 7.4.7 consider also independent
symmetric r.v.s (θi). Then we have

E
∥
∥
∑

i

ξiχi
∥
∥ ≤ L sup

i

(Eξ2
i )

1/2

E|θi | E
∥
∥
∑

i

θiχi
∥
∥ . (7.48)

It is not always easy to estimate the quantity γ2(T , d) in concrete situations. The
book of Marcus and Pisier [61] contains a thorough account (which we will not
reproduce) of the link between the present results and the “classical ones”. To
illustrate the problems that arise, consider, for example, the case where T =
{−1, 1}N and for i ≤ N and t = (ti )i≤N ∈ T , let χi(t) = ti . Since |ti | = 1, for
real numbers, ai it holds that ‖∑i≤N aiεi ti‖ =∑i≤N |ai |. Combining with (7.23)
and (7.44), we get

1

L

∑

i≤N
|ai | ≤ γ2(T , d) ≤ L

∑

i≤N
|ai| , (7.49)
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where d(s, t)2 = ∑
i≤N a2

i |χi(s) − χi(t)|2 = 4
∑

i≤N a2
i 1{ti �=si }. The following

exercise is in fact quite challenging:

Exercise 7.4.9 Find a direct proof of (7.49).

Let us end this section by a comparison theorem, which is a rather direct
consequence of Proposition 7.4.7.

Proposition 7.4.10 Consider independent symmetric r.v.s ξi , θi , and characters χi .
Let us assume (7.31) and that the following holds for a certain constant C

∀i , ∀u > C , P(|θi | ≥ u) ≥ P(|ξi | ≥ Cu) , (7.50)

E|θi | ≥ 1/C . (7.51)

Then for numbers (ai) we have

E
∥
∥
∑

i

aiξiχi
∥
∥ ≤ KE

∥
∥
∑

i

aiθiχi
∥
∥ (7.52)

where K depends on C only.

Proof A main ingredient of the proof is that (7.50) implies that there is a joint
realization21 of the pairs (|ξi |, |θi |) such that |ξi | ≤ K(|θi| + 1). As I do not want to
struggle on irrelevant technicalities, I will prove this only when the distributions of
|ξi | and |θi | have no atom. Then one simply takes |ξi | = fi(|θi |) where fi(t) is the
smallest number such P(|ξi | ≥ fi(t)) = P(|θi | ≥ t). Thus it follows from (7.50)
that fi(t) ≤ Ct for t ≥ C, and since fi is increasing, we have fi(t) ≤ C2 for t ≤ C

so that fi(t) ≤ K(t + 1).
A second main ingredient is that if |bi| ≤ |ci | then

E
∥
∥
∑

i

biεiχi
∥
∥ ≤ KE

∥
∥
∑

i

ciεiχi
∥
∥ . (7.53)

This follows from (7.48). Let us denote by Eε expectation in the Bernoulli r.v.s (εi)
only. We then write, using (7.53) in the first inequality and the triangle inequality in
the second one

Eε

∥
∥
∑

i

aiεi |ξi |χi
∥
∥ = Eε

∥
∥
∑

i

aiεifi(|θi |)χi
∥
∥ ≤ KEε

∥
∥
∑

i

aiεi(|θi | + 1)χi
∥
∥

≤ KEε

∥
∥
∑

i

aiεi |θi |χi
∥
∥+KEε

∥
∥
∑

i

aiεiχi
∥
∥ . (7.54)

21 Also called a coupling.
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Now, we assume in (7.51) that E|θi | ≥ 1/K and it then follows from (7.48) that
E
∥
∥∑

i aiεiχi
∥
∥ ≤ KE

∥
∥∑

i aiθiχi
∥
∥. Finally since (ξi) are independent symmetric,

the sequences (ξi) and (εi|ξi |) have the same distribution (and similarly for θi) so
that taking expectation in (7.54) finishes the proof. �

7.5 Statement of Main Results

7.5.1 General Setting

In the rest of this chapter, we complete the program outlined in Sect. 7.2 of finding
upper and lower bounds of the same order for the quantities ‖∑i ξiχi‖ where χi
are characters and ξi are independent symmetric r.v.s. (Let us stress that no moment
conditions whatsoever are now required on the variables ξi .) As a consequence
we obtain necessary and sufficient conditions for the convergence of random
Fourier series in a very general setting (and in particular the series (7.2)). These
characterizations are in essence of the same nature as the results of Marcus and
Pisier. Unfortunately this means that it is not always immediate to apply them in
concrete situations, but we will illustrate at length how this can be done. Fulfilling
this program requires a key conceptual advance compared to the work of Sect. 7.3.2:
the idea of “families of distances”, which is one of the central themes of this work.

We will consider random sums of functions on T which are more general than the
sums

∑
i ξiχi (where the ξi are independent symmetric r.v.s) which we have been

considering up to this point. This extra generality offers no difficulty whatsoever
while covering other interesting situations, such as the case of “harmonizable
infinitely divisible processes” to be considered in Chap. 12.

We describe our setting now. We assume as in Sect. 7.2 that T is a compact
metrizable Abelian group with Haar measure μ.22 We denote by G is dual group,
i.e., the set of continuous characters on T , and by CG the set of functions of the
type aχ where a ∈ C and χ ∈ G.23

Consider independent r.v.s Zi valued in CG, so that Zi is a random function on
T . The crucial property is

∀ s, t ∈ T , |Zi(s)− Zi(t)| = |Zi(s − t)− Zi(0)| , (7.55)

which holds since it holds for characters by (7.8).
Our purpose is to study random trigonometric sums of the type

∑
i εiZi where εi

are independent Bernoulli r.v.s, independent of the Zi . This amounts to considering

22 It requires only simple changes to treat the case where T is only locally compact and not
necessarily metrizable.
23 Please note that CG is not a vector space!



224 7 Random Fourier Series and Trigonometric Sums

sums of the type
∑

i Zi where the r.v.s Zi are independent symmetric.24 We set

Xt =
∑

i

εiZi(t) . (7.56)

In particular we aim to study the r.v.

sup
t∈T

|Xt | =
∥
∥
∑

i

εiZi

∥
∥ , (7.57)

where ‖ · ‖ denotes the supremum norm in the space of continuous functions on T

and specifically to find “upper and lower bounds” on this r.v.
Recalling that 1 denotes the character everywhere equal to 1, in order to avoid

trivial situations, we always assume the following:

∀ i , Zi �∈ C1 a.s. (7.58)

This exactly corresponds to our condition (7.31) of assuming χi �= 1 in the
preceding section.

To give a concrete example, let us consider characters χi with χi �= 1 and real-
valued symmetric r.v.s ξi , only finitely many of which are not 0. The r.v.s Zi = ξiχi
are valued in CG, independent symmetric (since it is the case for the r.v.s ξi ), so that
the quantity (7.57) reduces to

∥
∥
∑

i

εiξiχi
∥
∥ . (7.59)

We provided a partial answer to the question of bounding from above the
quantity (7.59) in Sect. 7.3.2 under the condition that Eξ2

i <∞ for each i. However
the r.v.s ξi might have “fat tails”, and it will turn out that the size of these tails
governs the size of the quantity (7.59). The results we will prove allow to control
the quantity (7.59) without assuming that Eξ2

i <∞.
The leading idea of our approach is to work conditionally on the r.v.s Zi . We will

detail later how this is done (following the procedure described on page 214), but
the point is simple: when we fix the points Zi ∈ CG, then Zi = aiχi where ai is
a given (=nonrandom) number and χi is a given (=nonrandom) character. This is
the essential property of the Zi . In this manner we basically reduce the study of the
general sums

∑
i εiZi to the study of the much simpler sums

∑
i εiaiχi (but this

reduction is by no means routine).

24 We refer the reader to, e.g., Proposition 8.1.5 of [33] for a detailed study of a “symmetrization
procedure” in the setting of random Fourier series, showing that the symmetric case is the important
one.
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This is how we will obtain lower bounds, using (7.44). Upper bounds are more
delicate. We originally discovered our upper bounds using chaining, but we will
present a simpler argument (which is somewhat specific to random Fourier series).

We end this section by commenting a bit on what the random function Zi valued
in CG looks like. By definition of CG, we have Zi = ξiχi where ξi is a complex-
valued r.v. and χi is a random character, but we do not assume that ξi and χi are
independent r.v.s. Since for a character χ we have χ(0) = 1, we simply have ξi =
Zi(0). Let us describe the situation more precisely.25 Since we assume that T is
metrizable, its dual group G is countable (as follows from Lemma 7.3.6 and the
fact that L2(T , μ) is separable). Recalling that 1 denotes the character equal to 1
everywhere26 we can enumerate G \ {1} as a sequence (χ�)�≥1, and (7.58) implies
that a.s. we have Zi ∈ ∪�Cχ�. Unless Zi = 0, there is a unique � ≥ 1 such
that Zi ∈ Cχ�. Therefore Zi = ∑

�≥1 Zi1{Zi∈Cχ�}. When Zi ∈ Cχ� we have
Zi = Zi(0)χ�, so that we have the expression

Zi =
∑

�≥1

ξi,�χ� , (7.60)

where

ξi,� = Zi(0)1{Zi∈Cχ�} .

The important point in (7.60) is that the r.v.s (ξi,�)�≥1 “have disjoint support”: if
� �= �′ then ξi,�ξi,�′ = 0 a.s, so for any realization of the randomness, in the sum
Zi =∑�≥1 ξi,�χ�, there is at most one non-zero term.

7.5.2 Families of Distances

We expect that a control from above of the quantity (7.57) implies a kind of
smallness of T . But smallness with respect to what? An obvious idea would be
to consider the distance defined by

d(s, t)2 =
∑

i

E|Zi(s)− Zi(t)|2 . (7.61)

Unfortunately such a formula gives too much weight to the large values of Zi . To
remove the influences of these large values, we need to truncate. At which level
should we truncate? As you might guess, there is no free lunch, and we need to
consider truncations at all possible levels. That is, for s, t ∈ T and u ≥ 0, we

25 This description will not be used before Sect. 7.9.
26 Which happens to be the unit of G.
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consider the quantities

ϕ(s, t, u) =
∑

i

E(|u(Zi(s)− Zi(t))|2 ∧ 1) , (7.62)

where x ∧ 1 = min(x, 1).27 Given a number r ≥ 2, for j ∈ Z, we define

ϕj(s, t) = ϕ(s, t, rj ) =
∑

i

E(|rj (Zi(s)− Zi(t))|2 ∧ 1) . (7.63)

Thus, ϕj is the square of a translation-invariant distance on T . The “family of
distances”28 (ϕj ) is appropriate to estimate the quantity (7.57). For the purposes
of this section, it suffices to consider the case r = 2. Other values of r are useful
for related purposes, so for consistency we allow the case r > 2 (which changes
nothing to the proofs). We observe that ϕj+1 ≥ ϕj .

The concept of family of distances may be disturbing at first, but once one gets
used to it, it is not any harder than working with one single distance. There is a
foolproof rule:

To make sense of a statement involving a family of distances,

pretend that ϕj (s, t) = r2j d(s, t)2 for a given distance d . (7.64)

To motivate this rule, observe that if we should disregard the truncation in (7.62)
by (7.61), we would have indeed ϕj (s, t) = r2jd(s, t)2.

It is clear at least since we stated Theorem 2.7.14 that families of distances
will be relevant in bounding stochastic processes. One may ask then if there is
a simple way to understand why the family of distances (7.63) is relevant here.
This will become apparent while going through the mechanism of the proofs,
but we can already stress some features. The right-hand side of (7.63) is the
expected value of a sum of an independent family of positive r.v.s, all bounded
by 1. Elementary considerations show that such sums are strongly concentrated
around their expectations (as expressed in Lemma 7.7.2). Taking advantage of that
fact alone, we have a control (either from above or from below) of the size of
T as measured in an appropriate way by the family of distances (7.63); we will
show that for the typical choice of the randomness of the Zi , we also have a
similar control of the size of T for the family of random distances ψj given by
ψj(s, t) =∑i |rj (Zi(s) − Zi(t))|2 ∧ 1. In this manner we really reduce the entire
problem of studying random trigonometric sums to the case of the sums

∑
i εiaiχi .

27 As you notice, writing (7.62) is not the most immediate way to truncate, but you will understand
soon the advantages of using this formulation.
28 This is a very dumb name since they are not distances but squares of distances and since it is
more a sequence than a family. I am not going to change it.
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It is also apparent how to produce lower bounds. Recalling that when we work
given the Zi these are of the type aiχi , this is based on the obvious fact

ψj(s, t) =
∑

i

|rj (Zi(s)−Zi(t))|2∧ 1 =
∑

i

|rj ai(χi(s)−χi(t)|2 ≤ r2j d(s, t)2 ,

where d(s, t)2 =∑i |ai(χi(s) − χi(t)|2 is the distance (7.14). We can then expect
that lower bounds on the family ψj (s, t) will produce lower bounds on the distance
d and in turn through (7.44) lower bounds on the random trigonometric sum∑

i εiaiχi .
It is far less apparent why the distances ψj(s, t) also suffice to obtain upper

bounds, and we have no magic explanation to offer here. We know two very different
proofs of this fact, and neither of them is very intuitive. Let us only observe that in
writing (7.62) we disregard some information about the large values of Zi , but we
will control these large values simply because there are very few of them (a finite
number in the setting of infinite series).

7.5.3 Lower Bounds

Our first result is a lower bound for the sum ‖∑i εiZi‖ (although it will not be
immediately obvious that this is a lower bound).

Theorem 7.5.1 There exists a universal constant α0 with the following property.
Assume that for some M > 0 we have

P
(∥
∥
∑

i

εiZi

∥
∥ ≥ M

)
≤ α0 . (7.65)

Then for n ≥ 0 we can find numbers jn ∈ Z such that29

∀ s, t ∈ T , ϕj0(s, t) ≤ 1 (7.66)

and that for each n ≥ 1

μ({s ; ϕjn(s, 0) ≤ 2n}) ≥ 2−2n = N−1
n . (7.67)

29 The number 1 in the right-hand side of (7.66) does not play any special role and can be replaced
by any other constant > 0.
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for which

∑

n≥0

2nr−jn ≤ KM . (7.68)

For a first understanding of this result, recall that ϕj ≤ ϕj+1 so that the
conditions (7.66) and (7.67) are easier to satisfy for small values of the jn. On the
other hand, (7.68) states that we can satisfy these conditions by values of the jn
which are not too small.

Conditions (7.66) and (7.67) are very important, and it is extremely useful to
consider the largest integers which satisfy them. Throughout this chapter, when
dealing with trigonometric sums, we will use the notation

j̄0 = sup
{
j ∈ Z ; ∀s, t ∈ T ; ϕj (s, t) ≤ 1

} ∈ Z ∪ {∞} . (7.69)

This definition makes sense because the set on the right is never empty. Indeed,
since |Zi(t)| = |Zi(0)|,

ϕj (s, t) ≤ E
∑

i

|2rjZi(0)|2 ∧ 1 ,

and since the sum is finite, it follows from dominated convergence that the limit
of the right-hand side as j → −∞ is zero, and thus there exists j for which
sups,t∈T ϕj (s, t) ≤ 1. Similarly for n ≥ 1, we define

j̄n = sup
{
j ∈ Z ; μ({s ; ϕj (s, 0) ≤ 2n}) ≥ 2−2n = N−1

n

} ∈ Z∪{∞} . (7.70)

One may like to think of r−j̄0 as a substitute for the diameter of T and as 2n/2r−j̄n
as a substitute for the entropy number en (as will become gradually apparent). We
can now make clear why Theorem 7.5.1 is a lower bound.

Corollary 7.5.2 There exists a universal constant α0 > 0 such that

P
(∥
∥
∑

i

εiZi

∥
∥ >

1

K

∑

n≥0

2nr−j̄n
)
≥ α0 , (7.71)

where K depends on r only.

Proof Set M = (2K0)
−1∑

n≥0 2nr−j̄n where K0 the constant of (7.68). Assume
for contradiction that (7.65) holds, and consider the numbers jn provided by
Theorem 7.5.1 so that jn ≤ j̄n and

K0M = 1

2

∑

n≥0

2nr−j̄n <
∑

n≥0

2nr−jn .

This contradicts (7.68), proving that (7.65) does not hold, so that (7.71) holds. �
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Let us note the following consequence of (7.71) and (2.7):

1

K

∑

n≥0

2nr−j̄n ≤ E
∥
∥
∑

i

εiZi

∥
∥ . (7.72)

To understand the nature of the sum
∑

n≥0 2nr−j̄n , let us apply the strat-
egy (7.64), assuming that ϕj (s, t) = r2j d(s, t)2. Then

j̄n = sup
{
j ∈ Z ; μ({s ; d(s, 0) ≤ 2n/2r−j }) ≥ N−1

n

}
,

and thus if εn is defined as in (7.3), we see that 2n/2r−j̄n � εn, so that 2nr−j̄n �
εn2n/2.

The quantity
∑

n≥0

2nr−j̄n appears as the natural substitute

for the familiar entropy integral
∑

n≥0

εn2n/2 . (7.73)

In (7.69), in the condition ϕj (s, t) ≤ 1 the number 1 can be replaced by any other
provided of course that one changes the constant in (7.71). On page 232 the reader
will find a computation of the quantity

∑
n≥0 2nr−j̄n in some simple cases.

It is important to understand the next example and its consequences.

Exercise 7.5.3 Assume that
∑

i P(|Zi | �= 0) ≤ 1. Prove that j̄n = ∞ for each n

and that (7.71) brings no information.

It would be a devastating misunderstanding to conclude from this example
that (7.71) is a “weak result”. The real meaning is more subtle: (7.71) does not
bring much information on certain sums, but these are of a very special type. The
decomposition theorem (Theorem 7.5.14) states that a general random trigonometric
sum is the sum of two pieces. For one of these (7.71) captures exact information,
and the other piece is of a very special type. This will be a feature of our main
results in Chap. 11.

One of the main results of Chap. 11 will be a considerable generalization of (7.72)
to a setting where there is no translation invariance. Then we will not be able to use
covering numbers (as is being done in a sense in (7.72)). The next exercise will help
you understand the formulation we will adopt there.

Exercise 7.5.4

(a) Prove that for s, t, u ∈ T and any j , we have

ϕj (s, t) ≤ 2(ϕj (s, u)+ ϕj (u, t)) .
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(b) Consider a subset D of T as assume that for any s ∈ D we have ϕj (s, 0) ≤ d

for a certain number d . Prove that if s and t belong to the same translate of
D −D, we have ϕj (s, t) ≤ 4d .

(c) Prove that under the conditions (7.66)–(7.68), we can find an admissible
sequence (An) of partitions of T with the following property: If n ≥ 1,

s, t ∈ A ∈ An ⇒ ϕjn−1(s, t) ≤ 2n+1 . (7.74)

Hint: Use Exercise 2.7.6 and Lemma 7.1.3.

7.5.4 Upper Bounds

Let us turn to upper bounds. In order to avoid technical statements at this stage,
we will assume that there is enough integrability that the size of ‖∑i εiZi‖ can be
measured by its expectation E‖∑i εiZi‖.30 Corollary 7.5.2 states that the typical

value of ‖∑i εiZi‖ controls from above the “entropy integral”
∑

n≥0 2nr−j̄n . In
the reverse direction, since the quantities j̄n say nothing about the large values of
Zi , we cannot expect that the “entropy integral”

∑
n≥0 2nr−j̄n will control the tails

of the r.v. ‖∑i εiZi‖. However, as the following expresses, we control the size of

‖∑i εiZi‖ as soon as we control the “entropy integral”
∑

n≥0 2nr−j̄n and the size
of the single r.v.

∑
i εiZi(0).

Theorem 7.5.5 For n ≥ 0 consider numbers jn ∈ Z, which satisfy (7.66)
and (7.67). Then, for any p ≥ 1, we have

(
E
∥
∥
∑

i

εiZi

∥
∥p
)1/p ≤ K

(∑

n≥0

2nr−jn +
(
E
∣
∣
∑

i

εiZi(0)
∣
∣p
)1/p

)

, (7.75)

where K depends only on r and p.

Of course in (7.75), the larger jn, the better bound we get. The best bound is obtained
for jn = j̄n.

7.5.5 Highlighting the Magic of Theorem 7.5.5

The key to Theorem 7.5.5 is the case where Zi = aiχi is a constant multiple
of a nonrandom character. We investigated this situation in detail in Sect. 7.4, but
Theorem 7.5.5 provides crucial new information, and we explain this now. In that

30 More general statements which assume no integrability will be given in Sect. 7.8.



7.5 Statement of Main Results 231

case, the function ϕj of (7.63) are given by

ϕj (s, t) =
∑

i

|rj ai(χi(s)− χi(t))|2 ∧ 1 . (7.76)

Thus, assuming the conditions (7.66) and (7.67) and using (7.75) for p = 1 yields
the bound

E
∥
∥
∑

i

aiεiχi
∥
∥ ≤ K

∑

n≥0

2nr−jn +K
(∑

i

|ai|2
)1/2

. (7.77)

Consider the distance d of (7.22), given by d(s, t)2 = ∑i≥1 |ai |2|χi(s) − χi(t)|2,
and define

εn = inf
{
ε > 0 ; μ(Bd(0, ε)) ≥ N−1

n

}
. (7.78)

It then follows from (7.44) and (7.4) that

1

K

∑

n≥0

2n/2εn ≤ E
∥
∥
∑

i

aiεiχi
∥
∥ ≤ K

∑

n≥0

2n/2εn . (7.79)

We have reached here a very unusual situation: it is by no means obvious to compare
the upper bounds in (7.77) and (7.79). In particular, combining these inequalities we
reach the following:

∑

n≥0

2n/2εn ≤ K
∑

n≥0

2nr−jn +K
(∑

i

|ai |2
)1/2

, (7.80)

where K depends on r only, but we do not know how to give a direct proof of this
inequality. The quantities appearing in this inequality involve only characters and
complex numbers. There are no random variables involved, so why should one use
random trigonometric sums to prove it?

Research Problem 7.5.6 Find a proof of (7.80) which does not use random
trigonometric sums.

While the inequality (7.80) is mysterious, the reverse inequality is very clear.
First, we proved in Sect. 7.3.3 (assuming χi �= 1 for each i) that

∑
i |ai |2 ≤

LΔ(T , d)2 = Lε2
0 . Next, keeping (7.32) in mind, we prove that

∑

n≥0

2nr−j̄n ≤ K
∑

n≥0

2n/2εn . (7.81)
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When j̄n is finite, we have

μ({s ∈ T ; ϕj̄n+1(s, 0) ≤ 2n}) < N−1
n . (7.82)

Since obviously ϕj (s, t) ≤ r2j d(s, t)2 we have

Bd(0, 2n/2r−j̄n−1) ⊂ {s ∈ T ; ϕj̄n+1(s, 0) ≤ 2n} .

Combining with (7.82) and (7.78), this proves that 2n/2r−j̄n−1 ≤ εn and (7.81).
In summary of this discussion, we could argue that even though in retro-

spect (7.77) does not improve on (7.79), it is a better inequality, because it is quite
obvious that its right-hand side is of smaller order than the right-hand side of (7.79),
whereas the opposite is absolutely not obvious.

Exercise 7.5.7 Assume that ϕj (s, t) < 1 for each s, t ∈ T and that χi �= 1 for all
i. Prove that

∑
i a

2
i ≤ r−2j /2.

7.5.6 Combining Upper and Lower Bounds

We can combine Corollary 7.5.2 and Theorem 7.5.5 to provide upper and lower
bounds for (E‖∑i εiZi‖p)1/p that are of the same order. Let us state the result in
the case of (7.59). From now on, K denotes a number that depends only on r and p

and that need not be the same on each occurrence.

Theorem 7.5.8 Assume that the r.v.s ξi are independent symmetric. If the numbers
j̄n are as in (7.69) and (7.70), then, for each p ≥ 1,

1

K

(∑

n≥0

2nr−j̄n +
(
E
∣
∣
∑

i

ξi
∣
∣p
)1/p) ≤

(
E
∥
∥
∑

i

ξiχi
∥
∥p
)1/p

≤ K
(∑

n≥0

2nr−j̄n +
(
E
∣
∣
∑

i

ξi
∣
∣p
)1/p)

. (7.83)

Not the least remarkable feature of this result is that it assumes nothing (beyond
independence and symmetry) on the r.v.s ξi .

7.5.7 An Example: Tails in u−p

Explicit examples of application of these abstract theorems will be given in
Sect. 7.12, but right away we illustrate Theorem 7.5.8 in some cases (investigated
first by M. Marcus and G. Pisier [62]): having upper and lower bounds which hold
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in great generality unfortunately does not mean that it is always obvious to relate
them to other known bounds. We consider complex numbers ai and the distance dp
on T defined by

dp(s, t)
p =

∑

i

|ai(χi(s)− χi(t))|p . (7.84)

Proposition 7.5.9 Consider symmetric r.v.s θi which satisfy for certain numbers
1 < p < 2 and C > 0 and for all u ≥ 0

P(|θi | ≥ u) ≤ Cu−p . (7.85)

Assume that ξi = aiθi . Then we have

∑

n≥0

2nr−j̄n ≤ Kγq(T , dp) . (7.86)

Here we use the notation of Corollary 7.5.2, K denotes a constant depending only
on C, r and p, and 1/p+ 1/q = 1. The point of (7.86) is that it relates the quantity
∑

n≥0 2nr−j̄n with the more usual quantity γq(T , dp). The proof depends on two
simple lemmas.

Lemma 7.5.10 Under (7.85) for any j ∈ Z we have

ϕj (s, t) ≤ Krjpdp(s, t)
p . (7.87)

Proof Using (7.85) in the second line we obtain that for v �= 0,

E(|vθi |2 ∧ 1) =
∫ 1

0
P(|vθi |2 ≥ t)dt =

∫ 1

0
P
(
|θi| ≥ t1/2

|v|
)

dt

≤
∫ 1

0
C
|v|p
tp/2 dt = K|v|p . (7.88)

Since ξi = aiθi this implies E(|rj ξi (χi(s)−χi(t))|2∧1) ≤ Krjp|ai(χi(s)−χi(t))|p
and summation over i yields the result. �
Lemma 7.5.11 Consider for n ≥ 0 the numbers εn as in Theorem 7.1.1, for the
distance dp, i.e., εn = inf{ε > 0;μ({s; dp(s, 0) ≤ ε})} ≥ N−1

n . Then

2n/pr−j̄n ≤ Kεn . (7.89)

Proof We may assume that j̄n < ∞. Since {s; dp(s, 0) ≤ 2n/pr−j̄n/K} ⊂
{s; ϕj̄n+1(s, 0) ≤ 2n} and since μ({s; ϕj̄n+1(s, 0) ≤ 2n}) < N−1

n , we have

μ({s; dp(s, 0) ≤ 2n/pr−j̄n/K}) < N−1
n so that 2n/pr−j̄n/K ≤ εn. �



234 7 Random Fourier Series and Trigonometric Sums

Proof of Proposition 7.5.9 Consider for n ≥ 0 the numbers εn as above, so that

∑

n≥0

εn2n/q ≤ Kγq(T , dp)

by (7.6). The result follows by (7.89). �
Exercise 7.5.12 Use (7.83) (taking p = 1 there) to prove that when χi �= 1 for
each i then

E
∥
∥
∑

i

aiθiχi
∥
∥ ≤ Kγq(T , dp) . (7.90)

Hint: You have to prove that E|∑i aiθi | ≤ K(
∑

i |ai|p)1/p and (
∑

i |ai |p)1/p ≤
KΔ(T , dp). The first inequality is elementary but rather tricky, and the second uses
the methods of Sect. 7.3.3.

The following is a kind of converse to (7.90):

Proposition 7.5.13 Consider 1 < p < 2 and its conjugate number q . Consider
independent symmetric r.v.s (θi), and assume that for some constant C and all i, we
have

u ≥ C ⇒ P(|θi | ≥ u) ≥ 1

Cup
. (7.91)

Assume also that χi �= 1 for each i. Then

γq(T , dp) ≤ KE
∥
∥
∑

i

aiθiχi
∥
∥ , (7.92)

where K depends only on C.

Magic proof of Proposition31 7.5.13 This proof uses the concept of p-stable r.v.
which was described in Sect. 5.1. Consider an i.i.d. sequence (ξi) of p-stable r.v.s ξi
with E|ξi | = 1. It is then known that P(|ξi | ≥ u) ≤ Ku−p for u > 0 so that (7.50)
holds, and therefore (7.52) holds. Now, Theorem 5.2.1 asserts that γq(T , dp) ≤
KE‖∑i ξiχi‖, and combining with (7.52) this finishes the proof. �

In Sect. 7.11 we give an arguably more natural proof which does not use p-stable
r.v.s.

7.5.8 The Decomposition Theorem

In this section we go back to the theme started in Sect. 6.8. We will prove
later, in Theorem 11.10.3, that under rather general circumstances, a random
series can be decomposed into two pieces, one of which can be controlled by

31Please see the comments about this proof in Sect. 7.14.
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chaining and one which can be controlled by ignoring cancellations between the
terms of the series. This theorem applies in particular in the case of the random
trigonometric sums we are considering here.32 Unfortunately, the two terms of the
decomposition of a random trigonometric sum constructed in Theorem 11.10.3 are
not themselves random trigonometric sums. The following asserts that we can obtain
a similar decomposition where the two terms of the decomposition are themselves
random trigonometric sums. To understand this result, the reader should review
Theorem 6.2.8, which is of a strikingly similar nature (but much more difficult).

Theorem 7.5.14 Consider independent r.v.s Zi valued in CG, and assume (7.58).
Set S = E‖∑i εiZi‖. Then there is a decomposition Zi = Z′i + Z′′i , where both
Z′i and Z′′i are in CG, where each of the sequences (Z′i ) and (Z′′i ) is independent,33

and satisfy

E
∑

i

|Z′i (0)| ≤ LS (7.93)

and

γ2(T , d) ≤ LS , (7.94)

where the distance d is given by d(s, t)2 =∑i E|Z′′i (s)− Z′′i (t)|2. Furthermore in
the case of usual random trigonometric sums, when Zi = ξiχi , the decomposition
takes the form Z′i = ξ ′i χi and Z′′i = ξ ′′i χi .

In the case of usual random series, this decomposition witnesses in a transparent way
the size of S = E‖∑i ξiχi‖. Indeed, (7.93) makes it obvious that E‖∑i ξ

′
i χi‖ ≤

LS, whereas (7.33) and (7.94) imply that E‖∑i ξ
′′
i χi‖ ≤ Lγ2(T , d) ≤ LS. The

argument works just the same in general, as the following shows:

Exercise 7.5.15 Generalize (7.23) to the case of sums
∑

i εiZi . That is, prove that

E
∥
∥
∑

i

εiZi

∥
∥ ≤ Lγ2(T , d)+ L

(∑

i

|Zi(0)|2
)1/2

where

d(s, t)2 =
∑

i

|Zi(s)− Zi(t)|2 .

32 The main ingredient of the proof in the case of random trigonometric series is Theorem 7.5.1
which is far easier than the corresponding result Theorem 11.7.1 in the general case.
33 But the sequences are not independent of each other.
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7.5.9 Convergence

We state now our convergence theorems. We consider independent r.v.s (Zi)i≥1 with
Zi ∈ CG and independent Bernoulli r.v.s εi independent of the randomness of the
Zi . Throughout this section we say that the series

∑
i≥1 εiZi converges a.s. if it

converges a.s. in the Banach space of continuous functions on T provided with the
uniform norm.34 We also recall that we assume (7.58).

Theorem 7.5.16 The series
∑

i≥1 εiZi converges a.s. if and only if the following
occurs: There exists j0 such that

∀ s, t ∈ T ,
∑

i≥1

E(|rj0(Zi(s)− Zi(t))|2 ∧ 1) ≤ 1 , (7.95)

and for n ≥ 1 there exists jn ∈ Z for which

μ
({

s ∈ T ;
∑

i≥1

E(|rjn(Zi(s)− Zi(0))|2 ∧ 1) ≤ 2n
})
≥ 1

Nn

, (7.96)

such that

∑

n≥0

2nr−jn <∞ . (7.97)

Moreover, when these conditions are satisfied, for each p ≥ 1 we have

E
∥
∥
∑

i≥1

εiZi

∥
∥p <∞⇔ E

∣
∣
∑

i≥1

εiZi(0)
∣
∣p <∞ .

We have also the following, less concrete but more spectacular:

Theorem 7.5.17 The series
∑

i≥1 εiZi converges almost surely if and only if one

may find a decomposition Zi = Z1
i + Z2

i + Z3
i with the following properties. First,

each of the sequences (Z�
i ) for � = 1, 2, 3 is independent and valued in CG. Next

∑

i≥1

P(Z1
i �= 0) <∞ , (7.98)

∑

i≥1

E|Z2
i (0)| <∞ , (7.99)

γ2(T , d) <∞ , (7.100)

34 This is the most natural notion of convergence. A classical theorem of Billard (see [40, Theorem
3, p. 58]) relates different notions of convergence of a random Fourier series.
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where the distance d is given by d(s, t)2 =∑i≥1 E|Z3
i (s)−Z3

i (t)|2. Furthermore,
when Zi = ξiχi there exists a decomposition ξi = ξ1

i + ξ2
i + ξ3

i such that for � ≤ 3
we have Z�

i = ξ�i χi .

The necessary conditions and the sufficient conditions stated in the next theorem
are due to Marcus and Pisier [62] and were known much before the more general
Theorem 7.5.16. We will show how to deduce them from that result.35

Theorem 7.5.18

(a) For i ≥ 1 consider characters χi and numbers ai . Then the series
∑

i≥1 aiεiχi
converges almost surely if and only if γ2(T , d2) < ∞ where d2 the distance
given by

d2(s, t)
2 =

∑

i≥1

|ai|2|χi(s)− χi(t)|2 . (7.101)

(b) Consider independent symmetric r.v.s (θi)i≥1 and numbers (ai)i≥1. Consider a
number 1 < p < 2 and the distance dp on T given by

dp(s, t)
p =

∑

i≥1

|ai|p|χi(s)− χi(t)|p . (7.102)

Assuming that the r.v.s (θi)i≥1 satisfy (7.85) then if γq(T , dp) <∞ (where q is
the conjugate exponent of p), the series

∑
i≥1 aiθiχi converges a.s.

(c) With the same notation as in (b) if the r.v.s (θi)i≥1 satisfy (7.92) and if the series∑
i≥1 aiθiχi converges a.s., then γq(T , dp) <∞.

7.6 A Primer on Random Sets

The purpose of the present section is to bring forward several very elementary facts
which will be used on several occasions in the rest of the present chapter and
Chap. 11. As these facts will be part of non-trivial proofs, it may help the reader
to meet them first in their simplest setting. We consider a probability space (T , μ)

and a random subset Tω of T where we symbolize the randomness by a point ω
in a certain probability space Ω . We are mostly interested in the case where these
random subsets are typically very small. (Going to complements this also covers
the case where the complements of these sets are very small.) We assume enough
measurability, and for s ∈ T we define

p(s) = P(s ∈ Tω) .

35 Unfortunately, this is not entirely obvious.
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Lemma 7.6.1 We have

Eμ(Tω) =
∫

T

p(s)dμ(s) .

Proof This is simply Fubini’s theorem. Consider the set Θ = {(s, ω); s ∈ Tω} ⊂
T ×Ω . Then

μ⊗ P(Θ) =
∫

T

P(s ∈ Tω)dμ(s) =
∫

T

p(s)dμ(s)

and also

μ⊗ P(Θ) =
∫

Ω

μ(Tω)dP(ω) = Eμ(Tω) . �

The following result quantifies that Eμ(Tω) is small if p(s) is typically small:

Lemma 7.6.2 Consider a subset A of T and assume that for a certain ε > 0 we
have s �∈ A⇒ p(s) ≤ ε. Then

Eμ(Tω) ≤ μ(A)+ ε . (7.103)

Proof Since p(s) ≤ 1 for any s ∈ T and p(s) ≤ ε for s ∈ Ac, we have

∫

T

p(s)dμ(s) =
∫

A

p(s)dμ(s)+
∫

Ac

p(s)dμ(s) ≤ μ(A)+ ε . �

We will use this result when ε is overwhelmingly small, say ε = 1/Nn. In that case
we will be able to show that μ(Tω) is small with overwhelming probability simply
by using Markov’s inequality as in the following:

Lemma 7.6.3 Assume that for some ε > 0, there is a subset A of T with μ(A) ≤ ε

and p(s) ≤ ε for s �∈ A. Then

P(μ(Tω) ≥ 2
√
ε) ≤ √ε .

Proof Indeed Eμ(Tω) ≤ 2ε by Lemma 7.6.2, and the conclusion by Markov’s
inequality.

�

Generally speaking, the use of Fubini’s theorem in the present situation is often
precious, as in the following result:

Lemma 7.6.4 Let c = Eμ(Tω). Then for b < c we have

P(μ(Tω) ≥ b) ≥ c − b

1− b
.
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Proof Denoting by Ω0 the event μ(Tω) ≥ b we write (using also that μ(Tω) ≤ 1)

c = Eμ(Tω) = E1Ω0μ(Tω)+ E1Ωc
0
μ(Tω) ≤ P(Ω0)+ b(1− P(Ω0)) . �

Exercise 7.6.5 Consider numbers 0 < b, c ≤ 1, a set T and a probability measure
μ on T . For each t ∈ T consider an event Ξt with P(Ξt ) ≥ c. Then the event Ξ
defined by μ({t;ω ∈ Ξt }) ≥ b satisfies P(Ξ) ≥ (c − b)/(1− b).

7.7 Proofs, Lower Bounds

As we already explained, the main idea is to work given the r.v.s Zi . The way
to explain the proof strongly depends on whether one assumes that the reader
has internalized the basic mechanisms of dealing with two independent sources of
randomness or whether one does not make this assumption. Trying to address both
classes of readers, we will give full technical details in the first result where the two
sources of randomness really occur, Lemma 7.7.5.36

Let us define the distance dω(s, t) on T by

dω(s, t)
2 =

∑

i

|Zi(s)− Zi(t)|2 . (7.104)

This distance depends on the random quantities Zi , so it is a random distance. Here
and in the rest of the chapter, the letter ω symbolizes the randomness of the Zi , so
an implicit feature of the notation dω(s, t) is that this distance depends only on the
randomness of the Zi but not on the randomness of the εi . One should form the
following mental picture: working given the r.v.s Zi means working at a fixed value
of ω.

Our goal now is to control γ2(T , dω) from below.37 The plan is to control dω
from below and to show that consequently the balls with respect to dω are small.
The basic estimate is as follows:

Lemma 7.7.1 Assume that for a certain j ∈ Z, the point s ∈ T satisfies

ϕj+1(s, 0) ≥ 2n . (7.105)

36 The mathematics involved are no more complicated than Fubini’s theorem.
37 This quantity involves only the randomness of the Zi .
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Then

P(dω(s, 0) ≤ 2n/2−1r−j−1) ≤ P
(∑

i

|rj+1(Zi(s)− Zi(0))|2 ∧ 1 ≤ 2n−2
)

≤ N−1
n−2 . (7.106)

The first inequality is obvious from the definition (7.104) of dω since when
dω(s, 0) ≤ r−j−12n/2−1 we have

∑
i |rj+1(Zi(s) − Zi(0))|2 ≤ 2n−2. The proof

of the second inequality requires elementary probabilistic inequalities to which we
turn now.38 These estimates will be used many times.

Lemma 7.7.2 Consider independent r.v.s (Wi)i≥1, with 0 ≤ Wi ≤ 1.

(a) If 4A ≤∑i≥1 EWi , then

P
(∑

i≥1

Wi ≤ A
)
≤ exp(−A) .

(b) If A ≥ 4
∑

i≥1 EWi , then

P
(∑

i≥1

Wi ≥ A
)
≤ exp

(
− A

2

)
.

Proof

(a) Since 1− x ≤ e−x ≤ 1− x/2 for 0 ≤ x ≤ 1, we have

E exp(−Wi) ≤ 1− EWi

2
≤ exp

(
− EWi

2

)

and thus

E exp
(
−
∑

i≥1

Wi

)
≤ exp

(
− 1

2

∑

i≥1

EWi

)
≤ exp(−2A) .

We conclude with the inequality P(Z ≤ A) ≤ expA E exp(−Z).
(b) Observe that 1+ x ≤ ex ≤ 1+ 2x for 0 ≤ x ≤ 1, so, as before,

E exp
∑

i≥1

Wi ≤ exp 2
∑

i≥1

EWi ≤ exp
A

2

and we use now that P(Z ≥ A) ≤ exp(−A)E expZ. �

38 Much more general and sharper results exist in the same direction, but the simple form we
provide suffices for our needs.
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Proof of Lemma 7.7.1 Let Wi = |rj+1(Zi(s) − Zi(0))|2 ∧ 1 and A = 2n−2.
Then

∑
i EWi = ϕj+1(s, 0) ≥ 2n = 4A. The result then follows from

Lemma 7.7.2(a). �
We can now give the central argument.

Lemma 7.7.3 With probability ≥ 1/2 it occurs that

∑

n≥5

2nr−j̄n ≤ Lrγ2(T , dω) . (7.107)

The idea is very simple. Assuming j̄n <∞, if a point s ∈ T satisfies

ϕj̄n+1(s, 0) ≥ 2n , (7.108)

(7.106) shows that for most of the choices of the randomness of ω it holds that
dω(s, 0) ≥ 2n/2−1r−j̄n−1. The definition of j̄n shows that all but very few of the
points s satisfy (7.108). Thus for most of the choices of the randomness of the Zi ,
there will be only few points in T which satisfy dω(s, 0) ≤ 2n/2−1r−j̄n−1, and
this certainly contributes to make γ2(T , dω) large. Using this information for many
values of n at the same time carries the day. The magic is that all the estimates fall
very nicely into place.

We now start the proof of Lemma 7.7.3. The sequence (j̄n)n≥0 is obviously non-
decreasing and j̄n = ∞ for n large enough, because since we consider a finite sum,
say of N terms, for any value of j we have ϕj (s, t) ≤ N . There is nothing to prove
if j̄n = ∞ for n ≥ 5, so we may consider the largest integer n0 ≥ 5 such that
j̄n <∞ for n ≤ n0. Then

∑
n≥5 2nr−j̄n =∑5≤n≤n0

2nr−j̄n .

Lemma 7.7.4 For n ≤ n0 the event Ξn defined by

μ
({

s ∈ T ;
∑

i

|rj̄n+1(Zi(s)− Zi(0))|2 ∧ 1 ≤ 2n−2
})

<
1

Nn−3
(7.109)

satisfies P(Ξn) ≥ 1− 2/Nn−3.

Proof We think of n as fixed and we follow the strategy of Lemma 7.6.3 for the set
Tω = {s ∈ T ; ∑i |rj̄n+1(Zi(s) − Zi(0))|2 ∧ 1 ≤ 2n−2}, where ω symbolizes the
randomness of the Zi . That is, we bound Eμ(Tω) and we use Markov’s inequality.

The definition of j̄n implies that the set A = {s ; ϕj̄n+1(s, 0) ≤ 2n} satisfies

μ(A) < N−1
n . (7.110)

Next, if we assume that s �∈ A then

ϕj̄n+1(s, 0) =
∑

i

E(|rj̄n+1(Zi(s)− Zi(0))|2 ∧ 1) ≥ 2n ,
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and by (7.106) it holds that p(s) := P(s ∈ Tω) ≤ 1/Nn−2. Using (7.103) for
ε = 1/Nn−2, we then have

Eμ(Tω) ≤ μ(A)+ ε ≤ 1

Nn

+ 1

Nn−2
<

2

Nn−2
, (7.111)

where we have also used (7.110). Thus, by Markov’s inequality, we haveP(μ(Tω) ≥
1/Nn−3) ≤ 2Nn−3/Nn−2 and then

P(μ(Tω) < 1/Nn−3) ≥ 1− 2Nn−3/Nn−2 = 1− 2/Nn−3 . �

Proof of Lemma 7.7.3 As a consequence of Lemma 7.7.4 the event

Ξ :=
⋂

5≤n≤n0

Ξn (7.112)

satisfies P(Ξc) ≤ ∑
n≥5 P(Ξ

c
n) ≤

∑
n≥5 N

−1
n−3 ≤ 1/2 so that P(Ξ) ≥ 1/2.

Moreover, since

∑

i

|rj̄n+1(Zi(s)− Zi(t))|2 ∧ 1 ≤
∑

i

|rj̄n+1(Zi(s)− Zi(t))|2 = r2j̄n+2dω(s, t)
2 ,

(7.109) yields

μ
({
s ∈ T ; dω(s, 0) ≤ r−j̄n−12n/2−1}) <

1

Nn−3
.

It follows that when Ξ occurs the number εn = εn(ω) as in (7.3) satisfies εn−3(ω) ≥
r−j̄n−12n/2−1. Consequently

∑

5≤n≤n0

2nr−j̄n ≤ Lr
∑

n≥0

2n/2εn(ω) ≤ Lrγ2(T , dω) ,

where we use (7.4) in the last equality. We have proved that (7.107) holds for ω ∈ Ξ

and hence with probability≥ 1/2. �
Lemma 7.7.5 There exists a constant α1 > 0 such that if

P
(∥
∥
∑

i

εiZi

∥
∥ ≥M

)
< α1 ,

then

∑

n≥5

2nr−j̄n ≤ LrM . (7.113)
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This is the first result involving both the randomness of the Zi and the randomness
of the εi . The proof consists in proving the existence of a constant α1 > 0 such that

P
(∥
∥
∑

i

εiZi

∥
∥ ≥ 1

Lr

∑

n≥5

2nr−j̄n
)
≥ α1 . (7.114)

Proof for the Probabilist The inequality (7.114) follows by using (7.7.3) first and
then Lemma 7.4.6 given the r.v.s Zi . �
Proof for the Novice in Probability This proof consists in detailing the mechanism
at hand in the previous argument. We assume as on page 214 that the underlying
probability space is a product Ω × Ω ′, with a product probability P = PZ ⊗ Pε ,
and that if (ω, ω′) is the generic point of this product, then Zi = Zi,ω depends on ω

only and εi = εi,ω′ depends on ω′ only. By Fubini’s theorem, for a set A ⊂ Ω×Ω ′,

P(A) =
∫

Pε({ω′ ∈ Ω ′ ; (ω, ω′) ∈ A})dPZ(ω) .

In particular, for any set B ⊂ Ω we have

P(A) ≥ PZ(B) inf
ω∈B Pε({ω′ ∈ Ω ′ ; (ω, ω′) ∈ A}) . (7.115)

By Lemma 7.7.3 the set B = {ω ∈ Ω;∑n≥5 2nr−j̄n ≤ Lrγ2(T , dω)} satisfies
PZ(B) ≥ 1/2. Using (7.45) at a given value of ω we obtain

Pε

({
ω′ ∈ Ω ′ ; ∥∥

∑

i

εiZi

∥
∥ ≥ 1

L
γ2(T , dω)

}) ≥ 1

L
,

so that for ω ∈ B we have

Pε

({
ω′ ∈ Ω ′ ; (ω, ω′) ∈ A

}) ≥ 1

L
,

where A = {(ω, ω′); ‖∑i εiZi‖ ≥ (1/Lr)
∑

n≥5 2nr−j̄n} and (7.115)
proves (7.114). �

It is unfortunate that in (7.113) the summation starts at n = 5 for otherwise we
would be done. The next result addresses this problem.

Proposition 7.7.6 There exists a constant α2 > 0 with the following property.
Assume that for a certain number M we have

P
(∥
∥
∑

i

εiZi

∥
∥ > M

)
≤ α2 . (7.116)

Then the number j̄0 of (7.69) satisfies r−j̄0 ≤ LrM .
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Lemma 7.7.7 Consider independent complex-valued r.v.s Ui and independent
Bernoulli r.v.s εi that are independent of the r.v.s Ui . Assume that

∑

i≥1

E(|Ui |2 ∧ 1) ≥ 1 . (7.117)

Then

P
(∣
∣
∑

i≥1

εiUi

∣
∣ ≥ 1

L

)
≥ 1

L
. (7.118)

Proof We use Lemma 7.7.2(a) with Wi = |Ui |2 ∧ 1 and A = 1/4 to obtain

P
(∑

i≥1

|Ui |2 ∧ 1 ≥ 1

4

)
≥ 1

L
. (7.119)

Now, (6.16) implies that Pε(|∑i εiUi | ≥ (
∑

i |Ui |2)1/2/L) ≥ 1/L, where Pε

denotes the conditional probability given the randomness of the (Ui)i≥1. Combining
with (7.119) concludes the proof. �
Exercise 7.7.8 Write all details of the previous argument in the spirit of the second
proof of Lemma 7.7.5.

Exercise 7.7.9 Assuming
∑

i≥1 E(|Ui |2 ∧ 1) ≥ β > 0 prove that then
P(|∑i≥1 εiUi | ≥ 1/K) ≥ 1/K where K depends on β only.

Proof of Proposition 7.7.6 Let us denote by L0 the constant of (7.118). We will
show that α2 = 1/L0 works. Since

∣
∣
∣
∑

i

εi(Zi(s)− Zi(t))

∣
∣
∣ ≤ 2

∥
∥
∑

i

εiZi

∥
∥ ,

(7.116) implies

∀ s, t ∈ T , P
(∣
∣
∣
∑

i

εi(Zi(s)− Zi(t))

∣
∣
∣ ≥ 2M

)
≤ P

(
‖
∑

i

εiZi

∥
∥ ≥ M

)
<

1

L0
.

(7.120)

The condition P(|∑i εi(Zi(s)−Zi(t))| ≥ 2M) < 1/L0 means that if we set Ui =
w(Zi(s) − Zi(t)) where w = 1/(2L0M), we have P(

∑
i εiUi ≥ 1/L0) < 1/L0.

Consequently (7.118) fails when Ui = w(Zi(s)−Zi(t)) and therefore Lemma 7.7.7
implies

∀ s, t ∈ T ,
∑

i

E(|w(Zi(s)− Zi(t))|2 ∧ 1) < 1 . (7.121)
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Let j∗ be the largest integer with rj
∗ ≤ w, so that rj

∗+1 > w and thus r−j∗ ≤
r/w ≤ 2L0rM = LrM . Since rj

∗ ≤ w, (7.121) implies

∀ s, t ∈ T , ϕj∗(s, t) < 1 .

Consequently, j̄0 ≥ j∗ and therefore r−j̄0 ≤ r−j∗ ≤ LrM . �
Exercise 7.7.10 Given a number β > 0 prove that there is a number α(β)

depending on β only such that if P(‖∑i≥i εiZi‖ ≥ M) ≥ α(β), there exists j0

with ϕj0(s, t) ≤ β for s, t ∈ T and r−j0 ≤ KM where K depends on β only.

Proof of Theorem 7.5.1 We show that any constant α0 < min(α1, α2) works. Let
us assume that for a certain number M we have

P
(∥
∥
∑

i

εiZi

∥
∥ ≥ M

)
≤ α0 .

It then follows from (7.113) that
∑

n≥5 2nr−j̄n ≤ LrM and from Proposi-

tion 7.7.6 that r−j̄0 ≤ LrM . Since
∑

n≤4 2nr−j̄n ≤ Lr−j̄0 , we have proved that
∑

n≥0 2nr−j̄n ≤ LrM . �

7.8 Proofs, Upper Bounds

7.8.1 Road Map

We are done with the lower bounds. It is not obvious yet, but the arguments for these
lower bounds are potentially very general, and we will meet them later in Chap. 11.
Our goal now is to work toward the upper bounds, proving Theorem 7.5.5. The
crucial case of the result is when the Zi are not random, Zi = aiχi for a complex
number ai and a character χi .

Starting now, the arguments are somewhat specific to random trigonometric sums
and use translation invariance in a fundamental way. Thus, the remainder of this
chapter may be skipped by the reader who is not interested in random Fourier series
per se, although it should certainly be very helpful for the sequel to understand
Theorem 7.5.14 (the decomposition theorem) since similar but far more difficult
results are the object of much later work.

The crucial inequality (7.145) below pertains to the case Zi = aiχi for a complex
number ai and a character χi . The basic mechanism at work in the proof of (7.145)
is a “miniature version” of Theorem 7.5.14. Once we have this inequality, more
general upper bounds we need will be obtained by using it at given values of
the Zi . This is the object of Sect. 7.8.6. We will still need to complement these
bounds by very classical considerations in Sect. 7.8.7 before we can finally prove
Theorem 7.5.8.
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7.8.2 A Key Step

The importance of the following result will only become clear later.

Theorem 7.8.1 Consider characters χi and assume that for a certain subset A of
T and each i we have | ∫

A
χi(s)dμ(s)| ≥ μ(A)/2. Then given numbers ai and

independent standard Gaussian r.v.s gi , we have

E
∥
∥
∑

i

aigiχi
∥
∥ ≤ L

(∑

i

|ai |2
)1/2√log(2/μ(A)) . (7.122)

Having analyzed that this property was central for the decomposition theorem but
being unable to prove it, I submitted this question to Gilles Pisier. He immediately
pointed out that Theorem 7.1 of his paper [86] provides a positive answer in the case
where the ai are all equal. Analysis of the arguments of [86] then easily led to the
proof which we present here. To prove (7.122) we can assume that χi �= 1 for each i

by bounding separately the term where χi = 1. Setting vi =
∫
A χi(s)dμ(s), so that

|vi | ≥ μ(A)/2, we will compare suitable upper and lower bounds for the quantity
E‖∑i aivigiχi‖.

The lower bound is easy. Consider the distances d and d̄ given by d(s, t)2 =∑
i |ai|2|χi(s) − χi(t)|2 and d̄(s, t)2 = ∑

i |aivi |2|χi(s) − χi(t)|2. Then since
|vi | ≥ μ(A)/2 we have d̄(s, t) ≥ μ(A)d(s, t)/2 and thus μ(A)γ2(T , d) ≤
Lγ2(T , d̄).39 Furthermore E‖∑i aigiχi‖ ≤ Lγ2(T , d) by (7.33) and γ2(T , d̄) ≤
LE‖∑i aivigiχi‖ by (7.13). Consequently,

μ(A)

L
E
∥
∥
∑

i

aigiχi
∥
∥ ≤ E

∥
∥
∑

i

aivigiχi
∥
∥ . (7.123)

The upper bound on the quantity E‖∑i aivigiχi‖ is provided by the following:

Lemma 7.8.2 We have

E
∥
∥
∑

i

aivigiχi
∥
∥ ≤ L

(∑

i

|ai|2
)1/2

μ(A)
√

log(2/μ(A)) . (7.124)

Proof of Theorem 7.8.1 Combine (7.123) and (7.124). �
Before we can prove (7.124) we need two simple lemmas.

Lemma 7.8.3 Consider complex numbers bi with
∑

i |bi |2 ≤ 1/8. Then
E exp |∑i bigi |2 ≤ L.

Proof Separating the real and imaginary parts, |∑i bigi |2 = h2
1 + h2

2 where
h1 h2 are Gaussian (not necessarily independent) with Eh2

1 ≤ 1/8 and

39 See Exercise 2.7.4.
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Eh2
2 ≤ 1/8 and we simply use the Cauchy-Schwarz inequality E exp(h2

1 + h2
2) ≤

(E exp 2h2
1)

1/2(E exp 2h2
2)

1/2. �
Lemma 7.8.4 For any function f ≥ 0 on G,40 any set A with μ(A) > 0 and any
number C > 0 we have

∫

A

f dμ ≤ 4Cμ(A)
√

log(2/μ(A))
∫

exp(f 2/C2)dμ . (7.125)

Proof The function x �→ x−1 exp x2 increases for x ≥ 1, so that given a number
0 < a ≤ 1, for x ≥ 2

√
log(2/a), we have x ≤ a exp x2 because this is true for

x = 2
√

log(2/a). Consequently for x ≥ 0 we have x ≤ 2
√

log(2/a) + a exp x2.
Therefore we have

f ≤ 2
√

log(2/μ(A))+ μ(A) expf 2 .

Integration over A gives

∫

A

f dμ ≤ 2μ(A)
√

log(2/μ(A))+ μ(A)

∫

expf 2dμ

≤ 4μ(A)
√

log(2/μ(A))
∫

expf 2dμ ,

where we have used that 1 ≤ ∫ expf 2dμ for the first term and 1 ≤ 2
√

log(2/μ(A))
for the second term. This proves (7.125) by replacing f by f/C. �
Proof of Lemma 7.8.2 Recalling the value of vi and that χi(s)χi(t) = χi(s+ t) we
have

∑

i

aivigiχi(t) =
∫

A

∑

i

aigiχi(t + s)dμ(s) =
∫

A+t

∑

i

aigiχi(s)dμ(s) .

Since μ(A) = μ(A+ t), using (7.125) in the inequality below we obtain

∥
∥
∑

i

aivigiχi
∥
∥ = sup

t

∣
∣
∑

i

aivigiχi(t)
∣
∣ = sup

t

∣
∣
∣

∫

A+t

∑

i

aigiχi(s)dμ(s)
∣
∣
∣

≤ LCμ(A)
√

log(2/μ(A))
∫

exp
(∣
∣
∑

i

aigiχi(s)
∣
∣2/C2)dμ(s) , (7.126)

40 The group structure is not being used here, and this lemma is a general fact of measure theory.
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where C = 4(
∑

i |ai|2)1/2. Lemma 7.8.3 used for bi = ai/C shows that for each
s we have E exp(|∑i aigiχi(s)|2/C2) ≤ L so that taking expectation in (7.126)
concludes the proof of (7.124). �

The result proved in the following exercise was discovered while trying to
prove (7.122) and is in the same general direction:

Exercise 7.8.5

(a) Prove that there is a number α0 > 0 such that if z, z′ are complex numbers of
modulus 1 with |z− 1| ≤ α0 and |z′ − 1| ≤ α0 then |z5 − z′5| ≥ 4|z− z′|.

(b) Consider 0 < α ≤ α0, characters (χi)i≤N on a compact group T and the set
A = {t ∈ T ,∀i ≤ N, |χi(t) − 1| ≤ α}. Consider the set B = {t ∈ T ,∀i ≤
N, |χi(t) − 1| ≤ α/2}. Consider a subset U of A such that s, t ∈ U, s �= t ⇒
s − t /∈ B. Prove that the sets 5t + A for t ∈ U are disjoint.

(c) Prove that μ(B) ≥ μ(A)2.

7.8.3 Road Map: An Overview of Decomposition Theorems

Given a stochastic process (Xt )t∈T , we would like to decompose it as a sum of
two (or more) simpler pieces, Xt = X1

t + X2
t , where, say, it will be far easier to

control the size of each of the processes (X1
t )t∈T and (X2

t )t∈T than that of (Xt )t∈T
because each of the two pieces can be controlled by a specific method. Furthermore,
when the process (Xt )t∈T has a certain property, say Xt = ∑

i Zi(t) is the sum
of independent terms, we would like each of the pieces X1

t and X2
t to have the

same property. This will be achieved in Chap. 11 in a very general setting and in the
present chapter in the case where Zi ∈ CG. In the next section, the decomposition
will take a very special form, of the type Xt = ∑

i∈I aiχi(t) = X1
t + X2

t where

X
j
t =

∑
i∈Ij aiχi(t) for two disjoint sets I1, I2 with I = I1 ∪ I2. This is accidental.

In general, the decomposition is more complicated, each piece Zi has to be split in
a non-trivial manner, as will be done in Sect. 7.9.

Although this will not be used before Chap. 11, to help the reader form a correct
picture, let us explain that the decomposition of stochastic processes in a sum of
simpler pieces is also closely related to the decomposition of sets of functions as
in Sect. 6.7 or as in the more complex results of Chap. 9. This is because many
of the processes we consider in this book (but not in this chapter) are naturally
indexed by sets of functions (in this chapter the process is indexed by the group T ).
A prime example of this is the process Xt =∑i∈I gi ti (where (gi) are independent
standard Gaussian r.v.s) which is indexed by �2(I) (where I is a finite set). For such
processes the natural way to decomposeXt into a sum of two pieces is to decompose
t itself into such a sum. The main theorems of Chap. 11 are precisely obtained by
an abstract version of this method.
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7.8.4 Decomposition Theorem in the Bernoulli Case

Our main result in this section is closely related to Theorem 7.5.14 in the case where
Zi is nonrandom, Zi = aiχi . It will be the basis of our upper bounds. We consider
a finite set I , numbers (ai)i∈I , characters (χi)i∈I with χi �= 1, and for j ∈ Z we
define

ψj(s, t) =
∑

i

|rj ai(χi(s)− χi(t))|2 ∧ 1 , (7.127)

where as usual
∑

i is a shorthand for
∑

i∈I . Consider a parameter w ≥ 1 and for
n ≥ 0 integers jn ∈ Z. Consider the set

Dn = {t ∈ T ; ψjn(t, 0) ≤ w2n} . (7.128)

Theorem 7.8.6 Assume the following conditions:

μ(D0) ≥ 3

4
, (7.129)

∀n ≥ 1 , μ(Dn) ≥ N−1
n . (7.130)

Then we can decompose I as a disjoint union of three subsets I1, I2, I3 with the
following properties:

I1 = {i ∈ I ; |ai| ≥ r−j0} , (7.131)

∑

i∈I2

|ai | ≤ Lw
∑

n≥0

2nr−jn , (7.132)

E
∥
∥
∑

i∈I3

aigiχi
∥
∥ ≤ L

√
w
∑

n≥0

2nr−jn , (7.133)

where (gi)i∈I3 are independent standard Gaussian r.v.s.

To prepare for the proof, a basic observation is that as a consequence of (7.128), we
have

∫

Dn

ψjn(s, 0)dμ(s) ≤ w2nμ(Dn) ,

and using the definition of ψj this means that

∫

Dn

∑

i

|rjnai(χi(s)− 1)|2 ∧ 1dμ(s) ≤ w2nμ(Dn) . (7.134)
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For each n ≥ 0 we define

Un =
{
i ∈ I ;

∫

Dn

|χi(s)− 1|2dμ(s) ≥ μ(Dn)
}
. (7.135)

The idea of this definition is that if i ∈ Un, then χi(s) is not too close to 1 on
Dn so that

∫
Dn
|rjnai(χi(s) − 1)|2 ∧ 1dμ(s) should be about μ(Dn)|(rjnai|2 ∧ 1).

We will make this explicit in Lemma 7.8.9, but before that we stress the miracle
of this definition: if i �∈ Un, we have exactly the information we need to appeal to
Theorem 7.8.1.

Lemma 7.8.7 If i /∈ Un then | ∫Dn
χi(s)dμ(s)| ≥ μ(Dn)/2.

Proof Indeed, since i �∈ Un,

μ(Dn) >

∫

Dn

|χi(s)− 1|2dμ(s) = 2μ(Dn)− 2Re
∫

Dn

χi(s)dμ(s) . �

Lemma 7.8.8 For complex numbers x, y with |y| ≤ 4 we have

|xy| ∧ 1 ≥ |y|(|x| ∧ 1)/4 . (7.136)

Proof We have |xy| ∧ 1 ≥ ((|x| ∧ 1)|y|)∧ 1 and |y|(|x| ∧ 1) ≤ 4. We then use that
for 0 ≤ a ≤ 4 we have a ∧ 1 ≥ a/4. �
Lemma 7.8.9 We have

∑

i∈Un

|rjnai |2 ∧ 1 ≤ 4w2n . (7.137)

Proof According to (7.136) we have

|rjnai(χi(s)− 1)|2 ∧ 1 ≥ 1

4
|χi(s)− 1|2(|rjnai |2 ∧ 1) ,

so that (7.134) implies

∑

i

(|rjnai|2 ∧ 1)
∫

Dn

|χi(s)− 1|2dμ(s) ≤ 4w2nμ(Dn) ,

from which the result follows since
∫
Dn
|χi(s)− 1|2dμ(s) ≥ μ(Dn) for i ∈ Un. �

The next task is to squeeze out all the information we can from (7.137).

Lemma 7.8.10 We have U0 = I .
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Proof We have
∫
T \D0

|χi(t) − 1|2dμ(s) ≤ 4μ(T \ D0) ≤ 1 since |χi(s) − 1|2 ≤
4 and μ(T \ D0) ≤ 1/4 by (7.129). Thus

∫
D0
|χi(s) − 1|2dμ(s) ≥ ∫

T |χi(s) −
1|2dμ(s)− 1 ≥ 1 ≥ μ(D0) because

∫
T
|χi(s)− 1|2dμ(s) = 2. �

Let us define

Vn =
⋂

0≤k≤n
Uk

so that V0 = U0 = I and for i ∈ I it makes sense to define

ui = inf{r−jn ; i ∈ N , i ∈ Vn} . (7.138)

We then define

I2 = {i ∈ I ; ui ≤ |ai| < r−j0} .

Lemma 7.8.11 We have

∑

i∈I2

|ai| ≤ Lw
∑

n≥0

2nr−jn . (7.139)

Proof It follows from (7.137) that

card{i ∈ Un ; |ai | ≥ r−jn} ≤ 4w2n (7.140)

and consequently

∑

n≥1

r−jn−1 card{i ∈ Un ; |ai| ≥ r−jn} ≤ Lw
∑

n≥1

2nr−jn−1 ≤ Lw
∑

n≥0

2nr−jn .

(7.141)

Now, we have

∑

n≥1

r−jn−1 card{i ∈ Un ; |ai | ≥ r−jn} =
∑

i∈I,n≥1

r−jn−1 1{i∈Un,|ai |≥r−jn } (7.142)

≥
∑

i∈I2

∑

n≥1

r−jn−11{i∈Un,|ai |≥r−jn } .

For i ∈ I2 we have |ai| ≥ ui , and by definition of ui , there exists n with r−jn ≤ |ai |
and i ∈ Vn. Consider the smallest integer k ≥ 0 such that r−jk ≤ |ai|. Since
|ai| < r−j0 we obtain k ≥ 1 so that |ai| ≤ r−jk−1 . Since i ∈ Vn ⊂ Uk this
shows that

∑
n≥1 r

−jn−11{i∈Un,|ai |≥r−jn } ≥ r−jk−1 ≥ |ai |. Thus the right-hand side
of (7.142) is ≥∑i∈I2

|ai |, completing the proof. �
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Proof of Theorem 7.8.6 Let I3 = {i ∈ I ; |ai| < ui} so that I is the disjoint union
of I1, I2, I3. It remains only to prove the inequality (7.133) involving the set I3. For
n ≥ 0 let us set Wn = I3∩(Vn\Vn+1) so that for i ∈ Wn we have i /∈ Un+1, and thus
| ∫

Dn+1
χi(s)dμ(s)| ≥ μ(Dn+1)/2 by Lemma 7.8.7. Since

√
log(2/μ(Dn+1)) ≤

L2n/2 by (7.130), it then follows from (7.122) used with A = Dn+1 that

E
∥
∥
∑

i∈Wn

aigiχi
∥
∥ ≤ L2n/2

( ∑

i∈Wn

|ai|2
)1/2

. (7.143)

Let us bound the right-hand side. For i ∈ Wn we have i ∈ I3 so that |ai | < ui . Since
i ∈ Vn we have also ui ≤ r−jn . Thus |airjn | ≤ 1 and (7.137) implies

∑
i∈Wn

|ai|2 ≤
Lw2nr−2jn . Finally (7.143) implies

E
∥
∥
∑

i∈Wn

aigiχi
∥
∥ ≤ L

√
w2nr−jn .

For i ∈ I3 we have ui > 0 since |ai | < ui so that there is a largest n for which
i ∈ Vn. Then i �∈ Vn+1 so that i ∈ Vn \ Vn+1 and thus i ∈ Wn. We have proved that
I3 = ∪nWn. Use of the triangle inequality then implies

E
∥
∥
∑

i∈I3

aigiχi
∥
∥ ≤ L

√
w
∑

n≥0

2nr−jn . �

Corollary 7.8.12 Under the conditions of Theorem 7.8.6, we have

γ2(T , d2) ≤ Lw
∑

n≥0

2nr−jn + L
∑

i

|ai|1{|ai |≥r−j0 } , (7.144)

where the distance d2 is given by d2(s, t)
2 =∑i |ai |2|χi(s)− χi(t)|2.

Proof For any set J we have E‖∑i∈J aigiχi‖ ≤ L
∑

i∈J |ai |. Using this for J =
I1 gives E‖∑i∈I1

aigiχi‖ ≤ L
∑

i |ai |1{|ai |≥r−j0 }. Using it again for J = I2 and

combining with (7.132) gives E‖∑i∈I2
aigiχi‖ ≤∑i∈I2

|ai| ≤ Lw
∑

n≥0 2nr−jn .
Combining these two inequalities with (7.133) yields

E
∥
∥
∑

i

aigiχi
∥
∥ ≤ Lw

∑

n≥0

2nr−jn +
∑

i

|ai|1{|ai |≥r−j0 } .

The result then follows from (7.13). �
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7.8.5 Upper Bounds in the Bernoulli Case

Theorem 7.8.13 Under the conditions of Theorem 7.8.6 for each p ≥ 1, it holds
that

(
E sup

s∈T
∣
∣
∑

i

εiai(χi(s)− χi(0))
∣
∣p
)1/p

≤ K(r, p)w
∑

n≥0

2nr−jn +K(r)
∑

i

|ai |1{|ai |≥r−j0 } . (7.145)

Proof For a subset J of I define ϕ(J ) = (E sups∈T |
∑

i∈J εiai(χi(s) −
χi(0))|p)1/p. Observe first that as a consequence of the trivial fact that
|∑i∈J εiai(χi(s) − χi(0))| ≤ 2

∑
i∈J |ai|, we have ϕ(J ) ≤ 2

∑
i∈J |ai|. Thus

ϕ(I1) ≤ 2
∑

i |ai |1{|ai |≥r−j0 } and ϕ(I2) ≤ Lw
∑

n≥0 2nr−jn . Furthermore, by
the triangle inequality if J1 and J2 are two disjoint subsets of I , we have
ϕ(J1 ∪ J2) ≤ ϕ(J1) + ϕ(J2). Thus it suffices to prove (7.145) when the
summation is restricted to I3. It is then is a consequence of (2.66) applied
to the process Xt = ∑

i∈I3
εiaiχi(t). Indeed, according to the subgaussian

inequality (6.2), this process satisfies the increment condition (2.4) with respect
to the distance d3 given by d3(s, t)

2 = ∑
i∈I3

|ai(χi(s) − χi(t))|2. Furthermore

γ2(T , d3) ≤ L
√
w
∑

n≥0 2nr−jn as follows from (7.133) and (7.13). �

7.8.6 The Main Upper Bound

In this section we state and prove our main upper bound, Theorem 7.8.14. It will
follow from (7.145) given the randomness of the Zi . We recall that Eε denotes
expectation in the r.v.s εi only. We recall that

ϕj (s, t) =
∑

i≥1

E(|rj (Zi(s)− Zi(t))|2 ∧ 1) .

Theorem 7.8.14 For n ≥ 0 consider numbers jn ∈ Z. Assume that

∀s, t ∈ T , ϕj0(s, t) ≤ 1 (7.146)

∀ n ≥ 1 , μ({s ∈ T ; ϕjn(s, 0) ≤ 2n}) ≥ 2−2n = N−1
n . (7.147)

Then for each p ≥ 1 we can write

(
Eε sup

s∈T
∣
∣
∑

i≥1

εi(Zi(s)− Zi(0))
∣
∣p
)1/p ≤ Y1 + Y2 , (7.148)
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where

(EYp

1 )1/p ≤ K(r, p)
∑

n≥0

2nr−jn , (7.149)

and

Y2 ≤ K(r)
∑

i≥1

|Zi(0)|1{|Zi(0)|≥r−j0} . (7.150)

In words, Y2 collects the contributions of the “large” terms, and we control well all
moments of Y1. It is by no means obvious how to control the term Y2, and it will
be a separate task to learn how to do this. The difficulty of that task will depend on
our goal. The simplest situation will be when we will apply this result to study the
convergence of series: then P(Y2 �= 0) will be small.

The reader is invited to meditate on the strength of this result. In particular, we
do not know how to deduce it from the decomposition theorem, even in the precise
form of Corollary 7.9.2.41

The main step of the proof is as follows. It will allow us to use Theorem 7.8.13
given the randomness of the Zi , which is symbolized by ω.

Proposition 7.8.15 Under the conditions of Theorem 7.8.14 denote by w(ω) ∈
R
+ ∪ {∞} the smallest number ≥ 1 for which

μ
({

s ∈ T ;
∑

i≥1

|rj0(Zi(s)− Zi(0))|2 ∧ 1 ≤ w(ω)
})
≥ 3/4 , (7.151)

∀n ≥ 1 , μ
({

s ∈ T ;
∑

i≥1

|rjn(Zi(s)− Zi(0))|2 ∧ 1 ≤ w(ω)2n
})
≥ N−1

n+1 .

(7.152)

Then the r.v. w(ω) satisfies P(w(ω) > u) < L exp(−u/L). In particular Ew(ω)p ≤
K(r, p) for each p.

Proof of Theorem 7.8.14 Given the r.v.s Zi , consider the quantities ψj (s, t) =∑
i |rj (Zi(s)−Zi(t))|2 ∧ 1. As we forcefully pointed out, given the randomness of

the Zi , then Zi is of the type aiχi for a number ai and a character χi . Thus (7.151)
implies (7.129) and (7.152) implies (7.130) with w = w(ω). We are then within the
hypotheses of Theorem 7.8.13 and (7.145) implies (7.148) where Y2 is as in (7.150)
and where Y1 ≤ K(r, p)w(ω)

∑
n≥0 2nr−jn , from which (7.149) follows using the

previous proposition. �

41 The specific problem is to show that the terms Z3
i satisfy (7.148) for p > 2. For p ≤ 2 this can

be shown using the same arguments as in Theorem 7.3.4.



7.8 Proofs, Upper Bounds 255

To prepare the proof of Proposition 7.8.15 we set D0 = T and for n ≥ 1 we set

Dn = {s ∈ T ; ϕjn(s, 0) ≤ 2n} ,

so that by (7.147) for n ≥ 0 we have μ(Dn) ≥ 1/Nn. The strategy to follow is then
obvious: given n, it follows from Lemma 7.7.2 that for any point s ∈ Dn it is very
rare that

∑
i≥1 |rjn(Zi(s) − Zi(0))|2 ∧ 1 is much larger than 2n. Thus by Fubini’s

theorem, it is very rare that the set of points s ∈ Dn with this property comprises
more than 1/4 of the points of Dn (this event is the complement of the event Ωn,u

below). Thus with probability close to one, this should occur for all n.

Lemma 7.8.16 Consider a parameter u ≥ 1. For each n ≥ 0 consider the random
subset Bn,u of Dn defined as follows:

Bn,u :=
{
s ∈ Dn ;

∑

i≥1

|rjn(Zi(s)− Zi(0))|2 ∧ 1 ≤ u2n+2
}
. (7.153)

Then the event Ωn,u defined by

Ωn,u = {ω ∈ Ω ; μ(Bn,u) ≥ 3μ(Dn)/4}

(where as usual ω symbolizes the randomness of the Zi) satisfies

P(Ωn,u) ≥ 1− 4 exp(−u2n+1) . (7.154)

Proof Consider s ∈ Dn and Wi = |rjn(Zi(s)− Zi(0))|2 ∧ 1, so that
∑

i≥1 EWi =
ϕjn(s, 0) ≤ 2n. It follows from Lemma 7.7.2 (b), used with A = u2n+2, that

P(s �∈ Bn,u) = P
(∑

i≥1

|rjn(Zi(s)− Zi(0))|2 ∧ 1 > u2n+2
)

≤ δn := exp(−u2n+1) .

Then we have

Eμ(Dn\Bn,u) =
∫

Dn

P(s �∈ Bn,u)dμ(s) ≤ δnμ(Dn) . (7.155)

Consequently P(μ(Dn\Bn,u) ≥ μ(Dn)/4) ≤ 4δn by Markov’s inequality. There-
fore the event Ωn,u defined by μ(Bn,u) ≥ 3μ(Dn)/4 satisfies

P(Ωn,u) = P
(
μ(Bn,u) ≥ 3

4
μ(Dn)

)
= P

(
μ(Dn \ Bn,u) ≤ 1

4
μ(Dn)

)
≥ 1− 4δn

and we have proved (7.154). �
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Exercise 7.8.17 Write a detailed proof of (7.155).

Proof of Proposition 7.8.15 We recall the sets Bn,u and the event Ωn,u of
Lemma 7.8.16, and we define

Ωu =
⋂

n≥0

Ωn,u , (7.156)

so that from (7.154)

P(Ωu) ≥ 1− L exp(−u) . (7.157)

For ω ∈ Ωu we have μ(B0,u) ≥ 3/4 (since D0 = T ) and μ(Bn,u) ≥ 3μ(Dn)/4 ≥
N−1
n+1 for n ≥ 1. Thus by the very definition of w(ω), we then have w(ω) ≤ 4u.

Thus P(w(ω) > 4u) ≤ P(Ωc
u) ≤ exp(−u). �

7.8.7 Sums with Few Non-zero Terms

To complete the proof of Theorem 7.5.5 using Theorem 7.8.14, we need to learn
how to control EYp

2 . This is the content of the next result.

Theorem 7.8.18 Assume (7.66), i.e.

∀ s, t ∈ T , ϕj0(s, t) ≤ 1 . (7.66)

Then for each p ≥ 1 the variables ζi := |Zi(0)|1{|Zi(0)|≥r−j0} satisfy

(
E
(∑

i≥1

ζi
)p
)1/p ≤ K

(
r−j0 +

(
E
∣
∣
∑

i≥1

εiZi(0)
∣
∣p
)1/p)

. (7.158)

Proof of Theorem 7.5.5 We use Theorem 7.8.14. We raise (7.148) to the power p,
we use that (Y1 + Y2)

p ≤ K(p)(Y
p

1 + Y
p

2 ), and we take expectation. The control of
EYp

1 is provided by (7.149), and the control of EYp

2 is provided by (7.158). �
The basic reason we shall succeed in proving Theorem 7.8.18 is that typically

only a few of the r.v.s ζi will be non-zero, a fact which motivates the title of this
section. Our first goal is to prove this. We start with a simple fact.

Lemma 7.8.19 For any j ∈ Z we have

∑

i

E(|2rjZi(0)|2 ∧ 1) ≤ 2 sup
s,t∈T

∑

i

E(|rj (Zi(s)− Zi(t))|2 ∧ 1) . (7.159)
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Thus if j0 satisfies (7.66) then

∑

i

E(|2rj0Zi(0)|2 ∧ 1) ≤ 2 , (7.160)

and in particular

∑

i

P(|Zi(0)| ≥ r−j0) ≤ 2 . (7.161)

One should stress the interesting nature of this statement: a control on the size of the
differencesZi(s)−Zi(t) implies a control of the size ofZi(0). The hypothesis (7.58)
that Zi �∈ C1 a.e. is essential here.

Proof Since Zi ∈ CG, we have Zi(s) = χ(s)Zi(0) for a certain character χ , and
since by (7.58) χ �= 1 a.e., (7.34) implies that a.e.

∫

|Zi(s)− Zi(0)|2dμ(s) = 2|Zi(0)|2 , (7.162)

whereas |Zi(s) − Zi(0)|2 ≤ 2|Zi(s)|2 + 2|Zi(0)|2 = 4|Zi(0)|2. Now for x ≥ 0
the function ψ(x) = (r2j x) ∧ 1 is concave with ψ(0) = 0, so it satisfies xψ(y) ≤
yψ(x) for x ≤ y. Using this for x = |Zi(s)− Zi(0)|2, y = 4|Zi(0)|2 = |2Zi(0)|2,
and integrating in s with respect to μ, we obtain ψ(|2Zi(0)|2) ≤ 2

∫
ψ(|Zi(s) −

Zi(0)|2)dμ(s), and taking expectation, we obtain

E(|2rjZi(0)|2 ∧ 1) ≤ 2
∫

E
(
(r2j |Zi(s)− Zi(0)|2) ∧ 1

)
dμ(s) .

Summation over i then makes (7.159) obvious, and (7.161) follows since
P(|Zi(0)| ≥ r−j0) ≤ E(|2rj0Zi(0)|2 ∧ 1). �
Exercise 7.8.20 Instead of (7.66) assume that μ({s ∈ T ; ϕj0(s, 0) ≤ 1}) ≥ 3/4.
Prove that

∑
i E(|2rj0Zi(0)|2 ∧ 1) ≤ 4.

So, as promised earlier, (7.161) means that typically only a few of the r.v.s ζi =
|Zi(0)|1{|Zi(0)|≥r−j0} can be non-zero at the same time. To lighten notation, in the
next few pages, K = K(p) denotes a number depending on p only. Also, even
though the sums we consider are finite sums

∑
i , it is convenient for notation to

write them as infinite sums
∑

i≥1, with terms which are eventually zero.
We start the study of sums of independent r.v.s with only a few non-zero terms.
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Lemma 7.8.21 Consider independent centered complex-valued r.v.s θi . Assume
that42

∑

i≥1

P(θi �= 0) ≤ 8 . (7.163)

Then, for each p ≥ 1, we have

∑

i≥1

E|θi |p ≤ KE
∣
∣
∑

i≥1

θi
∣
∣p . (7.164)

The intuition here is that because the typical number of non-zero values of θi is
about 1, it is not surprising that |∑i≥1 θi |p should be comparable to

∑
i≥1 |θi |p.

Lemma 7.8.22 Consider independent events Ξi with P(Ξi) ≤ 1/2 and∑
i P(Ξi) ≤ 8. Then P(

⋃
i Ξi) ≤ 1− e−16.

Proof We use that 1− x ≥ exp(−2x) for 0 ≤ x ≤ 1/2, so that

1− P(
⋃

i

Ξi) =
∏

i

(1− P(Ξi)) ≥
∏

i

exp(−2P(Ξi)) ≥ exp(−16) . �

Proof of Lemma 7.8.21 From (7.163) there are at most 16 indices i with P(θi �=
0) ≥ 1/2. We can assume without loss of generality that for i ≥ 17 we have
P(θi �= 0) ≤ 1/2. As a consequence of Jensen’s inequality43 for any set J

of indices, we have E|∑i∈J θi|p ≤ E|∑i≥1 θi|p. In particular for any index
i0, we have E|θi0 |p ≤ E|∑i≥1 θi |p. Thus

∑
i≤16 E|θi |p ≤ 16E|∑i≥1 θi |p and

E|∑i≥17 θi |p ≤ E|∑i≥1 θi |p. Therefore it suffices to prove that E
∑

i≥17 |θi |p ≤
LE|∑i≥17 θi |p. Consequently, we may assume P(θi �= 0) ≤ 1/2 for each i.

For n ≥ 1 consider Ωn = {∃i ≤ n, θi �= 0}. Then P(Ωn) ≤ 1 − e−16 by
Lemma 7.8.22, so that P(Ωc

n) ≥ e−16.
We prove by induction on n that

∑

i≤n
e−16E|θi |p ≤ E

∣
∣
∑

i≤n
θi
∣
∣p . (7.165)

It is obvious that (7.165) holds for n = 1. Assuming it holds for n, we have

E
∣
∣
∑

i≤n+1

θi
∣
∣p = E1Ωn

∣
∣
∑

i≤n+1

θi
∣
∣p + E1Ωc

n

∣
∣
∑

i≤n+1

θi
∣
∣p . (7.166)

42 The number 8 does not play a special role and can be replaced by any other number.
43 If this is not obvious to you, please review Exercise 6.2.1 (c).
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Now, since θn+1 is centered and independent of both Ωn and
∑

i≤n θi , Jensen’s
inequality implies

E1Ωn

∣
∣
∑

i≤n+1

θi
∣
∣p ≥ E1Ωn

∣
∣
∑

i≤n
θi
∣
∣p = E

∣
∣
∑

i≤n
θi
∣
∣p . (7.167)

Since for i ≤ n we have θi = 0 on Ωc
n,

E1Ωc
n

∣
∣
∑

i≤n+1

θi
∣
∣p = E1Ωc

n
|θn+1|p = P(Ωc

n)E|θn+1|p ≥ e−16E|θn+1|p ,

using independence in the second equality and that P(Ωc
n) ≥ e−16. Combining

with (7.166) and (7.167) and using the induction hypothesis completes the induc-
tion. �
Lemma 7.8.23 Consider independent r.v.s ηi ≥ 0 with

∑
i≥1 P(ηi > 0) ≤ 8. Then

for each p ≥ 1,

E
(∑

i≥1

ηi
)p ≤ K

∑

i≥1

Eηpi . (7.168)

Again, the intuition here is that the typical number of non-zero values of ηi is about
1, so that (

∑
i≥1 ηi)

p is not much larger than
∑

i≥1 η
p
i .

Proof The starting point of the proof is the inequality

(a + b)p ≤ ap +K(ap−1b + bp) , (7.169)

where a, b ≥ 0. This is elementary, by distinguishing the cases b ≤ a and b ≥ a.
Let Sn = ∑

i≤n ηi , so that using (7.169) for a = Sn and b = ηn+1 and taking
expectation, we obtain

ESpn+1 ≤ ESpn +K(ESp−1
n ηn+1 + Eηpn+1) . (7.170)

Let an = P(ηn > 0). From Hölder’s inequality, we get

ESp−1
n ≤ (ESpn )

(p−1)/p ; Eηn+1 ≤ a
(p−1)/p
n+1 (Eηpn+1)

1/p .

Using independence then implies

ESp−1
n ηn+1 = ESp−1

n Eηn+1 ≤ (ESpn )
(p−1)/pa

(p−1)/p
n+1 (Eηpn+1)

1/p .
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Now, for numbers a, b > 0, Young’s inequality implies that a(p−1)/pb1/p ≤ a + b

and consequently

ESp−1
n ηn+1 ≤ an+1ES

p
n + Eηpn+1 .

Combining with (7.170) yields

ESpn+1 ≤ ESpn (1+Kan+1)+KEηpn+1 ≤ (ESpn +KEηpn+1)(1+Kan+1) .

In particular we obtain by induction on n that

ESpn ≤ K
(∑

i≤n
Eηpi

)∏

i≤n
(1+Kai) ,

which concludes the proof since
∑

i≥1 ai ≤ 8 by hypothesis. �
We now have all the tools to prove our main result.

Proof of Theorem 7.8.18 Let us define θi := Zi(0)1{|Zi(0)|≥r−j0} so that ζi =
|θi| = |εiθi |, and (7.161) implies

∑

i≥1

P(ζi �= 0) =
∑

i≥1

P(θi �= 0) ≤ 2 . (7.171)

Using (7.168) in the first inequality and (7.164) (for εiθi rather than θi) in the second
one, we obtain

E
(∑

i≥1

ζi
)p ≤ K

∑

i≥1

Eζ pi ≤ KE
∣
∣
∑

i≥1

εiθi
∣
∣p .

Let θ ′i := Zi(0)− θi = Zi(0)1{|Zi(0)|<r−j0 }, so that θi = Zi(0)− θ ′i and thus

E
∣
∣
∑

i≥1

εiθi
∣
∣p ≤ KE

∣
∣
∑

i≥1

εiZi(0)
∣
∣p +KE

∣
∣
∑

i≥1

εiθ
′
i

∣
∣p ,

and in order to prove (7.158), it suffices to prove that

E
∣
∣
∑

i≥1

εiθ
′
i

∣
∣p ≤ Kr−j0p . (7.172)

First, Khinchin’s inequality (6.3) implies

Eε

∣
∣
∑

i≥1

εiθ
′
i

∣
∣p ≤ K

(∑

i≥1

|θ ′i |2
)p/2

. (7.173)
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The r.v.s Wi = r2j0 |θ ′i |2 satisfy 0 ≤ Wi ≤ 1 and
∑

i≥1 EWi ≤ 2 by (7.160).
Lemma 7.7.2 (b) provides the estimate P(

∑
i≥1 Wi ≥ t) ≤ exp(−t/2) for t ≥ 8,

and this implies E
(∑

i≥1 Wi

)p/2 ≤ K . Consequently taking expectation in (7.173)
yields (7.172) and completes the proof. �

7.9 Proof of the Decomposition Theorem

7.9.1 Constructing Decompositions

Consider independent r.v.s Zi ∈ CG and assume (7.58) as always. Our approach
will be based on the decomposition (7.60): Zi = ∑

�≥1 ξi,�χ� where the r.v.s
(ξi,�)�≥1 are valued in C and have “disjoint supports”.44 We will use many times
that for a function h with h(0) = 0 and r.v.s f� with disjoint support, we have

h
(∑

�

f�
) =

∑

�

h(f�) .

In particular, using that for each i the functions (ξi,�)�≥1 have disjoint support,
(7.63) becomes

ϕj (s, t) =
∑

i

E(|rj (Zi(s)− Zi(t))|2 ∧ 1) =
∑

i,�

E(|rj ξi,�(χ�(s)− χ�(t))|2 ∧ 1) .

(7.174)

Consider a parameter w (which will be useful for later purposes) and integers
(jn)n≥0. For n ≥ 0, we set

Dn = {s ∈ T ; ϕjn(s, 0) ≤ w2n} . (7.175)

Let us then assume that

μ(D0) ≥ 3

4
; ∀n ≥ 1 , μ(Dn) ≥ 1

Nn

. (7.176)

Proposition 7.9.1 Under the preceding condition (7.176), there exist truncation
levels u� ≥ 0 with the following properties. First,

∑

i

∑

�≥1

E|ξi,�|1{u�≤|ξi,� |≤r−j0 } ≤ Lw
∑

n≥0

2nr−jn . (7.177)

44 We use this expression as a shorthand for the following property: For each i we have ξi,�ξi,�′ = 0
a.s. if � �= �′. In any given realization of the sequence, ξi,� at most one term is not zero.
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Moreover, setting

ã� :=
(∑

i

E|ξi,�|21{|ξi,� |<u�}
)1/2 (7.178)

then

E
∥
∥
∑

�≥1

ã�g�χ�
∥
∥ ≤ L

√
w
∑

n≥0

2nr−jn , (7.179)

where (g�)�≥1 are standard independent Gaussian r.v.s. Finally

∑

i

P(|Zi(0)| ≥ r−j0) ≤ 4w . (7.180)

The proof of Proposition 7.9.1 occupies Sect. 7.9.2.

Corollary 7.9.2 Under Condition (7.176) we can find a decomposition Zi = Z1
i +

Z2
i +Z3

i such that for each s = 1, 2, 3 the sequence (Zs
i )i is independent, valued in

CG and moreover

∑

i

P(Z1
i �= 0) ≤ 4w , (7.181)

∑

i

E|Z2
i (0)| ≤ Lw

∑

n≥0

2nr−jn , (7.182)

γ2(T , d) ≤ L
√
w
∑

n≥0

2nr−jn , (7.183)

where the distance d is given by d(s, t)2 =∑i E|Z3
i (s)− Z3

i (t)|2.

Proof We write

Z1
i = Zi1{|Zi(0)|>r−j0 } , (7.184)

Z2
i = ∑

�≥1 ξi,�1{u�≤|ξi,�|≤r−j0 }χ� and Z3
i = ∑

�≥1 ξi,�1{|ξi,�|<u�}χ�,45 so that
using (7.178) and the fact that the r.v.s (ξi,�)�≥1 have a disjoint support, we have

d(s, t)2 =
∑

i

E|Z3
i (s)− Z3

i (t)|2 =
∑

i

∑

�≥1

E
∣
∣ξi,�1{|ξi,�|<u�}(χ�(s)− χ�(t))

∣
∣2

=
∑

�≥1

∑

i

E
∣
∣ξi,�1{|ξi,� |<u�}

∣
∣2|χ�(s)− χ�(t)|2 =

∑

�≥1

ã2
� |χ�(s)− χ�(t)|2 .

45 Thus, if Zi = ξiχi , then each Z1
i , Z

2
i , Z

3
i is of the type ηiχi .
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Thus d is the canonical distance associated with the process
∑

�≥1 ã�g�χ�,
and (7.183) follows from (7.179) and (7.13). The rest is obvious: (7.181) follows
from (7.180) and (7.182) follows from (7.177). �
Proof of Theorem 7.5.14 Let us set S = E‖∑i εiZi‖ so that by Markov’s
inequality (7.65) holds for M = S/α0. We then deduce from Theorem 7.5.1 that
there exist integers (jn)n≥0 for which

∑
n≥0 2nr−jn ≤ LS and which satisfy (7.66)

and (7.67). In particular, (7.176) holds for w = 1. We then apply Corollary 7.9.2
(still with w = 1) to obtain a decomposition Zi = Z1

i + Z2
i + Z3

i . We set
Z′i = Z1

i + Z2
i , Z′′i = Z3

i . We note that (7.94) follows from (7.184). To prove
Theorem 7.5.14, it therefore suffices to prove that E

∑
i |Z′i (0)| ≤ LS. Since

E
∑

i |Z2
i (0)| ≤ LS by (7.182), it suffices to prove that E

∑
i |Z1

i (0)| ≤ LS.
Recalling the expression (7.184) of Z1

i and setting θi = Zi(0)1{|Zi(0)|>r−j0} it
suffices to prove that

E
∑

i

|θi| ≤ LS . (7.185)

Now
∑

i P(θi �= 0) ≤ 4 by (7.181). Then using (7.164) for p = 1 proves that
E
∑

i |θi | ≤ LE|∑i εiθi |. But, using (6.17) in the third inequality,

E
∣
∣
∑

i

εiθi
∣
∣ = EEε

∣
∣
∑

i

εiθi
∣
∣ ≤ E

(∑

i

|θi |2)1/2 ≤ E
(∑

i

|Zi(0)|2)1/2

≤ LEEε

∣
∣
∑

i

εiZi(0)
∣
∣ = LE

∣
∣
∑

i

εiZi(0)
∣
∣ ≤ LS . (7.186)

We have proved (7.185) and completed the proof. �

7.9.2 Proof of Proposition 7.9.1

The reader should master the proof of the simpler Theorem 7.8.6 before attempting
to read this more complicated argument. It uses essentially the same idea, which we
spell out in the simpler case where Zi = ξiχi for a nonrandom character χi . The
essential step is to construct the truncation level ui at which we truncate ξi . It is
given by formula ui = inf{r−jn} where the infimum is taken over the values of n
such that for each k ≤ n we have

∫
Dk
|χi(s)− 1|2dμ(s) ≥ μ(Dk).

To start the proof of Proposition 7.9.1, for n ≥ 0 we define

Un =
{
� ≥ 1 ;

∫

Dn

|χ�(s)− 1|2dμ(s) ≥ μ(Dn)
}
. (7.187)
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As in Lemma 7.8.10 we have

U0 = N
∗ . (7.188)

Lemma 7.9.3 If n ≥ 0 and � ∈ Un for each i we have

μ(Dn)E(|rjnξi,�|2 ∧ 1) ≤ 4
∫

Dn

E(|rjnξi,�(χ�(s)− 1)|2 ∧ 1)dμ(s) . (7.189)

Proof We deduce from (7.136) that

|rjnξi,�(χ�(s)− 1)|2 ∧ 1 ≥ |χ�(s)− 1|2(|rjnξi,�|2 ∧ 1)/4 ,

we take expectation, and we integrate over Dn, using the
∫
Dn
|χ�(s) − 1|2dμ(s) ≥

μ(Dn) since � ∈ Un. �
Corollary 7.9.4 If n ≥ 0 we have

∑

i

∑

�∈Un

E(|rjnξi,�|2 ∧ 1) ≤ 2n+2w . (7.190)

Proof Summing the inequalities (7.189) over i and � ∈ Un, we obtain

μ(Dn)
∑

i

∑

�∈Un

E(|rjnξi,�|2 ∧ 1)

≤ 4
∑

i

∫

Dn

∑

�≥1

E(|rjnξi,�(χ�(s)− 1)|2 ∧ 1)dμ(s) . (7.191)

Since the r.v.s (ξi,�)�≥1 have disjoint supports, as in (7.174), we have

∑

�≥1

E(|rjnξi,�(χ�(s)− 1)|2 ∧ 1) = E(|rjn(Zi(s)− Zi(0))|2 ∧ 1) .

Recalling the definition (7.174) of ϕj and that ϕjn(s, 0) ≤ w2n for s ∈ Dn we
conclude that

∑

i

∫

Dn

E(|rjn(Zi(s)− Zi(0))|2 ∧ 1)dμ(s) =
∫

Dn

ϕjn(s, 0)dμ(s) ≤ 2nwμ(Dn) .

Therefore we deduce from (7.191) that

μ(Dn)
∑

i

∑

�∈Un

E(|rjnξi,�|2 ∧ 1) ≤ 2n+2wμ(Dn) ,

which concludes the proof. �



7.9 Proof of the Decomposition Theorem 265

Proof of (7.180) We have

P(|Zi(0)| ≥ r−j0) ≤ E(|rj0Zi(0)|2 ∧ 1) =
∑

�≥1

E(|rj0ξi,�|2 ∧ 1) ,

where we use in the equality that the r.v.s (ξi,�)�≥1 have disjoint supports. Since
U0 = N

∗ by (7.188) the case n = 0 of (7.190) proves (7.180). �
We set Vn = ∩0≤k≤nUk , so that V0 = N

∗ by (7.188). We define

u� = inf{r−jn , � ∈ Vn} , (7.192)

and we keep in mind that, by definition for � ∈ Vn, we have u� ≤ r−jn .

Lemma 7.9.5 For each i and each �, we have

|ξi,�|1{u�<|ξi,� |≤r−j0 } ≤
∑

{n≥1;�∈Un}
r−jn−11{|ξi,�|≥r−jn } . (7.193)

The sum on the right is over the values of n ≥ 1 such that Un contains �.

Proof Consider ω with u� < |ξi,�(ω)| ≤ r−j0 . By the definition (7.192) of u�, there
exist n such that � ∈ Vn and r−jn < |ξi,�(ω)|. Consider the smallest integer k ≤ n

such that r−jk < |ξi,�(ω)|. Then since r−jk < |ξi,�(ω)| ≤ r−j0 we have k ≥ 1.
Thus |ξi,�(ω)| ≤ r−jk−1 , for otherwise k would not be the smallest possible. Thus
|ξi,�(ω)| ≤ r−jk−1 1{|ξi,�|≥r−jk }(ω). Since � ∈ Vn and k ≤ n by definition of Vn, we
have � ∈ Uk . The result follows by considering the term for n = k in the sum in the
right-hand side of (7.193). �
Proof of (7.177) Taking expectation in (7.193) and summing over i and � ≥ 1
shows that the left-hand side of (7.177) is bounded by

∑

n≥1

∑

i

∑

�∈Un

r−jn−1P(|ξi,�| ≥ r−jn) ≤ Lw
∑

n≥1

2nr−jn−1 ≤ Lw
∑

n≥0

2nr−jn ,

where we have used that P(|ξi,�| ≥ r−jn) ≤ E(|rjnξi,�|2 ∧ 1) and (7.190) in the first
inequality. �
Lemma 7.9.6 Recalling the quantities ã� of (7.178), for each n ≥ 0 we have

∑

�∈Vn

ã2
� ≤ Lw2nr−2jn . (7.194)

Proof Let us write ηi,� := ξi,�1{|ξi,�|<u�}, so that by definition (7.178), we have ã2
� =∑

i E|ηi,�|2. When � ∈ Vn, as we noted we have u� ≤ r−jn so that since |ηi,�| ≤ u�
we have |rjnηi,�|2 ≤ 1. Thus E|rjnηi,�|2 = E(|rjnηi,�|2 ∧ 1) ≤ E(|rjnξi,�|2 ∧ 1),
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and (7.190) implies

∑

i

∑

�∈Vn

E|rjnηi,�|2 ≤ 4w2n .

The left-hand side above is r2jn
∑

�∈Vn

∑
i E|ηi,�|2, and recalling (7.178) this is

r2jn
∑

�∈Vn
ã2
� so that (7.194) is proved. �

Lemma 7.9.7 For n ≥ 0 let Wn = Vn \ Vn+1. Then

E
∥
∥
∑

�∈Wn

ã�g�χ�
∥
∥ ≤ L

√
w2nr−jn . (7.195)

Proof Since Vn+1 = Vn∩Un+1 for � ∈ Wn, we have � �∈ Un+1 so that by definition
of that set,

μ(Dn+1) >

∫

Dn+1

|χ�(s)− 1|2dμ(s) = 2μ(Dn+1)− 2Re
∫

Dn+1

χ�(s)dμ(s) ,

and in particular | ∫
Dn+1

χ�(s)dμ(s)| ≥ μ(Dn+1)/2. Thus (7.195) follows
from (7.122) used with A = Dn+1 and (7.194). �
Proof of Proposition 7.9.1 It remains only to prove (7.179). For this we write

E
∥
∥

∑

�∈∪n≥0Wn

ã�g�χ�
∥
∥ ≤

∑

n≥0

E
∥
∥
∑

�∈Wn

ã�g�χ�
∥
∥ ≤ L

√
w
∑

n≥0

2nr−jn ,

where we have used (7.195) in the last inequality, and we observe that by (7.192)
for � �∈ ∪n≥0Wn i.e., � ∈ ∩n≥0Un we have u� = 0, so that ã� = 0. �
Exercise 7.9.8 Consider a random trigonometric sum

∑
i∈I aigiχi and the asso-

ciated distance d . Consider numbers εn such that μ({s ∈ T ; d(s, 0) ≤ εn}) ≥
N−1
n . Find a partition I = ∪nIn such that E‖∑i∈In aigiχi‖ ≤ L2−n/2εn. The

point of this result is that if εn is as small as possible, then by (7.4) and (7.13),
we have

∑
n≥0 2n/2εn ≤ LE‖∑i aigiχi‖. Then in the bound E‖∑i aigiχi‖ ≤∑

n≥0 E‖
∑

i∈In aigiχi‖, the right- and the left-hand sides are of the same order.
Hint: Copy the previous arguments. If Dn = {s ∈ T ; d(s, 0) ≤ εn} and Un is given
by (7.187), then define In = {i ∈ I,∀k ≤ n, i ∈ Uk, i �∈ Un+1}.
Exercise 7.9.9 ([86] Proposition 4.5) Consider characters (χi)i≤N . Assume
that

∫
exp(|∑i≤N χi |2/CN)dμ ≤ 2. Prove that E‖∑i≤N giχi‖ ≥ N/K(C).

Hint: Prove that if a set D satisfies
√

log(2/μ(D)) ≤ N/K(C) then
sups∈D

∑
i≤N |χi(s)−1|2 ≥ N by proving that

∫
D

∑
i |χi(s)−1|2dμ(s) ≥ Nμ(D).
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7.10 Proofs, Convergence

After the hard work of proving inequalities such as (7.68) and (7.148) has been
completed, the proof of Theorem 7.5.16, which is the goal of this section, involves
only “soft arguments”. To prove convergence of a series of independent symmetric
r.v.s, we shall use the following general principle, which relates the convergence a.s.
of a random series with its convergence in probability.

Lemma 7.10.1 Consider independent symmetric Banach space valued r.v.s Wi .
Then the series

∑
i≥1 Wi converges a.s. if and only if it is a Cauchy sequence in

probability, i.e.

∀ δ > 0 , ∃k0 , k0 ≤ k ≤ n⇒ P
(∥
∥
∑

k≤i≤n
Wi

∥
∥ ≥ δ

)
≤ δ . (7.196)

Proof It suffice to prove that (7.196) implies convergence. Let Sk =∑i≤k Wi . Then
the Lévy inequality

P
(

sup
k≤n

‖Sk‖ ≥ a
)
≤ 2P(‖Sn‖ ≥ a)

(see [53], page 47, equation (2.6)) implies

P
(

sup
k

‖Sk‖ ≥ a
)
≤ 2 sup

n
P(‖Sn‖ ≥ a) ,

and starting the sum at an integer k0 as in (7.196) rather than at 1, we obtain

P
(

sup
k

‖Sk − Sk0‖ ≥ a
)
≤ 2 sup

n
P(‖Sn − Sk0‖ ≥ a) .

For a = δ the right-hand side above is≤ 2δ. Since ‖Sn−Sk‖ ≤ ‖Sn−Sk0‖+‖Sk−
Sk0‖, this proves that

P( sup
k0≤k≤n

‖Sn − Sk‖ ≥ 2δ) ≤ 4δ ,

and in turn that a.s. the sequence (Sk(ω))k≥1 is a Cauchy sequence in probability.
�

Exercise 7.10.2

(a) Let (Wi)i≥1 be independent symmetric real-valued r.v.s. Assume for some a >

0 (or, equivalently, all a > 0) we have

∑

i≥1

E(W 2
i ∧ a2) <∞ . (7.197)

Prove that the series
∑

i≥1 Wi converges a.s.



268 7 Random Fourier Series and Trigonometric Sums

(b) Prove the converse.

Exercise 7.10.3 The neighborhoods of zero for the convergence in probability are
the sets of functions such that P(|f | ≥ δ) ≤ 1 − δ for some δ > 0. Prove that a
function is “small in probability” if and only if there is a set a probability almost
1 on which the integral of the function is small. Prove that the convergence in Lp

(p ≥ 1) is stronger than convergence in probability.

We will prove Theorems 7.5.16 and 7.5.17 at the same time by proving the following
statements. In each of them, (Zi)i≥1 is an independent sequence with Zi ∈ CG and
(εi)i≥1 are independent Bernoulli r.v.s. independent of the sequence (Zi).

Lemma 7.10.4 If the series
∑

i≥1 εiZi converges a.s., then for each α > 0 there
exists M such that for each k we have P(‖Sk‖ ≥ M) ≤ α, where Sk is the partial
sum, Sk =∑1≤i≤k εiZi .

Proof Denoting by S the sum of the series, given α > 0 there exists k0 such that
P(‖S − Sk‖ ≥ 1) ≤ α/2 for k ≥ k0. Consider then M0 such that P(‖S‖ ≥ M0) <

α/2, so that for k ≥ k0 we have P(‖Sk‖ ≥ M0 + 1) < α, from which the result
follows. �

The next result is a version of Theorem 7.5.1 adapted to infinite sums. We recall
the number α0 of this theorem.

Lemma 7.10.5 Consider an independent sequence (Zi)i≥1 with Zi ∈ CG, and let
Sk = ∑1≤i≤k εiZi , where the Bernoulli r.v.s εi are independent of the Zi . Assume
that for each k we have

P(‖Sk‖ ≥ M) ≤ α0 . (7.198)

For j ∈ Z we define

ϕj (s, t) =
∑

i≥1

E(|rj (Zi(s)− Zi(t))|2 ∧ 1) . (7.199)

Then we can find integers (jn)n≥0 such that

∀ s, t ∈ T , ϕj0(s, t) ≤ 1 (7.200)

μ({s ; ϕjn(s, 0) ≤ 2n}) ≥ N−1
n , (7.201)

and

∑

n≥0

2nr−jn ≤ KM . (7.202)
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Lemma 7.10.6 Assume that there exists integers (jn)n≥0 as in (7.200)–(7.202).
Then there exists a decomposition of Zi as in Corollary 7.9.2. except that all finite
sums

∑
i are replaced by infinite sums

∑
i≥1.

Lemma 7.10.7 When there is a decomposition of Zi as in Lemma 7.10.6 the series∑
i≥1 εiZi converges a.s.

Proof of Theorems 7.5.16 and 7.5.17 The theorems follow from these lemmas
using also that the last statement of Theorem 7.5.16 follows from Theorem 7.5.5.

�
Proof of Lemma 7.10.5 The reader should review Theorem 7.5.1 at this stage, as
our proof consists of using this result for each k and a straightforward limiting
argument. Let us define

ϕk,j (s, t) =
∑

i≤k
E(|rj (Zi(s)− Zi(t))|2 ∧ 1) ,

so that

ϕj (s, t) = lim
k→∞ ϕk,j (s, t) . (7.203)

Theorem 7.5.1 implies that for each k we can find numbers (jk,n)n≥0 for which

∀ s, t ∈ T ; ϕk,jk,0(s, t) ≤ 1 , (7.204)

and, for n ≥ 0,

μ({s ; ϕk,jk,n (s, 0) ≤ 2n}) ≥ N−1
n (7.205)

such that the following holds:

∑

n≥0

2nr−jk,n ≤ LM . (7.206)

The conclusion will then follow by a limiting argument that we detail now. The
plan is to take a limit k → ∞ in (7.204) and (7.205). As a first step, for each n

we would like to take the limit limk→∞ jk,n. We will ensure that the limit exists by
taking a subsequence. It follows from (7.206) that for each n the sequence (jk,n)k is
bounded from below. To ensure that it is also bounded from above, we consider any
sequence (j∗n ) such that

∑
n≥0 2nr−j∗n ≤ LM , and we replace jk,n by min(jk,n, j∗n ).

Thus jn,k is now bounded from above by j∗n and (7.205) and (7.206) still hold.
Thus we can find a sequence (k(q)) with k(q) → ∞ such that for each n, jn =
limq→∞ jk(q),n exists, i.e., for each n, jk(q),n = jn for q large enough. By taking a
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further subsequence if necessary, we may assume that for each n ≥ 0 we have

q ≥ n⇒ jk(q),n = jn ,

so that then ϕk(q),jn = ϕk(q),jk(q),n. Consequently (7.204) implies

∀ s, t ∈ T , ϕk(q),j0(s, t) ≤ 1 , (7.207)

and (7.205) implies that for n ≥ 1 and q ≥ n

μ({s ; ϕk(q),jn(s, 0) ≤ 2n}) ≥ N−1
n , (7.208)

while, from (7.206),

∑

0≤n≤q
2nr−jn =

∑

0≤n≤q
2nr−jk(q),n ≤ KM .

Letting q → ∞ proves that
∑

n≥0 2nr−jn ≤ LM . On the other hand, (7.203)
implies ϕj (s, t) = limq→∞ ϕk(q),j (s, t). Together with (7.207) and (7.208), this
proves that

∀ s, t ∈ T , ϕj0(s, t) ≤ 1 ,

and for each n,

μ({s ; ϕjn(s, 0) ≤ 2n}) ≥ N−1
n . �

Proof of Lemma 7.10.6 Copy the proof of Corollary 7.9.2 verbatim. �
Before we prove Lemma 7.10.7 we need another simple result.

Lemma 7.10.8 Consider a decreasing sequence of translation-invariant distances
(dk)k≥1 on T . Assume γ2(T , d1) < ∞ and that for each s ∈ T we have
limk→∞ dk(s, 0) = 0. Then limk→∞ γ2(T , dk) = 0.

Proof Given ε > 0, since limk→∞ dk(s, 0) = 0 for each s ∈ T , we have T = ∪kBk

where Bk = {s ∈ T ; ∀n ≥ k, dn(s, 0) ≤ ε}. Thus for k large enough we have
μ(Bk) > 1/2. Corollary 7.1.4 and Lemma 7.1.6 prove then that Δ(T , dk) ≤ 4ε. We
have shown that limk→∞Δ(T , dk) = 0.

Next, according to (7.4) we can find numbers εn with μ({s; d1(s, 0) ≤ εn}) ≥
N−1
n and

∑
n≥0 2n/2εn < ∞. Let εn,k = min(εn,Δ(T , dk)). Then since dk ≤ d1

we have {s; d1(s, 0) ≤ εn} ⊂ {s; dk(s, 0) ≤ εn,k} so that this latter set has measure
≥ N−1

n , and by (7.4) again we have γ2(T , dk) ≤ L
∑

n≥0 2n/2εn,k . The right-hand
side goes to 0 as k →∞ by dominated convergence. �
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Proof of Lemma 7.10.7 For each � = 1, 2, 3, we will prove that the series
∑

i≥1 Z
�
i

converges a.s. For � = 1 this is obvious since by (7.181) a.s. only finitely many of
the terms are �= 0. For � = 2 and � = 3, we will deduce this from Lemma 7.10.1.
For � = 2 this follows from the fact that ‖∑k≤i≤n εiZ2

i ‖ ≤
∑

i≥k |Z2
i (0)| since

|Zi(t)| = |Zi(0)| because Zi ∈ CG. So let us turn to the hard case � = 3. For k ≥ 1
consider the distance dk on T defined by dk(s, t)

2 = ∑
i≥k E|Z3

i (s) − Z3
i (t)|2.

By the version of (7.33) proposed in Exercise 7.5.15 we have E‖∑k≤i≤n εiZi‖ ≤
Lγ2(T , dk), so that using Markov’s inequality, to obtain (7.196) it suffices to prove
that limk→∞ γ2(T , dk) = 0. But this follows from Lemma 7.10.8 since by (7.183)
we have γ2(T , d1) <∞. �

7.11 Further Proofs

The proof we gave of Proposition 7.5.13 uses p-stable r.v.s. It is a matter of taste, but
for the author this feels like an unnatural trick. Our first goal in the present section
is to provide a proof of Proposition 7.11.3, an extension of Proposition 7.5.13 which
does not use this trick and which brings forward the combinatorics of the situation.
Finally we will prove Theorem 7.5.18.

7.11.1 Alternate Proof of Proposition 7.5.13

Consider 1 < p < 2. Consider numbers ai and characters χi , and we recall
the distance dp of (7.84). We assume that the independent symmetric r.v.s θi
satisfy (7.91), i.e., P(|θi | ≥ u) ≥ 1/(Cup) for u ≥ C, and we set

ϕj(s, t) =
∑

i

E|rj aiθi(χi(s)− χi(t))|2 ∧ 1 . (7.209)

Proposition 7.11.1 Consider a sequence (jn)n≥0 and assume that

∀s, t ∈ T , ϕj0(s, t) ≤ 1 , (7.210)

∀n ≥ 1 , μ({s ∈ T ; ϕjn(s, 0) ≤ 2n}) ≥ N−1
n . (7.211)

Then

γq(T , dp) ≤ Kγ2(T , d2)+K
∑

n≥0

2nr−jn , (7.212)

where q is the conjugate exponent of p and where d2 is the distance given by (7.84)
for p = 2. Here K depends on p, r , and C.
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Proof Combining (7.5) and (7.6), we obtain

∑

n≥0

2n/2en(T , d2) ≤ Kγ2(T , d2) .

Let us set αn = 2n/2en(T , d2). The first step is to reduce to the case where

∀n ≥ 0 , αn ≤ 2nr−jn . (7.213)

The purpose of this condition is certainly not obvious now and will become apparent
only later in the proof. To obtain this condition, we construct a sequence (j ′n) as
follows. For each n ≥ 0, if 2nr−jn ≥ αn we set j ′n = jn. Otherwise, we define j ′n
as the largest integer such that 2nr−j ′n ≥ αn. Thus j ′n ≤ jn and 2nr−j ′n ≤ rαn. We
then have

∀n ≥ 0 , αn ≤ 2nr−j ′n , (7.214)

and since
∑

n≥0 αn ≤ Kγ2(T , d2) this yields

∑

n≥0

2nr−j ′n ≤
∑

n≥0

2nr−jn +Krγ2(T , d2) . (7.215)

Since ϕj (s, t) is increasing with j , (7.210) and (7.211) hold for j ′n instead of jn. That
is, replacing the sequence (jn) by the sequence (j ′n), we may assume that (7.213)
holds.

The main argument starts now. For n ≥ 0 we construct sets Bn. This idea is
that these sets are of rather large measure while being small for both d2 and ϕjn
(following the philosophy of Theorem 4.5.13). We will then show that these sets
are also small for dp and this will yield (7.212). We choose B0 = T . By (7.211)
for n ≥ 1, the set An := {s ∈ T ; ϕjn(s, 0) ≤ 2n} satisfies μ(An) ≥ 1/Nn.
Furthermore we can cover T by Nn balls (Cj )j≤Nn of radius≤ 2en(T , d2). The sets
An ∩ Cj for j ≤ Nn cover An, so that μ(An) ≤ ∑i≤Nn

μ(An ∩ Cj ). Thus one of

the sets An ∩ Cj (call it Bn) is such that μ(Bn) ≥ μ(An)/Nn ≥ 1/N2
n = 1/Nn+1.

Since Bn ⊂ Cj we have

Δ(Bn, d2) ≤ 4en(T , d2) . (7.216)

Our goal next is to prove that for n ≥ 0 we have

s, t ∈ Bn ⇒ dp(s, t) ≤ K2n/pr−jn . (7.217)

Since ϕj is the square of a distance, and since ϕjn(s, 0) ≤ 2n for s ∈ An, we have

s, t ∈ Bn ⇒ ϕjn(s, t) ≤ 2(ϕjn(s, 0)+ ϕjn(0, t)) ≤ 2n+2 . (7.218)



7.11 Further Proofs 273

Next, for any number b with |b| ≤ 1/C, using (7.91) we have

E|bθi |2 ∧ 1 ≥ P(|θi | ≥ 1/|b|) ≥ |b|p/K . (7.219)

Thus for |b| ≤ 1/C we have |b|p ≤ KE|bθi|2∧1. Consequently, since |b|p ≤ K|b|2
for |b| ≥ 1/C we have

|b|p ≤ KE|bθi|2 ∧ 1+K|b|2 .

Using this for b = rjnai(χi(s)− χi(t)) and summing over i we get

rpjndp(s, t)
p ≤ Kϕjn(s, t) +Kr2jnd2(s, t)

2 . (7.220)

Using (7.218), and recalling that by (7.216) we have d2(s, t) ≤ 4en(T , d2), we have
proved that

s, t ∈ Bn ⇒ rpjndp(s, t)
p ≤ K2n +Kr2jnen(T , d2)

2 ≤ K2n ,

where we have used in the last inequality that 2n/2en(T , d2) ≤ 2nr−jn by (7.213),
i.e., rjnen(T , d2) ≤ 2n/2. We have proved (7.217).

To finish the proof, using the translation invariance of dp and μ, it is then true
from (7.217) that for n ≥ 1

μ({s ∈ T ; dp(s, 0) ≤ K2n/pr−jn}) ≥ μ(Bn) ≥ N−1
n+1 .

Then (7.5) and the definition (7.3) of εn imply that en+1(T , dp) ≤ K2n/pr−jn . Since
e0(T , dp) ≤ Δ(T , dp) ≤ Kr−j0 by (7.217) used for n = 0, we then obtain (7.212)
(using (7.6) in the first inequality):

γq(T , dp) ≤ K
∑

n≥0

2n/qen(T , dp) ≤ K
∑

n≥0

2nr−jn . �

Corollary 7.11.2 Under the conditions of Proposition 7.11.1 we have

γq(T , dp) ≤ K
∑

n≥0

2nr−jn +K
∑

i

|ai |1{|ai |>r−j0 |} . (7.221)

Proof The idea is to use Corollary 7.8.12 to control the term γ2(T , d2) of (7.212).
First

E|rj aiθi(χi(s)−χi(t))|2∧ 1 ≥ P(|θi | ≥ 1)|rj ai(χi(s)−χi(t))|2 ∧ 1 . (7.222)

Let us set W0 = maxi P(|θi | ≥ 1)−1, so that by (7.91) we have W0 ≤ K

where K depends on C only. Let us set ψj (s, t) = ∑i |rj ai(χi(s) − χi(t))|2 ∧ 1.
Thus, recalling (7.209), it follows from (7.222) that ψj (s, t) ≤ W0ϕj (s, t). Setting
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Dn = {s ∈ T ;ψj(s, 0) ≤ W02n} it follows from (7.210) and (7.211) that D0 = T

and μ(Dn) ≥ N−1
n for n ≥ 1. We appeal to Corollary 7.8.12 to obtain that

γ2(T , d2) ≤ K
∑

n≥0 2nr−jn +K
∑

i |ai|1{|ai |>r−j0 |}. Combining this with (7.212)
implies (7.221). �

We are now ready to prove the following generalization of Proposition 7.5.13, of
independent interest:

Proposition 7.11.3 Consider 1 < p < 2.46 Consider independent symmetric r.v.s
θi which satisfy (7.91). Then there is a constant α depending only on C such that
for any numbers ai and characters χi , we have

P
(∥
∥
∑

i

aiθiχi
∥
∥ ≥M

)
< α ⇒ γq(T , dp) ≤ KM , (7.223)

where dp is the distance (7.84) and q is the conjugate of p.

Proof Define as usual ϕj(s, t) = ∑
i E|rj aiθi(χi(s) − χi(t))|2 ∧ 1. According

to Theorem 7.5.1 if α is small enough we can find numbers jn ∈ Z such that
D0 = T , μ(Dn) ≥ N−1

n for n ≥ 1 and
∑

n≥0 2nr−jn ≤ KM , where Dn = {s ∈
T ; ϕjn(s, 0) ≤ 2n}. The conditions (7.210) and (7.211) of Proposition 7.11.1 are
then satisfied, so that (7.221) of Corollary 7.11.2 holds, and this inequality implies

γq(T , dp) ≤ KM +K
∑

i

|ai |1{|ai |>r−j0 } . (7.224)

To control the last term, we will prove that

card{i; |ai| ≥ r−j0} ≤ K ; max
i
|ai | ≤ KM , (7.225)

which will end the proof. We appeal to Lemma 7.8.19: (7.160) implies∑
i E(|rj0aiθi |2 ∧ 1) ≤ 2. Since E(|rj0aiθi|2 ∧ 1) ≥ 1/K for |ai | ≥ r−j0 this

proves the first part of (7.225). Consider now a certain index i0. We are going
to prove that if α is small enough then |ai0 | ≤ M/C, concluding the proof. Let
ηi = −1 if i �= i0 and ηi0 = 1 so that the sequence (ηiθi) has the same distribution
as the sequence (θi) and thus when P(|∑i aiθi | ≤ M) ≥ 1 − α we also have
P(|∑i ηiaiθi | ≤ M) ≥ 1 − α. Since 2|ai0θi0 | ≤ |∑i aiθi| + |

∑
i ηiaiθi | we then

have P(|ai0θi0 | ≥ M) ≤ P(|∑i aiθi| ≥ M) + P(|∑i ηiaiθi | ≥ M) ≤ 2α. On the
other hand from (7.91) we have P(|θi0 | ≥ C) ≥ 1/Cp+1. Assuming that we have
chosen α small enough that 2α < 1/Cp+1, we then conclude that C < M/|ai0 |. �

46 We leave as a challenge to the reader to consider the case p = 2. In that case it suffices to assume
that for a certain β > 0 we have P(|θi | ≥ β) ≥ β.
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7.11.2 Proof of Theorem 7.5.18

Proof of Theorem 7.5.18 (b) The condition γq(T , dp) is stronger than the sufficient
condition of Theorem 7.5.16. This is shown by Proposition 7.5.9.47 �
Proof of Theorem 7.5.18 (c) Combine Proposition 7.11.3, Lemma 7.10.4, and the
next lemma. �
Lemma 7.11.4 Consider an increasing sequence (dk) of translation-invariant
(quasi) distances on T . Assume that the limiting distance d(s, t) = limk→∞ dk(s, t)

is finite. Then γq(T , d) ≤ K supk γq(T , dk).

Proof Combining (7.5) and (7.6), we obtain that for any translation-invariant
distance δ, we have

∑
n≥0 2n/qen(T , δ) ≤ γq(T , δ) ≤ K

∑
n≥0 2n/qen(T , δ), so that

it suffices to prove that en(T , d) ≤ 2 limk→∞ en(T , dk). According to Lemma 2.9.3
(a) given a < en(T , d) we can find points (t�)�≤Nn such that d(t�, t�′) > a

for � �= �′. Then for k large enough we also have dk(t�, t�′) > a and thus
en(T , dk) > a/2. �
Exercise 7.11.5 Complete the proof of Theorem 7.5.18 (a) using similar but much
easier arguments.

7.12 Explicit Computations

In this section we give some examples of concrete results that follow from the
abstract theorems that we stated. The link between the abstract theorems and
the classical results of Paley and Zygmund and Salem and Zygmund has been
thoroughly investigated by Marcus and Pisier [61], and there is no point reproducing
it here. Rather, we develop a specific direction that definitely goes beyond these
results. It was initiated in [118] and generalized in [33]. There is a seemingly
infinite number of variations on the same theme. The one variation we present has no
specific importance but illustrates how precisely these matters are now understood;
see Theorem 7.12.5 as a vivid example.

We shall consider only questions of convergence. We use the notation of
Exercise 7.3.9, so that T is the group of complex numbers of modulus 1, and for
t ∈ T , χi(t) = t i is the i-th power of t . We consider independent r.v.s (Xi)i≥1 and
complex numbers (ai)i≥1, and we are interested in the case where48

Zi(t) = aiXiχi(t) = aiXit
i . (7.226)

47 Or, more accurately, by the version of the proposition when finite sums are replaced by series.
48 The reason behind our formulation is that soon the r.v.s (Xi) will be assumed to be i.i.d.
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We make the following assumption:

∑

i≥1

E(|aiXi |2 ∧ 1) <∞ . (7.227)

To study the convergence of the series, without loss of generality, we assume that
ai �= 0 for each i.

Theorem 7.12.1 Under the previous conditions, for each n ≥ 0 there exists a
number λn such that

∑

i≥Nn

E
( |aiXi |2

λ2
n

∧ 1
)
= 2n , (7.228)

and the series
∑

i≥1 aiεiXiχi converges uniformly a.s. whenever

∑

n≥0

2nλn <∞ . (7.229)

As a consequence we obtain the following:

Corollary 7.12.2 If

∑

n≥0

2n/2
( ∑

i≥Nn

|ai |2
)1/2

<∞ , (7.230)

then the series
∑

i≥1 aiεiχi converges uniformly a.s.

Proof Since |εi | = 1, (7.228) holds for λ2
n ≤ 2−n

∑
i≥Nn

|ai|2, and under (7.230)
such a sequence satisfies (7.229). �
Exercise 7.12.3 Compare this result with (7.38).

Proof of Theorem 7.12.1 First we observe from (7.227) that for any N the function
Ψ (y) := ∑i≥N E(|yaiXi |2 ∧ 1) is continuous and satisfies limy→0 Ψ (y) = 0 and
limy→∞ Ψ (y) = ∞, and this proves the existence of λn. The proof will then rely
on Theorem 7.5.16. For a change, throughout this section, we use the value r = 2.
Let us consider s ∈ T , and let us assume that for some integer n ≥ 1, we have

|s − 1| ≤ 1

Nn+1
. (7.231)

Let us observe the following inequality: For i ≥ 1,

|si − 1| ≤ i|s − 1| . (7.232)
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We then write, for any integer j ∈ Z, using also that |si − 1| ≤ |s|i + 1 ≤ 2 in the
last line,

∑

i≥1

E(|2j (Zi(s)− Zi(0))|2 ∧ 1) =
∑

i≥1

E(|2j aiXi(s
i − 1)|2 ∧ 1)

≤
∑

0≤m<n

∑

Nm≤i<Nm+1

E(|2j iaiXi(s − 1)|2 ∧ 1)

+
∑

i≥Nn

E(|2j+1aiXi |2 ∧ 1) . (7.233)

From (7.228) we observe that

λn2j+1 ≤ 1 ⇒
∑

i≥Nn

E(|2j+1aiXi |2∧1) ≤
∑

i≥Nn

E
( |aiXi |2

λ2
n

∧1
)
= 2n . (7.234)

Also, for i ≤ Nm+1 and m < n, (7.231) implies i|s − 1| ≤ Nm+1/Nn+1 ≤
Nn/Nn+1 = 1/Nn. Consequently, it follows from (7.228) again that

λm2j ≤ Nn ⇒
∑

Nm≤i<Nm+1

E(|2j iaiXi(s − 1)|2 ∧ 1) ≤
∑

i≥Nm

E
( |aiXi |2

λ2
m

∧ 1
)
= 2m .

(7.235)

Consider the largest integer jn which satisfies both λn2jn+1 ≤ 1 and λm2jn ≤ Nn

for each m < n. Using (7.233), (7.234), and (7.235), we then get

∑

i≥1

E(|2jn(Zi(s)− Zi(0))|2 ∧ 1) ≤
∑

0≤m<n

2m + 2n ≤ 2n+1 . (7.236)

Moreover the definition of jn shows that either λn2jn+2 ≥ 1 (in which case 2−jn ≤
4λn) or else λm2jn+1 ≥ Nn for some m < n (in which case 2−jn ≤ 2λm/Nn), so
that

2−jn ≤ 4λn + 2
∑

0≤m<n

λm

Nn

. (7.237)

Let us denote by Un the set of points s that satisfy (7.231). Thus Un is an
“interval” on the unit circle, the set of points of the type exp(ix) where |x| ≤ τn,
where 0 < τn < π/2 satisfies 2 sin(τn/2) = 1/Nn+1. Denoting by μ the Haar
measure of T , for n ≥ 1 we have μ(Un) = τn/π , so that we certainly have
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μ(Un) ≥ 1/Nn+2. Recalling (7.236) we have proved that

μ
({

s ∈ T ;
∑

i≥1

E(|2jn(Zi(s)− Zi(0))|2 ∧ 1) ≤ 2n+1
})
≥ 1

Nn+2
,

while (7.229) and (7.237) imply that
∑

n≥0 2n−jn <∞. Using Theorem 7.5.16 this
completes the proof. �

The following provides a converse of Theorem 7.12.1 under a mild regularity
condition:

Theorem 7.12.4 Under the conditions of Theorem 7.12.1, assume moreover that
the sequence (Xi) is i.i.d. and that for a certain number C > 0, one has

k ≤ m ≤ 2k ⇒ |ak| ≤ C|am| . (7.238)

Then (7.229) holds whenever the series
∑

i≥1 aiεiXiχi converges uniformly a.s.

Proof We use Theorem 7.5.16 to obtain a sequence (jn) with
∑

n≥0 2n−jn < ∞
and

∀ n ≥ 1 , μ
({

s ∈ T ;
∑

i≥1

E(|2jn (Zi(s)− Zi(0))|2 ∧ 1) ≤ 2n
})
≥ 1

Nn

.

(7.239)

We will prove that (7.239) implies that

λn+3 ≤ LC22−jn , (7.240)

completing the proof. The set of s ∈ T such that |s − 1| ≤ 1/(2Nn) is of measure
1/πNn, so it cannot contain the set considered in (7.239). Thus we can find s ∈ T

with

|s − 1| ≥ 1

2Nn
(7.241)

and

∑

i≥1

E(|2jnaiXi(s
i − 1)|2 ∧ 1) ≤ 2n , (7.242)

where we have been also using that Zi(s) = aiXis
i . Now let J = {i ≥ 1; |si−1| ≥

1/4}, so that (7.242) yields

∑

i∈J
E(|2jn−2aiXi |2 ∧ 1) ≤ 2n , (7.243)
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and the idea is to compare with (7.228) to bound λn from above. To implement the
idea, we will show that there are many values of i ≥ 22n+3 in J . Indeed we have

∑

2p≤i<2p+1

si = s2p s
2p − 1

s − 1
,

so that using (7.241)

∣
∣
∣

∑

2p≤i<2p+1

si
∣
∣
∣ ≤ 4Nn .

Now we have
∑

2p≤i<2p+1 1 = 2p, so that

∣
∣
∣

∑

2p≤i<2p+1

(si − 1)
∣
∣
∣ ≥ 2p − 4Nn .

If p ≥ 2n + 3 we have 2p ≥ 8Nn and thus

2p−1 ≤ 2p − 4Nn ≤
∑

2p≤i<2p+1

|si − 1| . (7.244)

Let now

Ip = {i ; 2p ≤ i < 2p+1 , |si − 1| ≥ 1/4} . (7.245)

Since there are 2p terms on the right-hand side of (7.244), each of which is ≤ 2, it
follows that

2p−1 ≤
∑

2p≤i<2p+1

|si − 1| ≤ 2 card Ip + 2p
1

4
.

so that

card Ip ≥ 2p−3 . (7.246)

From (7.238) for 2p ≤ i < 2p+1, we have |ai| ≥ |a2p |/C and combining
with (7.246),

2p−3E
(∣
∣
∣
2jn−2

C
a2pX2p

∣
∣
∣
2 ∧ 1

)
≤

∑

2p≤i<2p+1

E(|2jnaiXi(s
i − 1)|2 ∧ 1) . (7.247)
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Using (7.238) again, for 2p−1 ≤ i < 2p, we have |a2p | ≥ |ai |/C and thus

2−3
∑

2p−1≤i<2p

E
(∣
∣
∣
2jn−2

C2
aiXi

∣
∣
∣
2 ∧ 1

)
≤ 2p−3E

(∣
∣
∣
2jn−2

C
a2pX2p

∣
∣
∣
2 ∧ 1

)
. (7.248)

Combining with (7.247), summing over p ≥ 2n + 3 and combining with (7.242)
yields

2−3
∑

i≥22n+2

E
(∣
∣
∣
2jn−2

C2 aiXi

∣
∣
∣
2 ∧ 1

)
≤ 2n , (7.249)

and, in particular,

∑

i≥Nn+3

E
(∣
∣
∣
2jn−2

C2
aiXi

∣
∣
∣
2 ∧ 1

)
≤ 2n+3 .

By definition of λn this implies

2jn−2

C2 ≤ 1

λn+3
.

This proves (7.240). �
To give a still more explicit example, we mention the following:

Theorem 7.12.5 If (Xi) denotes an i.i.d. sequence distributed like X, the series∑
i≥1

1
i
εiXiχi converges uniformly a.s. if and only if

E|X| log log(|X| + 3) <∞ . (7.250)

Proof Since the sequence ak = 1/k satisfies (7.238), it suffices from Theo-
rems 7.12.1 and 7.12.4 to prove that (7.250) is equivalent to (7.229). The proof
uses standard methods that are not related to the ideas of this work. It can be found
in Lemma 2.1 of [118]. �

7.13 Vector-Valued Series: A Theorem of Fernique

This section illustrates X. Fernique’s decisive contributions to the ideas presented in
this volume. It is a side story, which can be skipped at first reading. We assume
that the reader has some very basic knowledge about Banach spaces, such as
formula (19.1).
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We consider a compact Abelian group T and a complex Banach space E (nothing
is lost by assuming that E is finite-dimensional). We denote by ‖ · ‖ the norm
of E. Consider (finitely many) vectors ai of E and characters χi on T . Consider
independent standard Gaussian r.v.s gi . We are interested in the sum

∑
i aigiχi(t)

and more specifically in estimating the quantity

E sup
t∈T
∥
∥
∑

i

aigiχi(t)
∥
∥ . (7.251)

We denote by x∗ the generic element of the dual E∗ of E.

Theorem 7.13.1 ([33]) We have

E sup
t∈T
∥
∥
∑

i

aigiχi(t)
∥
∥ ≤ L

(
E
∥
∥
∑

i

aigi
∥
∥+ sup

‖x∗‖≤1
E sup

t∈T
∣
∣
∑

i

x∗(ai)giχi(t)
∣
∣
)
.

(7.252)

Here ‖x∗‖ denotes the (dual) norm of x∗. It is obvious that

E
∥
∥
∑

i

aigi
∥
∥ ≤ E sup

t∈T
∥
∥
∑

i

aigiχi(t)
∥
∥ ,

sup
‖x∗‖≤1

E sup
t∈T
∣
∣
∑

i

x∗(ai)giχi(t)
∣
∣ ≤ E sup

t∈T
∥
∥
∑

i

aigiχi(t)
∥
∥ .

Thus the bound (7.252) is of the correct order. Furthermore the quantities in the
left-hand side are simpler than the right-hand side.

Proof The overall strategy of proof is the obvious one. We know how to estimate
the supremum of a Gaussian process from the value of the functional γ2(T , d), and
we have to relate the distances corresponding to the different Gaussian processes
occurring in (7.252).

Let us denote by E∗1 the unit ball of E∗. For (x∗, t) ∈ E∗1 × T we set Xx∗,t =∑
i x
∗(ai)giχi(t), so that

E sup
t∈T
∥
∥
∑

i

aigiχi(t)
∥
∥ = E sup

(x∗,t )∈E∗1×T
|Xx∗,t | . (7.253)

The canonical distance on E∗1 × T associated with the Gaussian process (Xx∗,t )
is given by

d((x∗, s), (y∗, t))2 =
∑

i

|x∗(ai)χi(s)− y∗(ai)χi(t)|2 . (7.254)
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Denoting by LS the right-hand side of (7.252), the goal is to prove that

γ2(E
∗
1 × T , d) ≤ LS . (7.255)

On E∗1 we consider the distance δ given by

δ(x∗, y∗)2 =
∑

i

|x∗(ai)− y∗(ai)|2 . (7.256)

Using Lemma 7.2.4 we obtain

γ2(E
∗
1 , δ) ≤ LE sup

x∗∈E∗1
|Xx∗,0| = LE

∥
∥
∑

i

aigi
∥
∥ ≤ LS . (7.257)

Given z∗ ∈ E∗1 we consider the following distance on T :

dz∗(s, t)2 =
∑

i

|z∗(ai)χi(s)− z∗(ai)χi(t)|2 , (7.258)

so that by Lemma 7.2.4 again we obtain

∀z∗ ∈ E∗1 , γ2(T , dz∗) ≤ E sup
t∈T
∣
∣
∑

i

z∗(ai)giχi(t)
∣
∣ ≤ LS . (7.259)

Since the distance dz∗ is translation-invariant, combining (7.4) and (7.5) yields

∑

n≥0

2n/2en(T , dz∗) ≤ LS . (7.260)

The next task is to relate the distance d with the distances δ and dz∗ . First, since
|χi(t)| = 1, we have

d((x∗, t), (y∗, t)) = δ(x∗, y∗) , (7.261)

and also

d((x∗, s), (x∗, t)) = dx∗(s, t) . (7.262)

Given x∗, y∗, z∗ ∈ E∗1 , and s, t ∈ T , we then have

d((x∗, s), (y∗, t)) ≤ d((x∗, s), (z∗, s))+ d((z∗, s), (z∗, t))+ d((z∗, t), (y∗, t))

= δ(x∗, z∗)+ dz∗(s, t) + δ(y∗, z∗) . (7.263)
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We first note that this implies

Δ(E∗1 × T , d) ≤ 2Δ(E∗1 , δ)+ sup
z∗∈E∗1

Δ(T , dz∗) ≤ LS , (7.264)

using (7.257) and (7.259) in the last inequality. In the remainder of the proof, we
deduce (7.255) from (7.257), (7.263), and (7.260), which finishes the proof using
Theorem 2.7.11. Let us consider an admissible sequence (An) of partitions of E∗1
such that

sup
x∗∈E∗1

∑

n≥0

2n/2Δ(An(x
∗), δ) ≤ LS . (7.265)

Given A ∈ An let us select a point z∗(n,A) ∈ A for which

en(T , dz∗(n,A)) ≤ 2 inf{en(T , dz∗) ; z∗ ∈ A} . (7.266)

We then construct a partition CA,n of T into Nn sets, each of which are of diameter
≤ 4en(T , dz∗(n,A)) for the distance dz∗(n,A). We consider the partition B′n of E∗1 × T

in sets of the type A × C where A ∈ An and C ∈ CA,n. Its cardinality is ≤ N2
n =

Nn+1. Let us define Bn as the partition of E∗1 × T generated by B′1, . . . ,B′n so
that as usual the sequence (Bn) increases and cardBn ≤ Nn+2. Consider a point
(x∗, t) ∈ E∗1 × T . Then, denoting by Bn(x

∗, t) the set of Bn which contains this
point, we have

Bn(x
∗, t) ⊂ A× C ,

where A = An(x
∗) and C is the element of the partition CA,n that contains t . For

any z∗, (7.263) implies

Δ(Bn(x
∗, t), d) ≤ L(Δ(An(x

∗), δ)+Δ(C, dz∗)) . (7.267)

Using the definition of the partition CA,n in the first inequality and the choice of
z∗(n,A) in the second one, we obtain

Δ(C, dz∗(n,A)) ≤ 4en(T , dz∗(n,A)) ≤ 8en(T , dx∗) ,

and therefore using (7.267) for z∗ = z∗(n,A) we get

Δ(Bn(x
∗, t), d) ≤ L(Δ(An(x

∗), δ)+ en(T , dx∗)) .

It then follows from (7.260) and (7.265) that

∑

n≥0

2n/2Δ(Bn(x
∗, t), d) ≤ LS ,
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so that combining with Lemma 2.9.10 for τ = 2 and using also (7.264)
yields (7.255) and finishes the proof. �

Does (7.252) remain true when the Gaussian r.v.s are replaced by Bernoulli r.v.s?
That is, is it true that

E sup
t

∥
∥
∑

i

εiaiχi(t)
∥
∥ ≤ LE

∥
∥
∑

i

εiai
∥
∥+ L sup

x∗∈E∗
E sup

t∈T
∣
∣
∑

i

εix
∗(ai)χi(t)

∣
∣ ?

(7.268)

It is while pondering this question that the author formulated the Bernoulli
conjecture.

Exercise 7.13.2 Use Theorem 6.2.8 to prove (7.268).

If you find this exercise too difficult, its solution can be found in [53].

Key Ideas to Remember

• For a translation-invariant distance on a compact group T , the entropy numbers
are basically determined by the Haar measure of the balls of a given radius,
irrelevant of their shape. This is a tremendous simplification. The generic
chaining is not needed and entropy number suffices.

• Consider characters χi (none of them constant), and consider (finitely many)
complex numbers ai . Consider the distance on T given by d(s, t)2 =∑

i |ai |2|χi(s)− χi(t)|2. Denote by εi independent signs and by gi independent
standard Gaussian r.v.s. Then the contraction principle ensures that

E sup
t∈T
∣
∣
∑

i

aiεiχi(t)
∣
∣ ≤ LE sup

t∈T
∣
∣
∑

i

aigiχi(t)
∣
∣ .

The Marcus-Pisier theorem asserts that

E sup
t∈T
∣
∣
∑

i

aigiχi(t)
∣
∣ ≤ Lγ2(T , d) ≤ LE sup

t∈T
∣
∣
∑

i

aiεiχi(t)
∣
∣ .

• From now on ξi denote independent symmetric r.v.s. One has the general bound

E sup
t∈T
∣
∣
∑

i

ξiχi(t)
∣
∣ ≤ Lγ2(T , d) , (7.269)

where now the distance d is given by d(s, t)2 =∑i E|ξi |2|χi(s)− χi(t)|2.
• When the variables ξi are not square-integrable, the main problem in controlling

the quantity E supt∈T |
∑

i ξiχi(t)| is to control the typical value of γ2(T , dω)

where dω is the random distance given by dω(s, t)
2 = ∑i |ξi |2|χi(s) − χi(t)|2.

The characteristics of T which make such a control possible cannot apparently
be described using a single distance, but can be described using a “family of
distances”. This feature will occur in many problems we will study later.
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• Through rather general principles (which will receive later a considerable
generalization), one proves that the control of the typical value of γ2(T , dω)

implies a suitable smallness of T (as appropriately measured through a certain
family of distances). Thus a control from above of E supt∈T |

∑
i ξiχi(t)| implies

a suitable “smallness” of T .
• Besides the bound (7.269), one has the trivial bound

E sup
t∈T
∣
∣
∑

i

ξiχi(t)
∣
∣ ≤

∑

i

E|ξi | . (7.270)

In a precise way, as stated in Theorem 7.5.14, every situation is a mixture
of (7.269) and (7.270): we can find a decomposition ξi = ξ ′i + ξ ′′i such that∑

i E|ξ ′i | ≤ LE supt∈T |
∑

i ξiχi(t)| and γ2(T , d) ≤ LE supt∈T |
∑

i ξiχi(t)|
where the distance d is given by d(s, t)2 =∑i E|ξ ′′i |2|χi(s)− χi(t)|2.

• Consider independent symmetric r.v.s. (ξi)i≥1. The historically important prob-
lem of the uniform a.s. convergence of random Fourier series of the type∑

i≥1 ξiχi(t) is now completely understood, and the solution is unexpectedly
simple. There are three rather different cases where this convergence holds. There
is the case

∑
i≥1 P(|ξi | �= 0) < ∞, the case

∑
i≥1 E|ξi | < ∞ and the case

γ2(T , d) <∞where the distance d is defined by d(s, t)2 =∑i≥1 E|ξi |2|χi(s)−
χi(t)|2. Conversely, every case where this convergence holds is in a precise sense
a mixture of the previous three cases; see Theorem 7.5.17.

7.14 Notes and Comments

The characterization of convergence of random Fourier series is almost achieved
in the paper [108]. This paper uses the most natural approach to upper bounds:
chaining arguments for Bernoulli processes. The paper [108] still required some
weak but unnecessary tail conditions, because the chaining was not organized in
an optimal way. It is only while writing [132] that the author finally succeeded in
removing all extraneous conditions, by organizing the chaining as is now done in
Theorem 9.2.1. Random Fourier series have the particularity that the proof of upper
bounds is much more difficult than the proof of lower bounds, while often it is the
opposite which happens. The simpler arguments we present now were discovered
much later.

I have given the “magic proof” of Proposition 7.5.13 as an homage to the paper
[62] of Marcus and Pisier, which had a considerable influence on my own research.
However, now that I understand things better, I feel that p-stable r.v.s are not
intrinsically related to this problem and that it is simply a coincidence that they
happen to have a tail in u−p, so that one could argue that bringing them to bear on
this question is a “trick” rather than a method and is somewhat misleading.



286 7 Random Fourier Series and Trigonometric Sums

Consider independent symmetric r.v.s ηi . We have (basically) controlled
E supt∈T |

∑
i aiηiχi(t)| using characteristics of T which involve a family of

distances. One could ask for which r.v.s ηi these characteristics can be expressed
in function of a single distance. While we have not tried to prove this, it seems
that, besides the case E|ηi |2 < ∞, the only case is the case of the tails in u−p (the
characteristics are then expressed using the distance dp; see (7.90) and (7.92)). This
is one reason why this case has some importance.

I will end by a personal touch. I have been thinking about random Fourier series
for over 35 years, and it is quite amazing that I could still make progress after all
these efforts.



Chapter 8
Partitioning Scheme and Families
of Distances

In the previous chapter, in the setting of random Fourier series, we introduced the
idea that it does not suffice to use one single distance to control certain stochastic
processes, but that a “whole family of distances is required”; see (7.63). The
situation was however made easier by translation invariance, in the sense that
covering numbers provide an accurate description of the “size” of the space with
respect to these distances. This will no longer be the case in general. For an accurate
description, we need to generalize to tools of Chap. 2 to “families of distances”. In
Sect. 8.1 we generalize to the setting of “families of distances” the first partitioning
scheme of Sect. 2.9, and the reader needs first to master that result. In Sect. 8.3 we
will apply this tool to the study of “canonical processes”. In order to study canonical
processes, we first need precise estimates on the tails of certain r.v.s, and these are
the goal of Sect. 8.2. The present section can be seen as a far-reaching generalization
of the majorizing measure theorem 2.10.1, but none of the further material depends
on it.

8.1 The Partitioning Scheme

We consider a family of maps (ϕj )j∈Z, with the following properties:

ϕj : T × T → R
+ ∪ {∞} , ϕj+1 ≥ ϕj ≥ 0 , ϕj (s, t) = ϕj(t, s) . (8.1)

Such maps were of fundamental use in the previous chapter; see (7.63). In many of
our applications, the maps ϕj will be squares of distances and will satisfy a version
of the triangle inequality. We however do not assume that this is the case: in the
setting of Sect. 8.3 such an inequality is not satisfied.
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We define

Bj (t, c) = {s ∈ T ; ϕj (t, s) ≤ c} .

We recall that a functionalF on a set T is a non-decreasing map from the subsets
of T to R

+. We consider functionals Fn,j on T for n ≥ 0, j ∈ Z. We assume

Fn+1,j ≤ Fn,j ; Fn,j+1 ≤ Fn,j . (8.2)

We will assume that the functionalsFn,j satisfy a “growth condition” very similar
in spirit to Definition 2.8.3. This condition involves as main parameter an integer
κ ≥ 5. We set r = 2κ−3, so that r ≥ 4. The role of r is as in (2.76), the larger r , the
weaker the growth condition.1

Definition 8.1.1 We say that the functionals Fn,j satisfy the growth condition (for
r) if the following occurs. Consider any j ∈ Z, any n ≥ 1 and m = Nn. Consider
any sets (H�)1≤�≤m that are separated in the following sense: There exist points
u, t1, . . . , tm in T for which H� ⊂ Bj+2(t�, 2n+κ ) and

∀�, �′ ≤ m , � �= �′ , ϕj+1(t�, t�′) ≥ 2n+1 , (8.3)

∀� ≤ m , t� ∈ Bj (u, 2n) . (8.4)

Then

Fn,j

( ⋃

�≤m
H�

)
≥ 2nr−j−1 +min

�≤mFn+1,j+1(H�) . (8.5)

We have not made assumptions on how ϕj relates to ϕj+1; but we have little
chance to prove (8.5) unless Bj+2(t�, 2n+κ ) is quite smaller than Bj+1(t�, 2n+1).

As we already stressed, the best way to illustrate a statement about families of
distances is to carry out the case where

ϕj (s, t) = r2jd(s, t)2 (8.6)

for a distance d on T . Denoting by B(t, b) the ball for d of center t and radius b, we
then have

Bj (t, c) = B(t, r−j
√
c) .

1 The reason why we take r of the type r = 2κ−3 for an integer κ is purely for technical
convenience.
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Thus in (8.3) we require that

∀�, �′ ≤ m , � �= �′ , d(t�, t�′) ≥ 2(n+1)/2r−j−1 := a . (8.7)

On the other hand,

Bj+2(t�, 2n+κ ) = B(t�, 2(n+κ)/2r−j−2) = B(t�, ηa) ,

where η := 2(κ−1)/2/r = 2/
√
r . Thus the condition H� ⊂ Bj+2(t�, 2n+κ ) means

that H� ⊂ B(t�, ηa). As r gets larger, η gets smaller, and recalling (8.7), this means
that the sets H� become better separated, in the sense that they become smaller
compared to their mutual distances. Also, (8.5) reads as

Fn,j

( ⋃

�≤m
H�

)
≥ 2(n−1)/2a +min

�≤mFn+1,j+1(H�) ,

which strongly resembles (2.77). Thus, we should think of the term r−j−1 in the
right-hand side of (8.5) as a normalization factor and the condition (8.5) as being
uniform over j .

Theorem 8.1.2 Assume that the functionals Fn,j are as above and in particular
satisfy the growth condition of Definition 8.1.1 and that, for some j0 ∈ Z, we have

∀s, t ∈ T , ϕj0(s, t) ≤ 1 . (8.8)

Assume also that2

∀s, t ∈ T , ∀j ∈ Z , ϕj+1(s, t) ≥ rϕj (s, t) . (8.9)

Then there exists an admissible sequence (An) and for each A ∈ An an integer
jn(A) ∈ Z and a point tn,A ∈ T such that

A ∈ An , C ∈ An−1 , A ⊂ C ⇒ jn−1(C) ≤ jn(A) ≤ jn−1(C)+ 1 (8.10)

∀t ∈ T ,
∑

n≥0

2nr−jn(An(t)) ≤ L(rF0,j0(T )+ r−j0) (8.11)

∀n ≥ 0 , ∀A ∈ An ,A ⊂ Bjn(A)(tn,A, 2n) . (8.12)

2 In [132] the present theorem is stated without assuming this condition but the proof given there is
in error. The condition (8.9) is a very mild extra hypothesis, since in the separation condition, we
have already implicitly assumed that Bj+2(t�, 2n+κ ) = Bj+2(t�, (4r)2n+1) is quite smaller than
Bj+1(t�, 2n+1).
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Let us stress that we do not require that tn,A ∈ A. Let us also note the new feature
of (8.12) compared to our previous constructions. We do not control the size of the
elements A of An by requiring that they are of “small diameter” (in the sense of
controlling ϕjn(A)(s, t) from above for all s, t ∈ A), but by the condition (8.12),
requiring that they are contained “in a small ball”. This twist is required due to the
possible failure of (any form of) the triangle inequality for the “distance” ϕjn(A).

To illustrate this result, we again carry out the case (8.6) (although in that case we
do not have problems with the triangle inequality). Then (8.8) means that Δ(T , d) ≤
r−j0 , while (8.12) implies Δ(A, d) ≤ 2r−jn(A)2n/2. Moreover (8.11) implies

∀t ∈ T ,
∑

n≥0

2n/2Δ(An(t), d) ≤ L(rF0,j0(T )+ r−j0) .

Taking for j0 the largest integer such that Δ(T , d) ≤ r−j0 , we get

γ2(T , d) ≤ Lr
(
F0,j0(T )+Δ(T , d)

)
,

which is very similar to Theorem 2.9.1.
The proof of Theorem 8.1.2 relies on the following, where again the functionals

are as above:

Lemma 8.1.3 Consider a set C ⊂ T , and assume that for some integers j ∈ Z and
n ≥ 1 and for some u ∈ T , we have C ⊂ Bj (u, 2n). Then we can find a partition
(A�)�≤m of C, where m = Nn, such that for each � ≤ m we have either

∃t� ∈ C,A� ⊂ Bj+1(t�, 2n+1) (8.13)

or else

2n−1r−j−1 + sup
s∈A�

Fn+1,j+1(A� ∩ Bj+2(s, 2n+κ )) ≤ Fn,j (C) . (8.14)

Proof Consider the set

D := {s ∈ C ; 2n−1r−j−1 + Fn+1,j+1(C ∩ Bj+2(s, 2n+κ )) > Fn,j (C)} .

As in Lemma 2.9.4, it follows from (8.5) that D can be covered by < m balls of the
type Bj+1(t�, 2n+1). Thus we can partition D in < m sets A� which satisfy (8.13):
A� ⊂ Bj+1(t�, 2n+1), t� ∈ C. The required partition consists of these sets together
with the set C \D, which automatically satisfies (8.14). �
Proof of Theorem 8.1.2 Let us repeat that the reader should be comfortable with
the proof of Theorem 2.9.1 as many features here are nearly identical. To start the
construction, we define A0 = {T }, j0(T ) = j0, and take any point of T for t0,A0 .

To construct An+1 once An has been constructed, to each element C of An, we
apply Lemma 8.1.3 with j = jn(C) and u = tn,C to split C into m = Nn pieces
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A1, . . . , Am. (Thus, the sequence (An) is admissible since N2
n ≤ Nn+1.) Let A be

one of these sets.
When A satisfies (8.14), we set jn+1(A) = j = jn(C) and tn+1,A = tn,C so

that (8.4) for A follows from the same relation for C.
When A = A� satisfies (8.13), we define instead jn+1(A) = j + 1 and tn+1,A =

t�. Thus (8.12) holds for A and n+1. Our construction satisfies the further important
property that

A ∈ An+1, C ∈ An,A ⊂ C, jn+1(A) = jn(C)⇒ tn+1,A = tn,C (8.15)

A ∈ An+1, C ∈ An,A ⊂ C, jn+1(A) = jn(C)+ 1 ⇒ tn+1,A ∈ C . (8.16)

Let us now prove that

A ∈ An′ , C ∈ An, n
′ > n,A ⊂ C, jn′(A) > jn(C)⇒ tn′,A ∈ C . (8.17)

For n ≤ s ≤ n′ let us denote by As the unique element of As with A ⊂ As , so that
An′ = A and An = C. Let n′′ be the largest integer with jn′′(An′′ ) < jn′(A), so that
n ≤ n′′ < n′. Thus for n′′ + 1 ≤ k ≤ n′, we have jk(Ak) = jn′(An′). The value of
jk(Ak) does not increase over this interval, and as a consequence (8.15), the value
of tk,Ak does not change over this interval, i.e., it holds that tn′,A = tn′′+1,An′′+1

.
Furthermore from (8.16), we have tn′′+1,An′′+1

∈ An′′ ⊂ An = C, proving (8.17).
Since (8.10) holds by construction, it remains only to prove (8.11). Let us fix

once and for all a point t ∈ T , and to lighten notation, let j (n) = jn(An(t)) and
a(n) = 2nr−j (n), so that we have to bound

∑
n≥0 a(n). Consider the set

J = {0} ∪ {n > 0 ; j (n− 1) = j (n) , j (n+ 1) = j (n)+ 1
}
,

and let us enumerate J as 0 = n0 < n1 < n2 . . ., so that j (nk+1) ≥ j (nk + 1) =
j (nk) + 1. Since a(n + 1) = 2rj (n)−j (n+1)a(n), Lemma 2.9.5 used for α = 2
implies that

∑
n≥0 a(n) ≤ L

∑
n∈J a(n) (as in (2.91)). We apply a second time

Lemma 2.9.5 with α = 2 to the sequence (a(n))n∈J . Defining

I = {0} ∪ {nk , k ≥ 1 ; ∀ � > 1 , � �= k , a(n�) ≤ a(nk)2|k−�|} ,

Lemma 2.9.5 implies
∑

n∈J a(n) ≤ 4
∑

n∈I a(n), and it suffices to bound this latter
sum.

Consider then nk ∈ I , so that a(nk+1) ≤ 2a(nk) i.e.

2nk+1r−j (nk+1) ≤ 2nk+1r−j (nk) , (8.18)

Thus n∗ := nk+1 + 1 satisfies

j (n∗) = j (nk+1 + 1) = j (nk+1)+ 1 ≥ j (nk)+ 2 (8.19)
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and

An∗(t) ⊂ Bj(n∗)(s, 2n
∗
) ,

where s = tn∗,An∗ (t) ∈ Ank (t) by (8.17). We can also rewrite (8.18) as

2n
∗
r−j (n∗)+j (nk)+2 ≤ r2nk+2 = 2nk+κ−1 . (8.20)

Now, as a consequence of (8.9), we have Bj+1(s, u) ⊂ Bj (s, u/r) and thus, using
also (8.20) in the last inequality,

Bj(n∗)(s, 2n
∗
) ⊂ Bj(nk)+2(s, 2n

∗
r−j (n∗)+j (nk)+2) ⊂ Bj(nk)+2(s, 2nk+κ−1) .

Since An∗(t) ⊂ Ank(t), we then have

Fnk,j (nk)+1(An∗(t)) ≤ Fnk,j (nk)+1(Ank (t) ∩ Bj(nk)+2(s, 2nk+κ−1)) . (8.21)

Assuming now k ≥ 1, we have j (nk − 1) = j (nk) so that setting n = nk − 1, we
have j (n + 1) = j (n). It follows by construction that when we split C = An(t)

according to Lemma 8.1.3, Ank(t) = An+1(t) is a piece A� that satisfies (8.14), so
that in particular

1

4r
a(nk)+ sup

s∈Ank
(t)

Fnk,j (nk)+1(Ank (t) ∩ Bj(nk)+2(s, 2nk+κ−1))

≤ Fnk−1,j (nk)(Ank−1(t)) . (8.22)

It then follows from (8.21) that

1

4r
a(nk) ≤ Fnk−1,j (nk)(Ank−1(t))− Fnk,j (nk)+1(An∗(t)) . (8.23)

Let now f (k) := Fnk,j (nk)(Ank (t)). Since nk−1 ≤ nk − 1 we have Ank−1(t) ⊂
Ank−1(t). Since j (nk) ≥ j (nk−1), we have, using (8.2),

Fnk−1,j (nk)(Ank−1(t)) ≤ f (k − 1) .

Since n∗ ≤ nk+2 we have Ank+2(t) ⊂ An∗(t). Since nk ≤ nk+2 and j (nk) + 1 =
j (nk+1) ≤ j (nk+2) it holds that Fnk,j (nk)+1(An∗(t)) ≥ f (k + 2), so that (8.23)
implies

1

4r
a(nk) ≤ f (k − 1)− f (k + 2) ,
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and the proof follows as usual, by summing this inequality for nk ∈ I to bound∑
n∈I a(n), using also that j (0) = j0 and using also a(0) = r−j0 . �

8.2 Tail Inequalities

Consider independent symmetric r.v.s (Yi)i≥1. Assume that we control the tails
of each of them. How do we control the tails of a sum

∑
i≥1 aiYi? Let us start

with a particularly instructive case. The following is a simple consequence of
Lemma 6.4.5:

Lemma 8.2.1 Consider i.i.d. copies (Yi)i≥1 of a symmetric r.v. Y which satisfies
the following condition:

∀u ≥ 0 , P(|Y | ≥ u) ≤ 2 exp(−u) . (8.24)

Then for numbers (ti )i≥1 and any u > 0 we have

P
(∣
∣
∣
∑

i≥1

tiYi

∣
∣
∣ ≥ u

)
≤ 2 exp

(
− 1

L
min

( u2

∑
i≥1 t

2
i

,
u

maxi≤k |ti |
))

. (8.25)

Exercise 8.2.2 Assuming now that rather than (8.24), we have

P(|Y | ≥ u) ≤ 2 exp(−up) (8.26)

for some p ≥ 1. Denote by q the conjugate exponent of p. Prove that for p ≤ 2 we
have

P
(∣
∣
∣
∑

i≥1

tiYi

∣
∣
∣ ≥ u

)
≤ 2 exp

(
− 1

K
min

( u2

∑
i≥1 t

2
i

,
up

(
∑

i≥1 |ti |q)p/q
))

(8.27)

whereas if p > 2

P
(∣
∣
∣
∑

i≥1

tiYi

∣
∣
∣ ≥ u

)
≤ 2 exp

(
− 1

K
max

( u2

∑
i≥1 t

2
i

,
up

(
∑

i≥1 |ti |q)p/q
))

. (8.28)

In parallel with the way we defined Bernoulli processes, one may now define a
canonical process based on the r.v.s Yi by

Xt =
∑

i≥1

tiYi (8.29)
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for t ∈ �2. Assuming (8.24), combining (8.25) and Theorem 4.5.13 we obtain

E sup
t∈T

Xt ≤ L(γ2(T , d2)+ γ1(T , d∞)) . (8.30)

When 1 ≤ p ≤ 2, under (8.26) one obtains similarly

E sup
t∈T

Xt ≤ L(γ2(T , d2)+ γp(T , dq)) . (8.31)

When p ≥ 2, under (8.26), we obtain the bounds E supt∈T Xt ≤ Kγ2(T , d2) and
E supt∈T Xt ≤ Kγp(T , dq). One may then interpolate between these bounds to
obtain

E sup
t∈T

Xt ≤ K inf
{
γ2(T1, d2)+ γp(T2, dq) ; T ⊂ T1 + T2

}
. (8.32)

This is very similar to the bound (6.10) (see (6.9)) on Bernoulli processes.3 The
obvious question is whether the previous bounds can be reversed when (8.26) is
optimal, say

P(|Y | ≥ u) = exp(−up) . (8.33)

The author proved this in [113]. These results were then generalized by R. Latała
[48], who considers r.v.s with far more general tail conditions than (8.26). Latała’s
results are the object of the rest of this chapter. Latała’s work often displays a very
high level of sophistication, and this is certainly the case here.

Throughout this section and the next, we consider independent symmetric r.v.s
(Yi)i≥1. We assume that the functions

Ui(x) = − logP(|Yi | ≥ x) (8.34)

are convex. In the important special case (8.33), we have Ui(x) = xp. Since it is
only a matter of normalization, we assume that Ui(1) = 1. Since Ui(0) = 0 we then
have U ′

i (1) ≥ 1 by convexity.
In the remaining of this section, we provide the proper generalization of (8.27)

and (8.28). A first idea “is to redefine the function Ui as x2 for −1 ≤ x ≤ 1”. In
order to preserve convexity, we consider the function Ûi(x) (defined on all R) given
by

Ûi(x) =
{

x2 if 0 ≤ |x| ≤ 1

2Ui(|x|)− 1 if |x| ≥ 1 ,
(8.35)

3 Bernoulli process, which can be thought of as the “limiting case p = ∞′′, motivated the present
investigation.
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so that this function is convex. Given u > 0, we define

Nu(t) = sup
{∑

i≥1

tiai ;
∑

i≥1

Ûi (ai) ≤ u
}
. (8.36)

Proposition 8.2.3 If u > 0 , v ≥ 1, the r.v. Xt =∑i≥1 tiYi satisfies

P(Xt ≥ LvNu(t)) ≤ exp(−uv) . (8.37)

To get a feeling of what happens, let us first carry out the meaning of Nu(t) in
simple cases. The simplest case is when Ui(x) = x2 for all i. It is rather immediate
then that x2 ≤ Ûi(x) ≤ 2x2 and

√
u/2‖t‖2 ≤ Nu(t) ≤ √u‖t‖2, (8.38)

and (8.37) takes the less mysterious form P(Xt ≥ Lv
√
u‖t‖2) ≤ exp(−uv).

The second simplest example is the case where for all i we have Ui(x) = x for
x ≥ 0. In that case we have |x| ≤ Ûi(x) = 2|x| − 1 ≤ x2 for |x| ≥ 1. Thus
Ûi(x) ≤ x2 and Ûi(x) ≤ 2|x| for all x ≥ 0, and hence

∑

i≥1

a2
i ≤ u⇒

∑

i≥1

Ûi (ai) ≤ u

and

∑

i≥1

2|ai| ≤ u⇒
∑

i≥1

Ûi (ai) ≤ u .

Consequently, we have Nu(t) ≥ √
u‖t‖2 and Nu(t) ≥ u‖t‖∞/2. Moreover, if∑

i≥1 Ûi(ai) ≤ u, writing bi = ai1{|ai |≥1} and ci = ai1{|ai |<1} we have
∑

i≥1 |bi| ≤
u (since Ûi(x) ≥ |x| for |x| ≥ 1) and

∑
i≥1 c

2
i ≤ u (since Ûi (x) ≥ x2 for |x| ≤ 1).

Consequently

∑

i≥1

tiai =
∑

i≥1

tibi +
∑

i≥1

tici ≤ u‖t‖∞ +√u‖t‖2 ,

and we have shown that

1

2
max(u‖t‖∞,

√
u‖t‖2) ≤ Nu(t) ≤ (u‖t‖∞ +√u‖t‖2) , (8.39)

and (8.37) means that

P(Xt ≥ Lv(
√
u‖t‖2 + u‖t‖∞)) ≤ exp(−uv) ,

which is just another way to write (8.25).
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We start the proof of the tail estimate (8.37) along the standard Cramer-Chernoff
method:

P
(∑

i≥1

tiYi ≥ u
)
≤ inf

λ>0
exp

(
− uλ+

∑

i≥1

logE expλtiYi
)
, (8.40)

but the rest of the argument is not standard. To use (8.40) we first need to estimate
E expλYi . Since we control the tails of Yi , this is not going to be very difficult. For
λ ≥ 0 we define

Vi(λ) = sup
x
(λx − Ûi(x)) . (8.41)

Since the function Ûi is convex, the limit λi := limx→∞ Ûi(x)/x ∈ [1,∞] exists
and Vi(λ) < ∞ for λ < λi . Note also that obviously Vi is an increasing function
of λ.

Lemma 8.2.4 For λ ≥ 0 we have

E expλYi ≤ expVi(Lλ) . (8.42)

Proof Let us first observe (taking x = 0 in (8.41)) that Vi ≥ 0, and Vi is convex
with Vi(0) = 0. Taking x = λ/2, and since Ûi(x) = x2 for |x| < 1, we get

λ ≤ 2 ⇒ Vi(λ) ≥ λ2

4
(8.43)

and taking x = 1 that

Vi(λ) ≥ λ− 1 . (8.44)

Since U ′
i (1) ≥ 1, for x ≥ 1 we have Ui(x) ≥ x, so that by (8.34) we have

P(|Yi | ≥ x) ≤ e−x and hence (using, e.g., that x2 ≤ L exp |x|/6),

EY 2
i exp

|Yi |
2
≤ L .

The elementary inequality ex ≤ 1+ x + x2e|x| yields that, if λ ≤ 1/2,

E expλYi ≤ 1+ λ2EY 2
i expλ|Yi | ≤ 1+ Lλ2 ≤ expLλ2 . (8.45)

Now since λ ≤ 1/2, we have λ2 ≤ 4Vi(λ), and since Vi is convex, Vi ≥ 0, and
Vi(0) = 0, we have 4LVi(λ) ≤ Vi(4Lλ), so that Lλ2 ≤ Vi(4Lλ). This completes
the proof of (8.42) in the case λ ≤ 1/2.
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Assume now that λ ≥ 1/2, and observe that

E expλ|Yi | = 1+ λ

∫ ∞

0
expλx P(|Yi | ≥ x)dx

= 1+ λ

∫ ∞

0
exp(λx − Ui(x))dx . (8.46)

We will prove that, for x ≥ 0,

λx − Ui(x) ≤ Vi(6λ)

2
− λx . (8.47)

Combining with (8.46), this yields

E expλ|Yi | ≤ 1+ λ

∫ ∞

0
exp

(Vi(6λ)

2
− λx

)
dx = 1+ exp

Vi(6λ)

2
.

Now Vi(6λ) ≥ Vi(3) ≥ 2 (using (8.44) in the last inequality), so that 1 +
exp(Vi(6λ))/2 ≤ exp(Vi(6λ)), completing the proof of (8.42).

To prove (8.47) we first consider the case where x ≤ 1. Then 4λx ≤ 4λ, 4λ ≤
6λ−1 (since λ ≥ 1/2), and 6λ−1 ≤ Vi(6λ) by (8.44), so that 4λx ≤ Vi(6λ). Thus
λx ≤ Vi(6λ)/2− λx, and we have

λx − Ui(x) ≤ λx ≤ Vi(6λ)

2
− λx .

When x ≥ 1 we have Ui(x) ≥ Ûi(x)/2 and then

λx − Ui(x) ≤ λx − Ûi(x)

2
≤ Vi(4λ)

2
− λx

because 4λx−Ûi (x) ≤ Vi(4λ) by definition of Vi . Since Vi(4λ) ≤ Vi(6λ) the proof
is complete. �
Lemma 8.2.5 For any u > 0 we have

∑

i≥1

Vi

( u|ti |
Nu(t)

)
≤ u .

Proof Recalling the definition (8.41) of Vi , it suffices to show that given numbers
xi ≥ 0, we have

∑

i≥1

u|ti |xi
Nu(t)

−
∑

i≥1

Ûi (xi) ≤ u . (8.48)
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If
∑

i≥1 Ûi(xi) ≤ u, then by definition (8.36) of Nu(t), we have
∑

i≥1 |ti |xi ≤
Nu(t) so we are done since

∑
i≥1 Ûi(xi) ≥ 0. If

∑
i≥1 Ûi (xi) = θu with θ > 1,

then (since Ûi(0) = 0 and Ûi is convex) we have
∑

i≥1 Ûi(xi/θ) ≤ u, so that by
definition of Nu(t),

∑
i≥1 |ti |xi ≤ θNu(t) and the left-hand side of (8.48) is in fact

≤ 0. �
Lemma 8.2.6 If v ≥ 1 we have

Nuv(t) ≤ vNu(t) . (8.49)

Proof Consider numbers ai with
∑

i≥1 Ûi (ai) ≤ uv. By convexity of Û for v ≥ 1,

we have Ûi (ai/v) ≤ Ûi(ai)/v, so that
∑

i≥1 Ûi(ai/v) ≤ u. By definition of Nu(t),
we then have

∑
i≥1 tiai/v ≤ Nu(t), i.e.,

∑
i≥1 tiai ≤ vNu(t). The definition of

Nuv(t) then implies (8.49). �
Proof of Proposition 8.2.3 Since by Lemma 8.2.6 we have vNu(t) ≥ Nvu(t), we
can assume v = 1. Lemma 8.2.4 implies

P(Xt ≥ y) ≤ exp(−λy)E expλXt

≤ exp
(− λy +

∑

i≥1

Vi(L0λ|ti |)
)
.

We choose y = 2L0Nu(t) , λ = 2u/y, and we apply Lemma 8.2.5 to get

−λy +
∑

i≥1

Vi(L0λ|ti |) ≤ −2u+ u = −u . �

We now define

B(u) = {t ; Nu(t) ≤ u} . (8.50)

These sets will play an essential part in the rest of the chapter.

Corollary 8.2.7 If u ≥ 1 and t ∈ B(u), we have ‖Xt‖u ≤ Lu.4

Proof By definition of B(u) we have Nu(t) ≤ u. From (8.37) for v ≥ 1 we have
P(|Xt | ≥ L1vu) ≤ 2 exp(−uv). The r.v. Y = |Xt |/L1 then satisfies P(Y ≥ w) ≤
2 exp(−w) for w ≥ u. We write Y = Y1 + Y2 where Y1 = Y1{Y≤u} and Y2 =
Y1{Y>u}. Thus P(Y2 ≥ w) ≤ 2 exp(−w) for w > 0, so that ‖Y2‖u ≤ Lu by (2.22).
And we have |Y1| ≤ u so that ‖Y1‖u ≤ u. �

4 Here ‖Xt‖u is the Lp norm for p = u.
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Since the sets B(u) are so important in the sequel, let us describe them in some
simple cases. We denote by Bp(0, v) the balls in �p for 1 ≤ p ≤ ∞. When Ui(x) =
x2 for all i and x, (8.38) implies

B2(0,
√
u) ⊂ B(u) ⊂ B2(0,

√
2u) . (8.51)

When Ui(x) = x for all i and x, (8.39) implies

1

2
(B∞(0, 1) ∩ B2(0,

√
u)) ⊂ B(u) ⊂ 2(B∞(0, 1) ∩ B2(0,

√
u)) . (8.52)

The third simplest example is the case where for some p ≥ 1 and for all i, we
have Ui(x) = U(x) = xp for x ≥ 0. The case 1 ≤ p ≤ 2 is very similar to the
case p = 1, so we consider only the case p > 2, which is a little bit trickier. Then
Û(x) = 2|x|p− 1 for |x| ≥ 1. In particular Û(x) ≥ x2 and Û(x) ≥ |x|p. Therefore

Cu :=
{
(ai)i≥1 ;

∑

i≥1

Û(ai) ≤ u
}
⊂ Bp(0, u

1/p) ∩ B2(0, u
1/2) . (8.53)

Using now that Û(x) ≤ 2|x|p + x2 we obtain

1

2
B2(0,

√
u) ∩ 1

2
Bp(0, u1/p) ⊂ Cu . (8.54)

Thus, from (8.53) and (8.54) we have obtained a pretty accurate description of Cu,
and the task is now to translate it in a description of B(u). For this we will appeal to
duality and the Hahn-Banach theorem. In order to minimize technicalities we will
now pretend that we work only with finite sums

∑
i≤n Yi (which is the important

case). Let us denote by (x, y) the canonical duality of Rn with itself, and for a set
A ⊂ R

n, let us define its polar set A◦5 by

A◦ = {y ∈ R
n ; ∀x ∈ A, (x, y) ≤ 1} . (8.55)

Lemma 8.2.8 We have B(u) = uC◦u.

Proof Combine the definitions (8.36) and (8.50). �
Lemma 8.2.9 If A and B are closed balls6 in R

n and if A◦ + B◦ is closed then

1

2
(A◦ + B◦) ⊂ (A ∩ B)◦ ⊂ A◦ + B◦ . (8.56)

5 Not to be confused with the interior
◦
A of A!

6 A ball A is convex set with non-empty interior and A = −A.
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Proof The proof relies on the so-called bipolar theorem (a consequence of the
Hahn-Banach theorem). This theorem states that for any set A ⊂ R

n, (A◦)◦ is
the closed convex hull of A. It is obvious that (C ∪ D)◦ = C◦ ∩ D◦. Using this
formula for C = A◦ and D = B◦ when A and B are closed convex sets yields
A ∩ B = (A◦ ∪ B◦)◦, so that (A ∩ B)◦ is the closed convex hull of A◦ and B◦. Let
us note that for a ball A, A◦ is a ball so that λA◦ ⊂ A◦ for 0 ≤ λ ≤ 1. Then (8.56)
follows. �

Since B(u) = uC◦u, denoting by q the conjugate exponent of p, it then follows
from (8.53), (8.54), and (8.56) that we have

1

2
(B2(0,

√
u)+ Bq(0, u1/q)) ⊂ B(u) ⊂ 2(B2(0,

√
u)+ Bq(0, u1/q)) . (8.57)

Exercise 8.2.10 Find a complete proof of (8.57), when we no longer deal with finite
sums and which does not use the Hahn-Banach theorem.

8.3 The Structure of Certain Canonical Processes

In this section we prove a far-reaching generalization of Theorem 2.10.1. Recalling
the r.v.s Yi of the previous section, and the definition Xt = ∑

i≥1 tiYi of the
canonical process, we “compute E supt∈T Xt as a function of the geometry of T ”.

Recalling (8.50), given a number r ≥ 4, we define

ϕj (s, t) = inf{u > 0 ; s − t ∈ r−jB(u)} (8.58)

when the set in the right-hand side is not empty and ϕj (s, t) = ∞ otherwise. This
“family of distances” is the right tool to describe the geometry of T .

We first provide upper bounds for E supt∈T Xt .

Theorem 8.3.1 Assume that there exists an admissible sequence (An) of T ⊂ �2,
and for A ∈ An an integer jn(A) ∈ Z such that

∀A ∈ An ,∀s, s′ ∈ A , ϕjn(A)(s, s
′) ≤ 2n . (8.59)

Then

E sup
t∈T

Xt ≤ L sup
t∈T

∑

n≥0

2nr−jn(An(t)) . (8.60)

Proof For s, t ∈ A ∈ An by (8.59) we have s − t ∈ r−jn(A)B(2n), so that by
Corollary 8.2.7 we have ‖Xs − Xt‖2n = ‖Xs−t‖2n ≤ L2nr−jn(A). This means that
then diameter of An(t) for the distance of Lp with p = 2n is ≤ L2nr−jn(A). The
result then follows from Theorem 2.7.14. �
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To illustrate this statement assume first Ui(x) = x2 for each i. Then (and
more generally when Ui(x) ≥ x2/L for x ≥ 1) by (8.51) we have ϕj(s, t) ≤
Lr2j‖s − t‖2

2, so that (8.59) holds as soon as r2jn(A)Δ(A, d2)
2 ≤ 2n/L, where d2

denotes the distance induced by the norm of �2. Taking for jn(A) the largest integer
that satisfies this inequality implies that the right-hand side of (8.60) is bounded
by Lr supt∈T

∑
n≥0 2n/2Δ(An(t), d2). Taking the infimum over the admissible

sequences (An), this yields

E sup
t∈T

Xt ≤ Lrγ2(T , d2) .

Assume next that Ui(x) = x for each i. When ‖s− t‖∞ ≤ r−j /L, (8.52) implies
ϕj (s, t) ≤ Lr2j‖s− t‖2

2, so that (8.59) holds whenever rjn(A)Δ(A, d∞) ≤ 1/L and
r2jn(A)Δ(A, d2)

2 ≤ 2n/L, where d∞ denotes the distance induced by the norm of
�∞. Taking for jn(A) the largest integer that satisfies both conditions yields

r−jn(A) ≤ Lr
(
Δ(A, d∞)+ 2−n/2Δ(A, d2)

)
,

so that (8.60) implies

E sup
t∈T

Xt ≤ Lr sup
t∈T

∑

n≥0

(
2nΔ(An(t), d∞)+ 2n/2Δ(An(t), d2)

)
, (8.61)

and copying the beginning of the proof of Theorem 4.5.13 this implies

E sup
t∈T

Xt ≤ Lr
(
γ2(T , d2)+ γ1(T , d∞)

)
. (8.62)

Let us now turn to the converse of Theorem 8.3.1. Since Ui is convex, Ui(x)

grows at least as fast as linear function. We will assume the following regularity
conditions, which ensures that Ui does not grow too fast: For some constant C0, we
have

∀i ≥ 1 , ∀s ≥ 1 , Ui(2s) ≤ C0Ui(s) . (8.63)

This condition is often called “the Δ2-condition”. We will also assume that

∀i ≥ 1 , U ′
i (0) ≥ 1/C0 . (8.64)

Here, U ′
i (0) is the right derivative at 0 of the function Ui(x).

Theorem 8.3.2 Under conditions (8.63) and (8.64), we can find r0 (depending on
C0 only) and a number K = K(C0) such that when r ≥ r0, for each subset T of �2

there exists an admissible sequence (An) of T and for A ∈ An an integer jn(A) ∈ Z



302 8 Partitioning Scheme and Families of Distances

such that (8.59) holds together with

sup
t∈T

∑

n≥0

2nr−jn(An(t)) ≤ K(C0)rE sup
t∈T

Xt . (8.65)

Together with Theorem 8.3.1, this essentially allows the computation of
E supt∈T Xt as a function of the geometry of T . It is not very difficult to prove
that Theorem 8.3.2 still holds true without condition (8.64), and this is done in [47].
But it is an entirely different matter to remove condition (8.63). The difficulty is of
the same nature as in the study of Bernoulli processes. Now that this difficulty has
been solved for Bernoulli processes, by solving the Bernoulli conjecture, one may
hope that eventually condition (8.63) will be removed.

Let us interpret Theorem 8.3.2 in the case where Ui(x) = x2 for x ≥ 1. In that
case (and more generally when Ui(x) ≤ x2/L for x ≥ 1), we have

ϕj (s, t) ≥ r2j‖s − t‖2
2/L , (8.66)

so that (8.59) implies that Δ(A, d2) ≤ L2n/2r−jn(A) and (8.65) implies

sup
t∈T

∑

n≥0

2n/2Δ(An(t), d2) ≤ LrE sup
t∈T

Xt ,

and hence

γ2(T , d2) ≤ LrE sup
t∈T

Xt . (8.67)

Thus Theorem 8.3.2 extends Theorem 2.10.1.
Next consider the case where Ui(x) = x for all x. Then (8.52) implies (8.66) and

thus (8.67). It also implies that ϕj (s, t) = ∞ whenever ‖s − t‖∞ > 2r−j , because
then rj (s − t) �∈ B(u) whatever the value of u. Consequently, (8.59) implies that
Δ(A, d∞) ≤ Lr−jn(A), and (8.65) yields

γ1(T , d∞) ≤ LrE sup
t∈T

Xt .

Recalling (8.62) (and since here r is a universal constant), we thus have proved
the following very pretty fact:

Theorem 8.3.3 Assume that the r.v.s Yi are independent and symmetric and satisfy
P(|Yi | ≥ x) = exp(−x). Then

1

L
(γ2(T , d2)+ γ1(T , d∞)) ≤ E sup

t∈T
Xt ≤ L(γ2(T , d2)+ γ1(T , d∞)) . (8.68)
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Corollary 8.3.4 If T ⊂ �2 then

γ2(convT , d2)+ γ1(convT , d∞) ≤ L(γ2(T , d2)+ γ1(T , d∞)) . (8.69)

Proof Combine the trivial relation E supt∈convT Xt = E supt∈T Xt with (8.68). �
Research Problem 8.3.5 Give a geometrical proof of (8.69).

A far more general question occurs in Problem 8.3.12. The next two exercises
explore the subtlety of the behavior of the operation “taking the convex hull”
with respect to the functional γ1(·, d∞), but the third exercise, Exercise 8.3.8, is
really important. It makes the Bernoulli conjecture plausible by exhibiting a similar
phenomenon in an easier setting.

Exercise 8.3.6 Consider the canonical basis (tn) of �2, tn = (tn,i)i≥1 with tn,i = 0
for i �= n and tn,n = 1. Give a geometrical proof that if T = {t1, . . . , tN } then
γ1(convT , d∞) is of the same order as γ1(T , d∞) (i.e., logN). Caution: This is not
very easy.

Exercise 8.3.7 Prove that it is not true that for a set T of sequences one has

γ1(convT , d∞) ≤ Lγ1(T , d∞) .

Hint: Consider the set T of coordinate functions on {−1, 1}k.

Exercise 8.3.8 Use (8.57) to prove that in the case Ui(x) = xp, p > 2,
the inequality (8.32) can be reversed. Hint: You need to master the proof of
Theorem 6.7.2.

We now prepare for the proof of Theorem 8.3.2.

Lemma 8.3.9 Under (8.63), given ρ > 0 we can find r0, depending on C0 and ρ

only, such that if r ≥ r0, for u ∈ R
+ we have

B(8ru) ⊂ ρrB(u) . (8.70)

Proof We claim that for a constant C1 depending only on C0 we have

∀u > 0 , Ûi (2u) ≤ C1Ûi(u) . (8.71)

Indeed, it suffices to prove this for u large, where this follows from the Δ2
condition (8.63). Consider an integer k large enough that 2−k+3 ≤ ρ and let
r0 = Ck

1 . Assuming that r ≥ r0, we prove (8.70).
Consider t ∈ B(8ru). Then N8ru(t) ≤ 8ru by definition of B(8ru), so that

according to (8.36) for any numbers (ai)i≥1 we have

∑

i≥1

Ûi(ai) ≤ 8ru⇒
∑

i≥1

aiti ≤ 8ru . (8.72)
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Consider numbers bi with
∑

i≥1 Ûi(bi) ≤ u. Then by (8.71) we have Ûi(2kbi) ≤
Ck

1 Ûi(bi) ≤ rÛi (bi), so that
∑

i≥1 Ûi(2kbi) ≤ ru ≤ 8ru, and (8.72) implies
∑

i≥1 2kbiti ≤ 8ru. Since 2k ≥ 8/ρ we have shown that

∑

i≥1

Ûi(bi) ≤ u⇒
∑

i≥1

bi
ti

ρr
≤ u ,

so that Nu(t/ρr) ≤ u and thus t/ρr ∈ B(u), i.e., t ∈ rρB(u). �
Lemma 8.3.10 If (8.70) holds for ρ ≤ 1, then for all s, t ∈ T and all j ∈ Z, we
have ϕj+1(s, t) ≥ 8rϕj (s, t).

Proof If ϕj+1(s, t) < u then s − t ∈ r−j−1B(u) ⊂ r−jB(u/(8r)) and thus
ϕj (s, t) ≤ u/(8r). Thus ϕj (s, t) ≤ ϕj+1(s, t)/(8r). �
Theorem 8.3.11 Under Condition (8.64) we can find a number 0 < ρ ≤ 1 with the
following property. Consider an integer m ≥ 2. Given any points t1, . . . , tm in �2

and a > 0 such that

� �= �′ ⇒ t� − t�′ �∈ aB(u) (8.73)

and given any sets H� ⊂ t� + ρaB(u), we have

E sup
t∈⋃H�

Xt ≥ a

L
min(u, logm)+min

�≤mE sup
t∈H�

Xt . (8.74)

The proof of this statement parallels that of (2.120). The first ingredient is a
suitable version of Sudakov minoration, proved by R. Latała, [47] asserting that,
under (8.73)

E sup
�≤m

Xt� ≥
a

L
min(u, logm) . (8.75)

The second is a “concentration of measure” result quantifying the deviation of
supt∈H�

Xt from its mean, in the spirit of (2.118) and (6.12). This result relies
on a concentration of measure property for the probability ν of density e−2|x|
with respect to Lebesgue measure and its powers, which was discovered in [106].
Condition (8.64) is used here, to assert that the law of Yi is the image of ν by a
Lipschitz map.

Both of the above results are fairly deep, and none of the arguments required is
closely related to our main topic, so we refer the reader to [113] and [47].

Proof of Theorem 8.3.2 Consider ρ as in Theorem 8.3.11. If r = 2κ−3, where κ

is large enough (depending on C0 only), Lemma 8.3.9 shows that (8.70) holds for
each u > 0. We fix such a value of r , and we prove that the functionals Fn,j (A) =
2L0E supt∈A Xt , where L0 is the constant of (8.74), satisfy the growth condition of



8.3 The Structure of Certain Canonical Processes 305

Definition 8.1.1. Consider n ≥ 1 and points (t�) for � ≤ m = Nn as in (8.3). By
definition of ϕj+1 we have

� �= �′ ⇒ t� − t�′ �∈ r−j−1B(2n+1) . (8.76)

Consider then sets H� ⊂ Bj+2(t�, 2κ+n). By definition of ϕj+2, we have
Bj+2(t�, 2κ+n) = t�+r−j−2B(2κ+n). Using (8.70) for u = 2n (and since 2κ = 8r),
we obtain that B(2κ+n) ⊂ ρrB(2n) and therefore H� ⊂ t� + ρr−j−1B(2n). Since
logm = 2n log 2 ≥ 2n−1, we can then appeal to (8.74) with a = r−j−1 to obtain
the desired relation

Fn,j

( ⋃

�≤m
H�

)
≥ 2nr−j−1 +min

�≤mFn+1,j+1(H�)

that completes the proof of the growth condition.
Let us denote by j0 the largest integer such that

r−j0 > L0E sup
t∈T

Xt , (8.77)

so that

r−j0 ≤ L0rE sup
t∈T

Xt . (8.78)

We prove that (8.8) holds for this value of j0. Indeed, supposing that this is not the
case, and recalling (8.58), we can find t1, t2 ∈ T with t1 − t2 �∈ aB(1) for a = r−j0 .
Then using (8.74) for m = 2 and H1 = {t1/a},H2 = {t2/a} together with the fact
that Xat = aXt yields

a

L0
≤ Emax(Xt1,Xt2) ≤ E sup

t∈T
Xt , (8.79)

which contradicts (8.77) and proves the claim.
Taking into account Lemma 8.3.10 (which ensures that (8.9) is satisfied), we are

thus in a position to apply Theorem 8.1.2 to construct an admissible sequence (An).
Using (8.78), (8.11) implies

∀t ∈ T ,
∑

n≥0

2nr−jn(An(t)) ≤ LrE sup
t∈T

Xt .

To finish the proof, it remains to prove (8.59). By definition of Bj (t, u) and of
ϕj , we have

s ∈ Bj (t, u)⇒ ϕj(s, t) ≤ u⇒ s − t ∈ r−jB(u) .
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Thus (8.12) implies

∀n ≥ 1 , ∀A ∈ An , ∀s ∈ A , s − tn,A ∈ r−jn(A)B(2n) .

Since B(u) is a convex symmetric set, we have

s − tn,A ∈ r−jn(A)B(2n), s′ − tn,A ∈ r−jn(A)B(2n)⇒ s − s′

2
∈ r−jn(A)B(2n)

⇒ ϕjn(A)

( s

2
,
s′

2

)
≤ 2n .

Thus we have shown that

∀n ≥ 1 , ∀A ∈ An , ∀s, s′ ∈ A , ϕjn(A)

( s

2
,
s′

2

)
≤ 2n .

This is not exactly (8.59), but to get rid of the factor 1/2, it would have sufficed to
apply the above proof to 2T = {2t; t ∈ T } instead of T . �

As a consequence of Theorems 8.3.1 and 8.3.2, we have the following geometri-
cal result. Consider a set T ⊂ �2, an admissible sequence (An) of T and for A ∈ An

an integer jn(A) such that (8.59) holds true. Then there is an admissible sequence
(Bn) of convT and for B ∈ Bn an integer jn(B) that satisfies (8.59) and

sup
t∈convT

∑

n≥0

2nr−jn(Bn(t)) ≤ K(C0)r sup
t∈T

∑

n≥0

2nr−jn(An(t)) . (8.80)

Research Problem 8.3.12 Give a geometrical proof of this fact.

This is a far-reaching generalization of Research Problem 2.11.2.
The following generalizes Theorem 2.11.9:

Theorem 8.3.13 Assume (8.63) and (8.64). Consider a countable subset T of �2,
with 0 ∈ T . Then we can find a sequence (xn) of vectors of �2 such that

T ⊂ (K(C0)E sup
t∈T

Xt ) conv({xn ; n ≥ 2} ∪ {0})

and, for each n,

Nlogn(xn) ≤ 1 .
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The point of this result is that, whenever the sequence (xn)n≥2 satisfies
Nlogn(xn) ≤ 1, then E supn≥2 Xxn ≤ L. To see this, we simply write, using (8.37)
with u = logn in the second inequality, that for v ≥ 2, we have

P
(

sup
n≥2

|Xxn| ≥ Lv
)
≤
∑

n≥2

P(|Xxn | ≥ LvNlog n(xn))

≤
∑

n≥2

exp(−v logn) ≤ L exp(−v/2) . (8.81)

Proof We choose r = r0 depending on C0 only and we consider a sequence of
partitions of T as provided by Theorem 8.3.2. We choose t0,T = 0, and for A ∈
An , n ≥ 1 we select tn,A ∈ An, making sure (as in the proof of Theorem 2.11.9)
that each point of T is of the form tn,A for a certain A and a certain n. For A ∈
An , n ≥ 1, we denote by A′ the unique element of An−1 that contains A. We
define

uA = tn,A − tn−1,A′

2n+1r−jn−1(A′)

and U = {uA;A ∈ An, n ≥ 1}. Consider t ∈ T , so that t = tn,A for some n and
some A ∈ An, and, since A0(t) = T and t0,T = 0,

t = tn,A =
∑

1≤k≤n
tk,Ak(t) − tk−1,Ak−1(t) =

∑

1≤k≤n
2k+1r−jk−1(Ak−1(t))uAk(t) .

Since
∑

k≥0 2kr−jk(Ak(t)) ≤ K(C0)E supt∈T Xt by (8.65), this shows that

T ⊂ (K(C0)E sup
t∈T

Xt) convU .

Next, we prove that N2n+1(uA) ≤ 1 whenever A ∈ An. The definition of ϕj
and (8.59) imply

∀s , s′ ∈ A , s − s′ ∈ r−jn(A)B(2n+1) ,

and the homogeneity of Nu yields

∀s , s′ ∈ A ,N2n+1(s − s′) ≤ r−jn(A)2n+1 .

Since tn,A, tn−1,A′ ∈ A′, using the preceding inequality for n − 1 rather than n and
A′ instead of A, we get

N2n(tn,A − tn−1,A′) ≤ 2nr−jn−1(A
′) ,

and thus N2n(uA) ≤ 1/2, so that N2n+1(uA) ≤ 1 using (8.49).
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Let us enumerate U = (xn)n≥2 in such a manner that the points of the type uA
for A ∈ A1 are enumerated before the points of the type uA for A ∈ A2, etc. Then
if xn = uA for A ∈ Ak , we have n ≤ N0 + N1 + · · · + Nk ≤ N2

k and therefore
logn ≤ 2k+1. Thus Nlog n(xn) ≤ N2k+1(xn) = N2k+1(uA) ≤ 1. �
Key Ideas to Remember

• The ideas of Chap. 2 on how to measure the size of metric space smoothly extend
to the setting of sets provided with families of distances, provided this families
of distances satisfy suitable regularity conditions. These regularity conditions
unfortunately are not satisfied in the most interesting case, that of Bernoulli
processes.

• Nonetheless we can obtain far-reaching generalizations of the majorizing mea-
sure theorem and reach a complete understanding of the size of certain “canonical
processes” which are linear combination of well-behaved (e.g., symmetric
exponential) r.v.s.



Chapter 9
Peaky Part of Functions

9.1 Road Map

The results of this chapter will look technical at first, but they are of central
importance. We introduce a way to measure the size of a set of functions, which
is in a sense a weakening of the quantity γ2(T , d2). The main idea is to replace
the L2 distance by a family of distances obtained by suitable truncation, very much
in the spirit of (7.63). This new measure of size will look mysterious at first, but
we will eventually prove a structure theorem which gives (essentially) equivalent
more geometrical ways to understand it. The first part of this structure theorem is
Theorem 9.2.1 which asserts that controlling the size of the set of functions implies
that the set can be decomposed into a sum of simpler pieces. The converse is stated
in Proposition 9.4.4.

For certain processes which are indexed by a class of functions (such as the
empirical processes of Sect. 6.8), we will later prove that a control of the size of the
process implies a control of the size of the class of functions in precisely the manner
we are going to introduce now. The structure theorems of the present chapter will
then be instrumental in making a more complete description. Furthermore, such
a structure theorem is a key step of the proof of the Latała-Bednorz theorem, the
towering result of this work which we prove in the next chapter.

We advise the reader to review Theorem 6.7.2 at this point.

9.2 Peaky Part of Functions, II

Let us consider a measurable space Ω provided with a positive measure ν.

Theorem 9.2.1 Consider a countable set T of measurable functions on Ω , a
number r ≥ 2, and assume that 0 ∈ T . Consider an admissible sequence of
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partitions (An) of T , and for A ∈ An consider jn(A) ∈ Z, with the following
property, where u > 0 is a parameter:

∀n ≥ 0 , ∀ s, t ∈ A ∈ An ,

∫

|rjn(A)(s(ω)− t (ω))|2 ∧ 1dν(ω) ≤ u2n . (9.1)

Let S := supt∈T
∑

n≥0 2nr−jn(An(t)).1 Then we can write T ⊂ T1 + T2 + T3, where
0 ∈ T1, where

γ2(T1, d2) ≤ L
√
uS , (9.2)

γ1(T1, d∞) ≤ LS , (9.3)

∀t ∈ T2 , ‖t‖1 ≤ LuS , (9.4)

and where moreover

∀t ∈ T3 , ∃s ∈ T , |t| ≤ 5|s|1{2|s|≥r−j0(t)} . (9.5)

To illustrate the meaning of this theorem, we replace (9.1) by the stronger
condition

∀ s, t ∈ A ,

∫

|rjn(A)(s(ω)− t (ω))|2dν(ω) ≤ u2n , (9.6)

which simply means that Δ(A, d2) ≤ √
u2n/2r−jn(A), so that γ2(T , d2) ≤ √

uS.2

Then the previous decomposition is provided by Theorem 6.7.2, and we may even
take T3 = {0}. The point of Theorem 9.2.1 is that (9.1) requires a much weaker
control of the large values of s − t than (9.6). Equation (9.1) says little about the
functions |s|1{|s|≥r−j0(T )}. This is why the term T3 of the decomposition is required.
This term is of secondary importance, and in all our applications it will be easy
to control. It is however very important that the condition (9.5) does not depend
on u. It is also instructive to convince yourself that the case u = 1 implies the
full statement of Theorem 9.2.1, by applying this case to the measure ν′ = ν/u.
Let us also observe that the important case of Theorem 9.2.1 is for ν an infinite
measure, the prime example of which is the counting measure on N. (When, say, ν
is a probability, it is too easy to satisfy (9.1), and it is too easy for a function to be
integrable.)

It is not apparent yet that Theorem 9.2.1 is a sweepingly powerful method to
perform chaining for a Bernoulli process.

1 The idea is of course that the smallest value of S over the preceding choices is the appropriate
measure of the size of T .
2 It is fruitful to think of the quantity S as a generalization of supt

∑
2n/2Δ(An(t), d2)).
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The bad news is that the proof of Theorem 9.2.1 is definitely not appealing. The
principle of the proof is clear, and it is not difficult to follow line by line, but the
overall picture is far from being transparent.

Research Problem 9.2.2 Find a proof of Theorem 9.2.1 that you can explain to
your grandmother.3

Exercise 9.2.3 Isn’t it surprising that there is no dependence in r in (9.2) to (9.5)?
Show that in fact the result for general r can be deduced from the result for r = 2.
Hint: Define j ′n(A) as the largest integer with 2j

′
n(A) ≤ rjn(A).

When we will prove the Bernoulli conjecture, we will need Theorem 9.2.4, a
more general version of Theorem 9.2.1. The statement of Theorem 9.2.4 involves
some technical conditions whose purpose will only become apparent later, but its
proof is exactly the same as that of Theorem 9.2.1. In order to avoid repetition, we
will deduce Theorem 9.2.1 from Theorem 9.2.4 and then prove Theorem 9.2.4.

Theorem 9.2.4 Consider a countable set T of measurable functions on a measured
space (Ω, ν), a number r ≥ 2, and assume that 0 ∈ T . Consider an admissible
sequence of partitions (An) of T . For t ∈ T and n ≥ 0 consider jn(t) ∈ Z and
πn(t) ∈ T . Assume that π0(t) = 0 for each t and that the following properties hold:
First, the values of jn(t) and πn(t) depend only on An(t),

∀s, t ∈ T , ∀n ≥ 0 ; s ∈ An(t)⇒ jn(s) = jn(t) ; πn(s) = πn(t) . (9.7)

The sequence (jn(t))n≥1 is non-decreasing:

∀t ∈ T , ∀n ≥ 0 , jn+1(t) ≥ jn(t) . (9.8)

When going from n to n + 1 the value of πn(t) can change only when the value of
jn(t) increases:

∀t ∈ T , ∀n ≥ 0 , jn(t) = jn+1(t)⇒ πn(t) = πn+1(t) . (9.9)

When going from n to n+ 1, if the value of jn(t) increases, then πn+1(t) ∈ An(t):

∀t ∈ T , ∀n ≥ 0 , jn+1(t) > jn(t)⇒ πn+1(t) ∈ An(t) . (9.10)

For t ∈ T and n ≥ 0 we define Ωn(t) ⊂ Ω as Ω0(t) = Ω if n = 0 and

Ωn(t) =
{
ω ∈ Ω ; 0 ≤ q < n⇒ |πq+1(t)(ω)− πq(t)(ω)| ≤ r−jq (t)

}
. (9.11)

3 I spent a lot of time on this problem. This does not mean that the proof does not exist, simply that
I did not look in the right direction.
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Let us consider a parameter u ≥ 1 and assume that

∀t ∈ T , ∀n ≥ 0 ,

∫

Ωn(t)

|rjn(t)(t (ω)− πn(t)(ω))|2 ∧ 1dν(ω) ≤ u2n . (9.12)

Then we can write T ⊂ T1 + T2 + T3, where 0 ∈ T1, with

γ2(T1, d2) ≤ L
√
u sup

t∈T

∑

n≥0

2nr−jn(t) , (9.13)

γ1(T1, d∞) ≤ L sup
t∈T

∑

n≥0

2nr−jn(t) , (9.14)

∀t ∈ T2 , ‖t‖1 ≤ Lu sup
t∈T

∑

n≥0

2nr−jn(t) , (9.15)

and where moreover

∀t ∈ T3 , ∃s ∈ T , |t| ≤ 5|s|1{2|s|≥r−j0(t)} . (9.16)

Proof of Theorem 9.2.1 We deduce this result from Theorem 9.2.4. We set jn(t) =
max0≤k≤n jk(Ak(t)), and we define

p(n, t) = inf
{
p ≥ 0 ; jp(t) = jn(t)

}
,

so that p(n, t) ≤ n and thus Ap(n,t)(t) ⊃ An(t). Also, by definition of jn(t) for
p = p(n, t), we have

jn(t) = jp(t) = jp(Ap(t)) . (9.17)

For each t ∈ T we define t0,T = 0. For A ∈ An , n ≥ 1, we choose an arbitrary
point tn,A in A. We define

πn(t) = tp(n,t),B where B = Ap(n,t)(t) ,

and we note that π0(t) = 0. When s ∈ An(t) we have Ap(s) = Ap(t) for p ≤ n

and thus p(n, s) = p(n, t) so that πn(s) = πn(t). Also, if jn+1(t) = jn(t) we
have p(n, t) = p(n + 1, t), so that πn(t) = πn+1(t). This proves that (9.7) to (9.9)
hold. Moreover, when jn(t) > jn−1(t) we have p(n, t) = n so that πn(t) = tn,A for
A = An(t), and thus πn(t) ∈ An(t) ⊂ An−1(t), and this proves (9.10). Finally, (9.1)
used for p = p(n, t) and Ap = Ap(t) = Ap(n,t)(t) reads

∀s, s′ ∈ B ,

∫

r2jp(Ap)|s − s′|2 ∧ 1dν ≤ u2p
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and this implies (9.12) since by (9.17) jp(Ap) = jn(t) and πn(t) = tn,B ∈ B. The
proof is complete. �

We turn to the proof of Theorem 9.2.4. The principle of the proof is, given t ∈ T ,
to produce a decomposition t (ω) = t1(ω) + t2(ω) + t3(ω) where one defines the
values t1(ω), t2(ω), t3(ω) from the values πn(t)(ω) for n ≥ 1 and to then check
that the required conditions are satisfied. Despite considerable efforts, the proof
is not really intuitive. Maybe it is unavoidable that the proof is not very simple.
Theorem 9.4.1 is an immediate consequence of Theorem 9.2.1, and it has sweeping
consequences.

Our strategy will be to define t1(ω) as πn(ω)(t)(ω) for a cleverly chosen value of
n(ω).4 To prepare for the construction, we may assume that

sup
t∈T

∑

n≥0

2nr−jn(t) <∞ , (9.18)

and in particular that

∀t ∈ T , lim
n→∞ jn(t) = ∞ . (9.19)

For t ∈ T and ω ∈ Ω , we define

m(t, ω) = inf
{
n ≥ 0 ; |πn+1(t)(ω)− πn(t)(ω)| > r−jn(t)

}

if the set on the right is not empty and m(t, ω) = ∞ otherwise. In words, this is
the first place at which πn(ω) and πn+1(ω) differ significantly. We note from the
definition (9.11) of Ωn(t) that

Ωn(t) = {ω ∈ Ω ; m(t, ω) ≥ n} . (9.20)

Lemma 9.2.5 Under the assumptions of Theorem 9.2.4, if n < m(t, ω) then

∑

n≤m<m(t,ω)

|πm+1(t)(ω)− πm(t)(ω)| ≤ 2r−jn(t) . (9.21)

Proof By definition of m(t, ω), we have

m < m(t, ω)⇒ |πm+1(t)(ω)− πm(t)(ω)| ≤ r−jm(t) . (9.22)

4 One could also attempt to proceed as in the proof of Theorem 6.7.2: to write the chaining identity
t =∑n≥1(πn(t) − πn−1(t)) and to use Lemma 6.7.1 for each of the increments πn(t)− πn−1(t),
with a suitable value of u = u(t, n). This does not seem to make the proof any easier.
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From (9.9), when jm+1(t) = jm(t) we have πm+1(t) = πm(t). Consequently for
m < m(t, ω) we have

|πm+1(t)(ω)− πm(t)(ω)| ≤ r−jm(t)1{jm+1(t)>jm(t)} . (9.23)

Therefore

∑

n≤m<m(t,ω)

|πm+1(t)(ω)− πm(t)(ω)| ≤
∑

m≥n
r−jm(t)1{jm+1(t)>jm(t)} .

The sum on the right is a sum of terms r−j where the values of j are all different.
Since r ≥ 2, this sum is at most twice its largest term. �
When m(t, ω) = ∞ it follows from (9.21) and (9.19) that the sequence (πn(t)(ω))

is a Cauchy sequence. Consequently limn→∞ πn(t)(ω) exists. Let us then define

t1(ω) = πm(t,ω)(t)(ω)

when m(t, ω) <∞ and

t1(ω) = lim
n→∞πn(t)(ω)

if m(t, ω) = ∞. It follows from (9.21) that for n ≤ m < m(t, ω) we have
|πm+1(t)(ω) − πn(t)(ω)| ≤ 2r−jn(t), so that (and since t1(ω) − πn(t)(ω) = 0
for n = m(t, ω))

n ≤ m(t, ω)⇒ |t1(ω)− πn(t)(ω)| ≤ 2r−jn(t) . (9.24)

According to (9.7) the value of j0(t) is independent of t :

∀t ∈ T , j0(t) = j0 . (9.25)

Since π0(t) = 0, (9.24) implies

|t1(ω)| ≤ 2r−j0(t) = 2r−j0 . (9.26)

For t ∈ T , we define

Ξ(t) = {ω ∈ Ω ; |t (ω)| ≤ r−j0/2}

and

t2 := (t − t1)1Ξ(t) , t3 := (t − t1)1Ξ(t)c .



9.2 Peaky Part of Functions, II 315

We define

T1 = {t1 ; t ∈ T } ; T2 = {t2 ; t ∈ T } ; T3 = {t3 ; t ∈ T } .

For ω ∈ Ξ(t)c we have |t (ω)| ≥ r−j0/2, whereas |t1(ω)| ≤ 2r−j0 by (9.26). Thus
for such ω we have |t1(ω)| ≤ 4|t (ω)|. Therefore |t3(ω)| = |t (ω)−t1(ω)| ≤ 5|t (ω)|.
We have proved that |t3| ≤ 5|t|1Ξ(t)c , so that the set T3 satisfies (9.16).

We start the study of T1. The reader would do well to review the proof of
Theorem 6.7.2, since the method we use here is exactly the same as was used there
for the control of T1. The goal is to define a sequence (Un) of sets with cardUn ≤ Nn

which are approximations of T1 both in the L2 and L∞ norm, after which we will
obtain (9.13) from Proposition 2.9.7 and (9.14) through a similar principle. For
n ≥ 0, we define t1

n by

t1
n(ω) = πn∧m(t,ω)(t)(ω) ,

so that

∀ω ∈ Ω , t1(ω) = lim
n→∞ t1

n(ω) . (9.27)

We define our approximating sets

Un := {t1
n ; t ∈ T } .

We will first control the cardinality of Un in the next lemma and then show that
these sets are good approximations of T1 both in the L2 and the L∞ norms.

Lemma 9.2.6 We have cardUn ≤ Nn.

Proof We prove that when s ∈ An(t) then t1
n = s1

n . In other words, for A ∈ An all
the elements t1

n for t ∈ A are the same. Thus cardUn ≤ cardAn ≤ Nn. Consider
s ∈ An(t). Then Aq(s) = Aq(t) for q ≤ n, so that πq(s) = πq(t) by (9.7). The
definition of m(t, ω) shows that for any n′, the points πq(t) for 0 ≤ q ≤ n′ entirely
determine whether or not it is true that m(t, ω) < n′. Consequently, when s ∈ An(t)

we have n ∧m(t, ω) = n ∧m(s, ω) for each ω, so that t1
n = s1

n . �
Now we prove that the sets Un approximate T1 for the L∞ norm. We note that

t1(ω)− t1
n(ω) = 0 if n ≥ m(t, ω), and by (9.21) that if n < m(t, ω), then

|t1(ω)− t1
n(ω)| ≤

∑

n≤m<m(t,ω)

|πm+1(t)(ω)− πm(t)(ω)| ≤ 2r−jn(t) .

Thus ‖t1− t1
n‖∞ ≤ 2r−jn(t), and hence d∞(t1, Un) ≤ 2r−jn(t). Thus (9.14) follows

from the analog of Proposition 2.9.7 for γ1 rather then γ2.
Before we continue, let us explain how we will use (9.12) and (9.10).
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Lemma 9.2.7 We have
∫

Ωn(t)

|rjn(t)(πn+1(t)(ω)− πn(t)(ω))|2 ∧ 1dν(ω) ≤ u2n (9.28)

and

ν(Ωn(t) \Ωn+1(t)) ≤ u2n . (9.29)

Proof To prove (9.28) we may assume that πn(t) �= πn+1(t) so that jn+1(t) >

jn(t) by (9.9). Then (9.10) shows that s := πn+1(t) ∈ An(t). Using (9.12) for s
rather than t , and since πn(s) = πn(t) and jn(s) = jn(t) because s ∈ An(t), we
obtain (9.28). Then (9.29) follows since rjn(t)|πn+1(t) − πn(t)| ≥ 1 on Ωn(t) \
Ωn+1(t). �

We turn to the proof of (9.13). For this we will show that Un approximates T1 for
the L2 norm.

Lemma 9.2.8 We have

‖t1
n+1 − t1

n‖2 ≤ √u2n/2r−jn(t) . (9.30)

Proof First we observe that

t1
n+1 − t1

n = (πn+1(t)− πn(t))1Ωn+1(t) .

Indeed, if ω ∈ Ωn+1(t) = {m(t, ·) ≥ n+ 1}, then t1
n(ω) = πn(t)(ω) and t1

n+1(ω) =
πn+1(t)(ω), while if ω /∈ Ωn+1(t), then m(t, ω) ≤ n and t1

n(ω) = t1
n+1(ω) =

πm(t,ω)(ω).
By definition of m(t, ω) we have |πn+1(t)−πn(t)| ≤ r−jn(t) whenever m(t, ·) ≥

n+ 1, i.e., on Ωn+1(t) by (9.20). Therefore,

‖t1
n+1 − t1

n‖2
2 =

∫

Ωn+1(t)

|πn+1(t)(ω)− πn(t)(ω)|2dν(ω)

≤ r−2jn(t)
∫

Ωn+1(t)

|rjn(t)(πn+1(t)(ω)− πn(t)(ω))|2 ∧ 1dν(ω) ,

so that (9.30) follows from (9.28). �
Proof of (9.13) Combining (9.30) and (9.18) implies that the sequence (t1

q ) is a

Cauchy sequence in L2, so that it converges to its limit, which is t1 from (9.27),
and hence limq→∞ ‖t1 − t1

q‖2 = 0, so that ‖t1 − t1
n‖2 = limq→∞ ‖t1

q − t1
n‖2.
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Consequently

d2(t
1, Un) ≤ ‖t1 − t1

n‖2 = lim
q→∞‖t

1
q − t1

n‖2

≤
∑

m≥n
‖t1

m+1 − t1
m‖2 ≤

√
u
∑

m≥n
2m/2r−jm(t) . (9.31)

Since

∑

n≥0

2n/2
∑

m≥n
2m/2r−jm(t) =

∑

m≥0

2m/2r−jm(t)
∑

n≤m
2n/2 ≤ L

∑

m≥0

2mr−jm(t) ,

we conclude by Proposition 2.9.7 again that (9.13) holds. �
We turn to the proof of (9.15). This is where there are new arguments compared

to the case of Theorem 6.7.2. We define

r(t, ω) = inf
{
n ≥ 0 ; |πn+1(t)(ω)− t (ω)| ≥ 1

2
r−jn+1(t)

}

if the set on the right is not empty and r(t, ω) = ∞ otherwise.

Lemma 9.2.9 Let us define t2
n = (t − t1)1{r(t,·)=n}∩Ξ(t). Then

t2 =
∑

n≥0

t2
n (9.32)

and

‖t2
n‖1 ≤ 3r−jn(t)ν({ω ∈ Ω ; r(t, ω) = n} ∩Ξ(t)) . (9.33)

Proof Let us fix ω ∈ Ξ(t). Then

|π0(t)(ω)− t (ω)| = |t (ω)| ≤ r−j0/2 . (9.34)

By definition of r(t, ω) we have

n < r(t, ω)⇒ |πn+1(t)(ω)− t (ω)| < 1

2
r−jn+1(t) . (9.35)

Consequently, for 0 ≤ n < r(t, ω),

|πn+1(t)(ω)− πn(t)(ω)| ≤ |πn+1(t)(ω)− t (ω)| + |πn(t)(ω)− t (ω)|
≤ 1

2
(r−jn+1(t) + r−jn(t)) ≤ r−jn(t) , (9.36)
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where for n > 0 we use (9.35) for n and n − 1 and for n = 0 we use also (9.34).
Consequently r(t, ω) ≤ m(t, ω). When r(t, ω) = ∞ then m(t, ω) = ∞ so that,
recalling (9.19), by (9.35) we have t (ω) = limn→∞ πn(t)(ω) = t1(ω) and t2(ω) =
t (ω)− t1(ω) = 0. Therefore we have proved that

t2(ω) = t (ω)− t1(ω) = (t (ω)− t1(ω))1{r(t,ω)<∞}

=
∑

n≥0

(t (ω)− t1(ω))1{r(t,ω)=n} . (9.37)

Since this holds for each ω ∈ Ξ(t), we have proved (9.32). Now, when n = r(t, ω),
we have m(t, ω) ≥ n and, using (9.24), |πn(t)(ω) − t1(ω)| ≤ 2r−jn(t). Now, if
n > 0, using (9.35) for n− 1, we have

|t (ω)− πn(t)(ω)| ≤ 1

2
r−jn(t)

and if n = 0 this holds by (9.34). Consequently

|t (ω)− t1(ω)| ≤ |t (ω)− πn(t)(ω)| + |πn(t)(ω)− t1(ω)| ≤ 3r−jn(t) , (9.38)

and this proves (9.33). �
Lemma 9.2.10 Under the assumptions of Theorem 9.2.4, it holds that

ν({ω ∈ Ω ; r(t, ω) = n} ∩Ξ(t)) ≤ Lu2n . (9.39)

Proof Since for ω ∈ Ξ(t) we have r(t, ω) ≤ m(t, ω), using (9.20) we get
{ω; r(t, ω) = n} ∩Ξ(t) ⊂ Ωn(t) and therefore

ν({ω ∈ Ω ; r(t, ω) = n} ∩Ξ(t)) ≤ ν({ω ∈ Ω ; r(t, ω) = n} ∩Ωn+1(t))

+ ν(Ωn(t) \Ωn+1(t)) . (9.40)

Now, since |πn+1(t)(ω)− t (ω)| ≥ r−jn+1(t)/2 when r(t, ω) = n, we have

1

4
ν({ω ∈ Ω ; r(t, ω) = n} ∩Ωn+1(t))

≤
∫

Ωn+1(t)

|rjn+1(t)(πn+1(t)(ω)− t (ω))|2 ∧ 1dν(ω) ≤ u2n+1 ,

using (9.12) for n + 1 rather than n in the last inequality. Combining with (9.29)
completes the proof. �

Combining (9.33) with (9.39) proves that ‖t2
n‖2 ≤ Lu2nr−jn(t). Combining

with (9.32), we have proved (9.15) and completed the proof of Theorem 9.2.4.
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9.3 Philosophy

Let us stress how simple is the decomposition of Theorem 9.2.4. To explain this we
focus on the case where ‖t‖∞ ≤ r−j0(t)/2 for each t (recalling that j0(t) does not
depend on t). Then, recalling (9.11) (and that π0(t) = 0), we have the formulas

t1 =
∑

n≥1

(πn(t)− πn−1(t))1Ωn(t) ; t2 =
∑

n≥0

(t − πn(t))1Ωn(t)\Ωn+1(t) . (9.41)

The main difficulty in the proof of Theorem 9.2.4 is that it does not seem true that
we can easily control

∑
n≥0 ‖(t − πn(t))1Ωn(t)\Ωn+1(t)‖1 (in sharp contrast with the

second proof of Theorem 6.7.2).
It is hard at that stage to really see the power of Theorem 9.2.4, which will

come into full use later. Let us make some comments on this, although the reader
may not fully understand them until she studies Chap. 10. Let us think that we are
actually trying to construct the partitions (An) and the corresponding objects of
Theorem 9.2.4. We have already constructed these objects up to level n, and we try
to construct the next level. We have to ensure the constraint (9.10), but short of that
we are pretty much free to choose πn+1(t) to our liking. The magic is that whatever
our choice, we will drop the partΩn(t)\Ωn+1(t) ofΩ where πn+1(t) is too different
from πn(t). The reason we can do that is that on this set the decomposition is
finished: recalling that we assume for clarity that Ξ(t) = Ω for t and recalling
that Ωn(t) = {m(t, ω) ≥ n}, on the set Ωn(t) \ Ωn+1(t) we have m(t, ω) = n

so that t1 = πn(t) and t2 = t − πn(t). We have already decided the values of t1

and t2! In particular for the (n + 1)-st step of the construction, we are concerned
only with points ω ∈ Ωn(t), and for these points the sequence (πq(t)(ω))q≤n does
not have big jumps. We will take great advantage of this feature in the proof of
Theorem 6.2.8.5

Another point which is quite obvious but needs to be stressed is that in
performing a recursive construction of the (An), we only need to care about
controlling the πn(t), and we do not have to worry “that we might loose information
about t”. If you need to visualize this fact, you may argue as follows. As we
explained, if we know that m(t, ω) ≤ n, we already know what are t1(ω) and
t2(ω) so that we no longer have to worry about this value of ω in the sequel of
the construction. When m(t, ω) ≥ n we may write the peaky part t2(ω) of t at ω as

t2(ω) = t (ω)− πm(t,ω)(t)(ω)

= t (ω)− πn(t)(ω)+ (πn(t)(ω)− πm(t,ω)(t)(ω)) ,

5 Despite the fact that the proof of Theorem 9.2.4 is identical to the proof of Theorem 9.2.1, the
formulation of Theorem 9.2.1, which is due to W. Bednorz and R. Latała, is a great step forward,
as it exactly identifies the essence of Theorem 9.2.1.
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and, in a sense “we have attributed at stage n the part t (ω)−πn(t)(ω) of t (ω) to the
peaky part t2(ω) of t”. (So that we no longer need not think about t itself.)

These considerations may look mysterious now, but they explain why certain
constructions which we perform in Sect. 10.3 keep sufficient information to succeed.

9.4 Chaining for Bernoulli Processes

Our first result is a simple consequence of Theorem 9.2.1. It is a generalization of the
generic chaining bound (2.59) to Bernoulli processes. The sweeping effectiveness
of this result will be demonstrated soon. We consider a number r ≥ 2 and we recall
the quantity b∗(T ) of (6.9).

Theorem 9.4.1 Consider a subset T of �2, and assume that 0 ∈ T . Consider an
admissible sequence of partitions (An) of T , and for A ∈ An consider a number
jn(A) ∈ Z with the following properties, where u ≥ 1 is a parameter:

∀ n ≥ 0 , ∀ x, y ∈ A ∈ An ,
∑

i≥1

|rjn(A)(xi − yi)|2 ∧ 1 ≤ u2n , (9.42)

where x ∧ y = min(x, y). Then

b∗(T ) ≤ L

(

u sup
x∈T

∑

n≥0

2nr−jn(An(x)) + sup
x∈T

∑

i≥1

|xi|1{2|xi |≥r−j0(T )}
)

. (9.43)

Moreover if εi are independent Bernoulli r.v.s, for any p ≥ 1, we have

(
E sup

x∈T
∣
∣
∑

i≥1

xiεi
∣
∣p
)1/p ≤ K(p)u sup

x∈T

∑

n≥0

2nr−jn(An(x))

+ L sup
x∈T

∑

i≥1

|xi|1{2|xi |≥r−j0(T )} . (9.44)

Conditions (9.42) is simply (9.1) in the case where the measure space is N with
the counting measure. Condition (9.42) may also be written as

∀ x, y ∈ A ∈ An ,
∑

i≥1

|xi − yi |2 ∧ r−2jn(A) ≤ u2nr−2jn(A) . (9.45)

The point of writing (9.42) rather than (9.45) is simply that this is more in line with
the generalizations of this statement that we shall study later.
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If, instead of condition (9.45), we had the stronger condition

∀ x, y ∈ A ∈ An ,
∑

i≥1

|xi − yi |2 ≤ u2nr−2jn(A) , (9.46)

this would simply mean that Δ(A) ≤ √
u2n/2r−jn(A) so that then γ2(T ) ≤√

u supx∈T
∑

n≥0 2nr−jn(An(x)) and we would prove nothing more than the generic
chaining bound (2.59). The point of Theorem 9.4.1 is that (9.42) is significantly
weaker than condition (9.46), because it requires a much weaker control on the
large values of xi − yi . It may be difficult at this stage to really understand that this
is a considerable gain, but some comments that might help may be found on page
435.

The proof of Theorem 9.4.1 relies on the following:

Proposition 9.4.2 Under the conditions of Theorem 9.4.1, we can write T ⊂ T1 +
T2 + T3 where 0 ∈ T1 and

γ2(T1, d2) ≤ L
√
u sup
x∈T

∑

n≥0

2nr−jn(An(x)) , (9.47)

γ1(T1, d∞) ≤ L sup
x∈T

∑

n≥0

2nr−jn(An(x)) , (9.48)

∀ x ∈ T2 , ‖x‖1 ≤ Lu sup
x∈T

∑

n≥0

2nr−jn(An(x)) , (9.49)

and

∀ x ∈ T3 , ∃y ∈ T , ∀ i ≥ 1 , |xi| ≤ 5|yi|1{2|yi |≥r−j0(T )} . (9.50)

Proof This follows from Theorem 9.2.1 in the case Ω = N
∗ and where ν is the

counting measure. �
Proof of Theorem 9.4.1 To prove (9.43) we use that T ⊂ T1 + (T2 + T3), so that
by definition of b∗(T ) we have

b∗(T ) ≤ γ2(T1, d2)+ sup
x∈T2+T3

‖x‖1

and we use (9.47), (9.49), and (9.50). To prove (9.44) we show that for j =
1, 2, 3 the quantity (E supx∈Tj |

∑
i≥1 xiεi |p)1/p is bounded by the right-hand side

of (9.44). For j = 1 this follows from (2.66) (using also that 0 ∈ T1), and for
j = 2, 3 this follows from the bound (E supx∈Tj |

∑
i≥1 εixi |p)1/p ≤ supx∈Tj ‖x‖1.

The reason we have a factor u (rather than
√
u) in the right-hand side of (9.43) is
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that we have a factor u in (9.4) and hence in (9.49). As we will see this factor does
not create problems and there is plenty of room. �

The following is a simple consequence of Theorem 9.4.1:

Corollary 9.4.3 Assume that moreover

∀ x ∈ T , ‖x‖∞ < r−j0(T )/2 . (9.51)

Then

b∗(T ) ≤ Lu sup
x∈T

∑

n≥0

2nr−jn(An(x)) . (9.52)

Proof In (9.43) the second term in the right-hand side is identically zero. �
Corollary 9.4.3 is in some sense optimal as the following shows:

Proposition 9.4.4 Assume that 0 ∈ T ⊂ �2. Then we can find a sequence
(An) of admissible partitions of T and for A ∈ An a number jn(A) such that
conditions (9.51) and (9.42) are satisfied for u = 1 and moreover

sup
x∈T

∑

n≥0

2nr−jn(An(x)) ≤ K(r)b∗(T ) . (9.53)

This will be proved in Sect. 10.15. The situation here is the same as for the
generic chaining bound for Gaussian processes. There is no magic wand to discover
the proper choice of the partitions An, and in specific situations this can be done
only by understanding the “geometry of T ”, typically a very challenging problem.

We should point out one of the (psychological) difficulties in discovering the
proof of Theorem 6.2.8 (the Latała-Bednorz theorem). Even though it turns out from
Proposition 9.4.4 that one can find the partitions An such that (9.42) holds, when
proving Theorem 6.2.8, it seems necessary to use partitions with a weaker property,
which replaces the summation over all values of i in (9.42) by the summation over
the values in an appropriate subset Ωn(t) of N∗, as in (9.12) above.

Efficient bounds on random Fourier series as presented in Sect. 7.8.5 were first
discovered as an application of Theorem 9.4.1. The advantage of this method is that
it bypasses the magic of Theorem 7.8.1 while following a conceptually transparent
scheme. It is sketched in the following exercises (the solution of which is given in
the briefest of manners).

Exercise 9.4.5 We consider complex numbers ai and characters χi . We fix a
number r ≥ 4 and we define ψj (s, t) = ∑

i |rj ai(χi(s) − χi(t))|2 ∧ 1. Consider
a parameter w ≥ 1 and for n ≥ 0 set Dn = {s ∈ T ;ψj(s, 0) ≤ w2n}. Assume
that μ(D0) ≥ 3/4 and that μ(Dn) ≥ N−1

n for n ≥ 1. Prove that there is an
admissible sequence of partitions (An) of T and integers j ′n with j ′0 = j0 such
that

∑
n≥0 2nr−j ′n ≤ L

∑
n≥0 2nr−jn and that ψj ′n (s, t) ≤ Lw2n for s, t ∈ A ∈ An.
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Exercise 9.4.6 Under the conditions of the previous exercise show that for each
p ≥ 1 it holds that

(
E sup

s∈T
∣
∣
∑

i

εiai(χi(s)− χi(0))
∣
∣p
)1/p

≤ K(r, p)w
∑

n≥0

2nr−jn +K(r)
∑

i

|ai |1{4|ai |≥r−j0 } . (9.54)

Key Ideas to Remember

• We have introduced a method to measure the size of a set of measurable functions
using a family of distances. Control of this size allows structural information of
the set.

• Control of the size of a set of functions on N allows sharp bounds on the
corresponding Bernoulli process.

9.5 Notes and Comments

Theorem 9.4.1 can be thought as an abstract version of Ossiander’s bracketing
theorem (that we shall prove in Sect. 14.1). The author proved Theorem 9.2.1 (in an
essentially equivalent form) as early as [115] and in the exact form presented here in
[129], but did not understand then its potential as a chaining theorem. The version
of this work at the time the author received [16] contained only Theorem 9.2.1, with
a proof very similar to the proof of Theorem 9.2.4 which we present here.



Chapter 10
Proof of the Bernoulli Conjecture

The present chapter will use to the fullest a number of the previous ideas, and
the reader should have fully mastered Chaps. 2 and 6 as well as the statement of
Theorem 9.2.4.

The overall strategy to prove the Bernoulli conjecture is somewhat similar to the
one we used to prove Theorem 2.9.1: we recursively construct increasing families of
partitions, and we measure the size of the elements of the partitions through certain
functionals. Once this appropriate sequence has been constructed, the required
decomposition will be provided by Theorem 9.2.4.

Just as in the case of the Gaussian case, Theorem 2.10.1, a main tool is the
Sudakov minoration, which now refers to (6.21). In contrast with the Sudakov
minoration in the Gaussian case, (2.116), we cannot use this result unless we control
the supremum norm.

The basic tool to control the supremum norm is the method of “chopping maps”
of Sect. 10.3. In this method to each element t ∈ �2 we associate a new element
t ′ ∈ �2, of which we control the supremum norm. The difficulty is that this operation
decreases the distance, d(t ′, u′) ≤ d(t, u), and some of the information we had
accumulated on the metric space (T , d) is lost in that step. The method may “change
the set T ” (as well as the set of underlying Bernoulli r.v.s) at every step of the
construction, and consequently we will need to change the functional at every step
of the construction. Furthermore, this functional will depend on the element of the
partition we try to split further, a new technical feature.

A main difference between the proof of the Bernoulli conjecture and that
of Theorem 2.9.1 is that instead of having two really different possibilities in
partitioning a set, as in as in Lemma 2.9.4, there will now be three different
possibilities (as expressed in Lemma 10.7.3). A radically new idea occurs here,
which has no equivalent in the previous results, and we start with it in Sect. 10.1.

As the reader will soon realize, the proof of the Bernoulli conjecture is rather
demanding. One reason probably is that there are missing pieces to our understand-
ing. Finding a more transparent proof is certainly a worthy research project. The
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good news however is that understanding the details of this proof is certain not
required to continue reading this book, since the ideas on which the proof relies
will not be met any more. It is however essential to understand well the meaning of
the results of Sect. 10.15, which are the basis of the fundamental results of the next
chapter.

I will not hesitate to state that the Latała-Bednorz theorem is the most magnificent
piece of mathematics I ever came across1 and that I find that it is well worth making
some effort to understand it. Not only several beautiful ideas are required, but the
way they are knitted together is simply breathtaking. I am greatly indebted to Kevin
Tanguy for his help in making this chapter more accessible.

10.1 Latała’s Principle

The principle proved in this section is a key to the entire chapter.2 It was proved first
by Rafał Latała in [49], but it was not obvious at the time how important this is.3

Consider a subset J of N
∗ := N \ {0} and a subset T of �2. Our goal is to

compare the processes (
∑

i≥1 εiti)t∈T and (
∑

i∈J εi ti)t∈T .4 We define bJ (T ) :=
E supt∈T

∑
i∈J εi ti . Thus bJ (T ) ≤ b(T ). It may be the case that bJ (T ) = b(T )

as, for example, when ti = 0 for i �∈ J and t ∈ T . Note that in that case the
diameter of T for the canonical distance d is the same as its diameter for the smaller
distance dJ given by d2

J (s, t) =
∑

i∈J (si − ti)
2. This brings us to consider two

typical (nonexclusive) situations:

• First, the diameter of T for d is about the same as its diameter for dJ .
• Second, bJ (T ) is significantly smaller than b(T ).

Latała’s principle states that if one also controls the supremum norm, the set
T can be decomposed into not too many pieces which satisfy one of these two
conditions.

Proposition 10.1.1 (Latała’s Principle) There exists a constant L1 with the fol-
lowing property. Consider a subset T of �2 and a subset J of N∗. Assume that for
certain numbers c, σ > 0 and an integer m ≥ 2 the following holds:

∀ s, t ∈ T ,
∑

i∈J
(si − ti )

2 ≤ c2 , (10.1)

1 A statement that has to be qualified by the fact that I do not read anything!
2 It is in homage to this extraordinary result that I have decided to violate alphabetical order and
to call Theorem 6.2.8 the Latała-Bednorz theorem. This is my personal decision, and impressive
contributions of Witold Bednorz to this area of probability theory are brought to light in particular
in Chap. 16.
3 The simpler proof presented here comes from [17].
4 The resulting information will allow us to remove some of the Bernoulli r.v.s at certain steps of
our construction.
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t ∈ T ⇒ ‖t‖∞ <
8σ√
logm

. (10.2)

Then provided

c ≤ σ

L1
, (10.3)

we can find m′ ≤ m+ 1 and a partition (A�)�≤m′ of T such that for each � ≤ m′ we
have either5

∃t� ∈ T , A� ⊂ B2(t
�, σ ) , (10.4)

or else6

bJ (A�) ≤ b(T )− σ

L

√
logm . (10.5)

In (10.1) we assume that the diameter of T is small for the small distance dJ .
We then produce these sets A� on which extra information has been gained: they
are either of small diameter for the large distance d = dN∗ as in (10.4), or they
satisfy (10.5). The information of (10.4) and (10.5) are of a different nature. It
is instructive to compare this statement with Lemma 2.9.4. We also note that we
require control in supremum norm through (10.2). Indeed, this control is required
to use the Sudakov minoration for Bernoulli processes (Theorem 6.4.1) which is a
main ingredient of the proof.

Proof Let us fix a point t0 of T and replace T by T − t0. We then have

∀t ∈ T ,
∑

i∈J
t2
i ≤ c2 (10.6)

and

t ∈ T ⇒ ‖t‖∞ <
16σ√
logm

. (10.7)

For t ∈ T set

Yt =
∑

i∈J
εi ti ; Zt =

∑

i �∈J
εi ti , (10.8)

5 As usual the ball B(t�, σ ) below is the ball for the distance d.
6 In fact, all the sets A� satisfy (10.4) except at most one which satisfies (10.5).
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so that

b(T ) = E sup
t∈T

(Yt + Zt) . (10.9)

We may assume that T cannot be covered by m balls of the type B(t, σ ), for the
result is obvious otherwise. It thus makes sense to define

α = inf
F⊂T ,cardF≤mE sup

t∈T \⋃s∈F B(s,σ )

Yt .

To prove the theorem, we shall prove that provided the constant L1 of (10.3) is large
enough, we have

α ≤ b(T )− σ

L

√
logm . (10.10)

Indeed, consider a set F = {t1, . . . , tm} ⊂ T such that

E sup
t∈T \⋃s∈F B(s,σ )

Yt = E sup
t∈T \∪�≤mB(t�,σ )

Yt ≤ b(T )− σ
√

logm/L .

The required partition is then obtained by choosing A� ⊂ B(t�, σ ) for � ≤ m and
Am+1 = T \ ∪�≤mB(t�, σ ).

We turn to the proof of (10.10). By definition of α, given F ⊂ T with cardF ≤
m, the r.v.

W := sup
t∈T \∪s∈F B(s,σ )

Yt satisfies EW ≥ α . (10.11)

Moreover, using (10.6) and (6.14) with a(t) = 0, we obtain

∀u > 0 , P(|W − EW | ≥ u) ≤ L exp
(
− u2

Lc2

)
. (10.12)

Let us consider independent copies (Y k
t )t∈T of the process (Yt )t∈T (which are

also independent of the r.v.s (εi)i≥1) and a small number ε > 0. First, we consider
W1 := supt∈T Y 1

t and we select a point t1 ∈ T (depending on the r.v.s Y 1
t ) with

Y 1
t1 ≥ W1 − ε . (10.13)

Next, we let W2 = supt∈T \B(t1,σ ) Y
2
t and we find t2 �∈ B(t1, σ ) such that

Y 2
t2 ≥ W2 − ε . (10.14)
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We proceed in this manner, constructing points tk with Y k
tk
≥ Wk − ε (where Wk =

supt �∈sup�<k B(t
�,σ ) Y

k
t ) and tk �∈⋃�<k B(t

�, σ ), until we construct a last point tm.
The proof of (10.10) will follow from appropriate upper and lower bounds for

the quantity

S := Emax
k≤m(Y

k
tk
+ Ztk) . (10.15)

These bound are themselves obtained in the most natural manner using concentra-
tion of measure and Sudakov’s minoration. To find a lower bound, we write

max
k≤m(Y

k
tk
+ Ztk) ≥ max

k≤m(Wk + Ztk )− ε ≥ min
k≤mWk +max

k≤m Ztk − ε , (10.16)

and we proceed to evaluate the expected value of the right-hand side. First, fixing a
value of k ≤ m and using (10.11) given the points t1, . . . , tk−1 implies that EWk ≥
α, because the process (Y k

t ) is independent of t1, . . . , tk−1. Using (10.12) given
Y 1, . . . , Y k−1 (and t1, . . . , tk−1), we obtain that for u > 0 we haveP(|Wk−EWk| ≥
u) ≤ L exp(−u2/(Lc2)), and proceeding as in (2.123) we get EV ≤ Lc

√
logm

where V = maxk≤m |Wk − EWk |. Since Wk ≥ EWk − V ≥ α − V , we obtain

Emin
k≤mWk ≥ α − Lc

√
logm . (10.17)

Next, denoting by EJ c expectation in the r.v.s (εi)i∈J c only, we prove that

EJ c max
k≤m Ztk ≥

1

L
σ
√

logm . (10.18)

For this we observe that for s, t ∈ T with d(s, t) = ‖s− t‖2 ≥ σ then, using (10.1),
and assuming without loss of generality L1 ≥ 2 in (10.3),

dJ c(s, t)2 =
∑

i �∈J
(si − ti )

2 =
∑

i≥1

(si − ti)
2 −

∑

i∈J
(si − ti )

2 ≥ σ 2 − c2 ≥ (σ/2)2 .

Now, by construction, for k, � ≤ m, k �= � we have d(tk, t�) ≥ σ . We then apply
Theorem 6.4.1 (the Sudakov minoration for Bernoulli processes) to J c, and so, using
also (10.7), (10.18) follows from (6.21). Taking expectation in (10.18) with respect
to the r.v.s εi , i ∈ J yields

Emax
k≤m Ztk ≥

1

L
σ
√

logm .

Taking expectation in (10.16) and letting ε → 0 we have proved that

S ≥ α +
(σ

L
− Lc

)√
logm . (10.19)
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The next goal is to bound S from above. We first observe that

S ≤ Emax
k≤m sup

t∈T
(Y k

t + Zt) . (10.20)

Consider then some numbers (a(t))t∈T . Using (6.14) and (10.6) we obtain

∀ u > 0 , P
(∣
∣
∣ sup
t∈T

(Yt + a(t))− E sup
t∈T

(Yt + a(t))

∣
∣
∣ ≥ u

)
≤ L exp

(
− u2

Lc2

)
.

Proceeding as in (2.123) we obtain

Emax
k≤m | sup

t∈T
(Y k

t + a(t))− E sup
t∈T

(Yt + a(t))| ≤ Lc
√

logm ,

and finally

Emax
k≤m sup

t∈T
(Y k

t + a(t)) ≤ E sup
t∈T

(Yt + a(t))+ Lc
√

logm . (10.21)

Let us recall that Y k
t does not depend on the r.v.s (εi)i∈J c , but only on the r.v.s

(εi)i∈J . Thus denoting EJ expectation in the r.v.s (εi)i∈J only (given the r.v.s
(εi)i∈J c), we may rewrite (10.21) as

EJ max
k≤m sup

t∈T
(Y k

t + a(t)) ≤ EJ sup
t∈T

(Yt + a(t))+ Lc
√

logm . (10.22)

Since Zt depends only on the r.v.s (εi)i∈J c , so that given these r.v.s Zt is just a
number a(t). Thus (10.22) implies

EJ max
k≤m sup

t∈T
(Y k

t + Zt) ≤ EJ sup
t∈T

(Yt + Zt)+ Lc
√

logm .

Taking expectation and using (10.9) yields

Emax
k≤m sup

t∈T
(Y k

t + Zt) ≤ b(T )+ Lc
√

logm . (10.23)

Combining with (10.20) and (10.19), we obtain

α +
(σ

L
− Lc

)√
logm ≤ b(T )+ Lc

√
logm ,

so that α ≤ b(T ) − (σ/L2 − L2c)
√

logm and indeed (10.10) holds true provided
c ≤ σ/(2L2

2). �
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10.2 Philosophy, I

Let us look at a high level at the work of the previous section. Given a subset J of
N
∗, it is a completely natural question to ask when it is true that b(T ) is significantly

larger than bJ (T ). One obvious way to guarantee this is as follows: for the typical
value of (εi)i∈J , the set T ′ of t ∈ T for which

∑
i∈J εi ti � supt∈T

∑
i∈J εi ti has

to be such that E supt∈T ′
∑

i �∈J εi ti is not very small. This is not the case in general.
For example, it may happen that all the (ti)i �∈J are the same and then b(T ) = bJ (T ).
More generally, it may happen that the sequence (ti )i �∈J takes only a few values, and
then b(T ) and bJ (T ) will be very close to each other. In some precise sense, Latała’s
principle states that this phenomenon just described is the only possibility for b(T )
to be about bJ (T ). Under (10.1) to (10.3) the set T can be decomposed into a few
pieces A for which either bJ (A) is significantly less than b(A) or such that the set of
(ti)i �∈J is of small diameter (which, under the condition (10.1), takes the form that
A itself is of small diameter).

10.3 Chopping Maps and Functionals

10.3.1 Chopping Maps

One of the most successful ideas about Bernoulli processes is that of chopping maps.
The basic idea of chopping maps is to replace the individual r.v.s εixi by a sum∑

j εi,j xi,j where εi,j are independent Bernoulli r.v.s and where xi,j are “small
pieces of xi”. It is then easier to control the �∞ norm of the new process. This
control is fundamental to be able to apply the Sudakov minoration (6.21) and its
consequence Corollary 6.4.10 which are key elements of the proof of the Bernoulli
conjecture.

Given u ≤ v ∈ R we define the function ϕu,v as the unique continuous function
for which ϕu,v(0) = 0, which is constant for x ≤ u and x ≥ v and has slope 1
between these values, see Fig. 10.1. Thus

ϕu,v(x) = min(v,max(x, u))−min(v,max(0, u)) . (10.24)

Consequently

|ϕu,v(x)| ≤ v − u . (10.25)

and

|ϕu,v(x)− ϕu,v(y)| ≤ |x − y| (10.26)

with equality when u ≤ x, y ≤ v.
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u 0 v u0 v

Fig. 10.1 The graph of ϕu,v, to the left when u < 0 < v, to the right when 0 < u < v

It is very useful to note that if u1 ≤ u2 ≤ · · · ≤ uk , then

ϕu1,uk (x) =
∑

1≤�<k

ϕu�,u�+1(x) . (10.27)

This is simply because both the left-hand side and the right-hand side are continu-
ous, constant for x ≤ u1 and x ≥ uk , have slope 1 between these values, and take
the value 0 at 0.

Given a finite subset G of R we define

G− := {u ∈ G ; ∃v ∈ G , u < v} ,

and for u ∈ G− we define u+ = min{v ∈ G ; u < v}, which we will call
the successor of u. It will always be implicitly assumed that cardG ≥ 2 so that
G− �= ∅. In other words, if we enumerate G = {u1, . . . , un} where the sequence
(uk)1≤k≤n is increasing, we have G− = {u1, . . . , un−1} and for k < n we have
u+k = uk+1. To form a mental picture let us say that sets G consisting of a few
evenly spaced points, say points of the type pa for p ∈ Z, p0 ≤ p ≤ p1 (with
a ∈ R

+, p0, p1 ∈ Z) will be essential although some slightly different situations
will also be considered. A simple idea is that the family of numbers ϕu,u+(x) for
u ∈ G− gives us good control of the values of x such that minG ≤ x ≤ maxG.
Different sets Gi will be considered to control each of the values of the different
coordinates ti of t in an appropriate range. As a consequence of (10.27), we obtain

ϕminG,maxG =
∑

u∈G−
ϕu,u+ . (10.28)

Lemma 10.3.1 For each x, y ∈ R and each finite set G, we have

∑

u∈G−
|ϕu,u+(x)− ϕu,u+(y)| ≤ |x − y| . (10.29)

Moreover there is equality if minG ≤ x, y ≤ maxG.

Proof It suffices to prove (10.29) when x > y. As a consequence of the fact that
ϕu,u+ is non-decreasing, the absolute values may be removed in the left-hand side,
and (10.29) is then a consequence of (10.28) and (10.26). �
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In particular, since ϕu,u+(0) = 0, we have

∑

u∈G−
|ϕu,u+(x)| ≤ |x| . (10.30)

In the remainder of this chapter we consider independent Bernoulli r.v.s εx,i for
x ∈ R and i ∈ N

∗. These are also assumed to be independent of all other Bernoulli
r.v.s considered, in particular the εi .

Consider now for i ≥ 1 a finite set Gi ⊂ R. For t ∈ �2 we consider the r.v.

Xt(Gi, i) :=
∑

u∈G−i
εu,iϕu,u+(ti ) . (10.31)

That is, the value ti is “chopped” into the potentially smaller pieces ϕu,u+(ti ).

Exercise 10.3.2 Consider t, t ′ ∈ �2. Show that if ti , t
′
i ≥ maxGi or if ti , t

′
i ≤

minGi then Xt(Gi, i) = Xt ′(Gi, i).

We chop the value of ti for all values of i. We write G = (Gi)i≥1 and we consider
the r.v.

Xt(G) :=
∑

i≥1

Xt(Gi, i) =
∑

i≥1

∑

u∈G−i
εu,iϕu,u+(ti) . (10.32)

Combining (10.30) with the inequality
∑

a2
k ≤ (

∑ |ak|)2, we obtain that for t ∈ �2

and i ≥ 1, we have
∑

u∈G−i ϕu,u+(ti )
2 ≤ t2

i so that Xt(G) ∈ �2. In this manner to a
Bernoulli process (Xt )t∈T we associate a new Bernoulli process (Xt(G))t∈T . Again
the idea is that each value ti is chopped into little pieces, and we should think of
G as a parameter giving us the recipe to do that. Another way to look at this is as
follows: Consider the index set

J ∗ = {(i, u) ; i ∈ N
∗, u ∈ G−

i } , (10.33)

and the map Φ : �2(N∗)→ �2(J ∗) given by

Φ(t) = (Φ(t)j )j∈J ∗ where Φ(t)j = ϕu,u+(ti) when j = (i, u) . (10.34)

Then, replacing the process (Xt )t∈T by the process (Xt(G))t∈T amounts to replacing
the set T by the set Φ(T ). The gain is that we now control ‖t‖∞ for t ∈ Φ(T ). We
state this crucial fact explicitly.

Lemma 10.3.3 For t ∈ Φ(T ) we have

‖t‖∞ ≤ max{u+ − u ; i ≥ 1, u ∈ G−
i } .
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This is an obvious consequence of (10.25). In order to take advantage of this
bound, it is efficient to consider sets Gi consisting of evenly spaced points, as we
will do. Lemma 10.3.3 is the purpose of the whole construction: controlling the
supremum norm allows for use of the Sudakov minoration. Another important idea
is that according to (10.29) and the inequality

∑
a2
k ≤ (

∑ |ak|)2, the canonical
distance dG associated with the new process satisfies

dG(s, t)
2 :=

∑

i≥1,u∈G−i
(ϕu,u+(si )− ϕu,u+(ti ))

2 ≤
∑

i≥1

(si − ti)
2 = d(s, t)2 .

(10.35)

The problem is that the reverse inequality is by no means true and that a set can
very well be of small diameter for dG but not for d . This is in a sense the main
difficulty in using chopping maps. We shall discover soon how brilliantly Bednorz
and Latała bypassed this difficulty using Proposition 10.1.1.

The following is fundamental. It asserts that in a sense the size of the process
Xt(G) is smaller than the size of the original process Xt .

Proposition 10.3.4 For any family G = (Gi)i≥1 of finite subsets Gi ⊂ R and any
finite set T ⊂ �2, we have

E sup
t∈T

Xt (G) ≤ b(T ) = E sup
t∈T

∑

i≥1

εiti . (10.36)

Proof The families (εx,i) and (εiεx,i) have the same distribution, so that

E sup
t∈T

Xt (G) = E sup
t∈T

∑

i≥1,u∈G−i
εu,iϕu,u+(ti )

= E sup
t∈T

∑

i≥1,u∈G−i
εiεu,iϕu,u+(ti )

= E
(
Eε sup

t∈T

∑

i≥1

εiθi(ti)
)
, (10.37)

where the function θi is defined by θi(x) = ∑
u∈G−i εu,iϕu,u+(x) and where Eε

means expectation only in (εi)i≥1. We note that θi is a contraction, since

|θi(x)− θi(y)| ≤
∑

u∈G−i
|ϕu,u+(x)− ϕu,u+(y)| ≤ |x − y|

by (10.29). The key point is (6.42) which implies

Eε sup
t∈T

∑

i≥1

εiθi(ti) ≤ E sup
t∈T

∑

i≥1

εiti = b(T ) .
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Combining with (10.37) finishes the proof. �
The following exercise helps explaining the nice behavior of chopping maps with

respect to the �2 and �1 norms, which will be used in the next result. There is no
reason to believe that the constants are optimal; they are just a reasonable choice.

Exercise 10.3.5 Prove that for x, y ∈ R and c ∈ R
+, we have

|x − y|21{|x−y|<c} + c|x − y|1{|x−y|≥c} ≤ 3
∑

�∈Z
|ϕc�,c(�+1)(x)− ϕc�,c(�+1)(y)|2.

(10.38)

and

∑

�∈Z
|ϕc�,c(�+1)(x)− ϕc�,c(�+1)(y)|2 ≤ |x − y|21{|x−y|<c} + c|x − y|1{|x−y|≥c} .

(10.39)

I invented chopping maps to prove the following version of Sudakov minoration
which illustrates well their power. Compared with the Gaussian version (2.117)
of Sudakov minoration, the ball εB2 are enlarged into εB2 + Lb(T )B1 where B1
denotes the unit ball of �1.

Proposition 10.3.6 There exists a constant L such that for each subset T of �2 we
have, for ε > 0

ε
√

logN(T , εB2 + Lb(T )B1) ≤ Lb(T ) ,

where N(T ,C) is the smallest number of translates of C that can cover T .

Exercise 10.3.7 will help you understand the formulation of this result and the
need for the term Lb(T )B1.

Proof Consider c > 0, and the map Ψc : �2 = �2(N∗) → �2(N∗ × Z) given
by Ψc(t) = ((ϕ�c,(�+1)c(ti ))(i,�)), and recall that according to (10.25) we have
‖t‖∞ ≤ c for t ∈ Ψc(T ). It then follows from Sudakov’s minoration for Bernoulli
processes (6.23) that

b(Ψc(T )) ≥ 1

L
min

(
ε
√

logN(Ψc(T ), εB2),
ε2

c

)
. (10.40)

An obvious adaptation of Proposition 10.3.4 implies that b(T ) ≥ b(Ψc(T )).
Combining with (10.40) for the value c = ε2/(2Lb(T )) where L is as in (10.40) we
get

b(T ) ≥ min
( 1

L
ε
√

logN(Ψc(T ), εB2), 2b(T )
)
,
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which implies that

Lb(T ) ≥ ε
√

logN(Ψc(T ), εB2) . (10.41)

To conclude the proof it suffices to show that

N(Ψc(T ), εB2) ≥ N(T , 4εB2 + Lb(T )B1) . (10.42)

Letting N = N(Ψc(T ), εB2), the set Ψc(T ) is covered by N balls of the type z +
εB2. It is therefore covered by N balls of the type z+ 2εB2 where now z ∈ Ψc(T ),
i.e., it is covered by N balls of the type Ψc(y)+ 2εB2. Thus T is covered by N sets
of the type Ψ−1

c (Ψc(y) + 2εB2). Keeping in mind the value of c, it is enough to
show that

Ψ−1
c (Ψc(y)+ 2εB2) ⊂ y + 4εB2 + 12ε2

c
B1 . (10.43)

Consider x with Ψc(x) ∈ Ψc(y) + 2εB2. Then the right-hand side of (10.38) is
≤ 12ε2, and this inequality implies that (x − y)1{|x−y|<c} ∈ 4εB2 and (x −
y)1{|x−y|≥c} ∈ 12ε2B1/c. Writing x − y = (x − y)1{|x−y|<c} + (x − y)1{|x−y|≥c}
proves (10.43). �
Exercise 10.3.7 Take T = B1, so that b(T ) = 1. Prove that if ε + a < 1 it is not
possible to cover T by finitely many translates of the set εB2 + aB1.

Exercise 10.3.8 Deduce Proposition 10.3.6 from Theorem 6.2.8.

10.3.2 Basic Facts

For i ≥ 1 we consider finite sets Gi ⊂ G′
i . Letting G = (Gi)i≥1 and G′ = (G′

i )i≥1,
we now want to compare the processes (Xt(G))t and (Xt (G′))t . We start by
comparing the associated distances. We recall the formula (10.35) for the distance
dG .

Proposition 10.3.9

(a) Assume that for a certain integer q

∀i ∈ N
∗ , ∀u ∈ G−

i , card
([u, u+[ ∩G′

i

) ≤ q , (10.44)

where u+ is the successor of u in Gi . Then

dG ≤ √qdG ′ . (10.45)
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(b) Assume that

∀i ∈ N
∗ , minGi = minG′

i , maxGi = maxG′
i . (10.46)

Then

dG ′ ≤ dG . (10.47)

Proof Throughout the proof we write u an element of G−
i and u+ its successor in

Gi ; and v an element of G′−
i and v+ its successor in G′

i . Thus, for s, t ∈ T we have

dG(s, t)
2 =

∑

i≥1

∑

u∈G−i
(ϕu,u+(si )− ϕu,u+(ti))

2 (10.48)

and

dG ′(s, t)
2 =

∑

i≥1

∑

v∈G′−i
(ϕv,v+(si)− ϕv,v+(ti ))

2 . (10.49)

Given i ∈ N
∗ and u ∈ G−

i let us define the set Gi,u = G′−
i ∩ [u, u+[. The sets

(Gi,u)u∈G−i are disjoint subsets of G′−
i . The union of these sets is G′−

i exactly when

minGi = minG′
i and maxGi = maxG′

i .
Next, consider u ∈ G−

i ⊂ G′
i and the largest element v of Gi,u. Since Gi,u ⊂

[u, u+[, we have v < u+ ∈ Gi ⊂ G′
i . Thus v+, the smallest element of G′

i which is
> v satisfies v+ ≤ u+. But then v+ = u+ for otherwise v would not be the largest
element of Gi,u. It then follows from (10.27) that

|ϕu,u+(si )− ϕu,u+(ti )| =
∑

v∈Gi,u

|ϕv,v+(si)− ϕv,v+(ti)| . (10.50)

Thus, using the inequality (
∑

k≤q ak)2 ≤ q
∑

k≤q a2
k , and since under condi-

tion (10.44) we have cardGi,u ≤ q , we get then

(ϕu,u+(si )− ϕu,u+(ti))
2 ≤ q

∑

v∈Gi,u

(ϕv,v+(si)− ϕv,v+(ti))
2 ,

and plugging into (10.48) we obtain

dG(s, t)
2 ≤ q

∑

i≥1

∑

u∈G−i

∑

v∈Gi,u

(ϕv,v+(si )− ϕv,v+(ti))
2 . (10.51)



338 10 Proof of the Bernoulli Conjecture

Now

∑

u∈G−i

∑

v∈Gi,u

(ϕv,v+(si)− ϕv,v+(ti ))
2 ≤

∑

v∈G′−i
(ϕv,v+(si )− ϕv,v+(ti))

2

because each term in the double sum on the left is a term of the sum on the right.
Using this in (10.51) and recalling (10.49), we have proved (10.45). Next, using
again (10.50) as well as the inequality (

∑
k |ak|)2 ≥∑ a2

k , we obtain

dG(s, t)
2 ≥

∑

i≥1

∑

u∈G−i

∑

v∈Gi,u

(ϕv,v+(si )− ϕv,v+(ti ))
2 ,

and we have observed that under (10.46) the union of the sets Gi,u for u ∈ G−
i

is exactly G′−
i so that then right-hand side is exactly dG ′(s, t)2, so that we have

proved (10.47) as well. �
Proposition 10.3.10 For i ≥ 1, consider finite sets Gi ⊂ G′

i and let G = (Gi)i≥1
and G′ = (G′

i )i≥1. Assuming (10.46) we have

E sup
t∈T

Xt (G′) ≤ E sup
t∈T

Xt (G) . (10.52)

This is a consequence of Proposition 10.3.4. It is quite intuitive, and the only
difficulty is in the notation. We urge the reader to skip that tedious pensum until she
has found motivation.

Proof Consider the set J ∗ = {(i, u) ; i ∈ N
∗, u ∈ G−

i } of (10.33) and the map Φ

of (10.34). Let T ′ = Φ(T ), so that

E sup
t∈T

Xt(G) = E sup
s∈T ′

∑

j∈J ∗
εj sj ,

where εj = εu,i for j = (i, u) ∈ J ∗. For each j ∈ J ∗ consider a finite subset Hj

of R. Denoting by (ε∗x,j )x∈R,j∈J ∗ a new sequence of independent Bernoulli r.v.s, it
follows from Proposition 10.3.4 that

E sup
s∈T ′

∑

j∈J ∗

∑

v∈H−
j

ε∗v,jϕv,v+(sj ) ≤ E sup
s∈T ′

∑

j∈J ∗
εj sj = E sup

t∈T
Xt (G) . (10.53)

We will show that we can choose the sets Hj so that the left-hand side is
E supt∈T Xt (G′), and this will conclude the proof.

Let us start with a simple observation. To lighten notation, for u < u′ we set
θ(u, u′) = −min(u′,max(0, u)). We prove that

u ≤ v ≤ v′ ≤ u′ ⇒ ϕv,v′(x) = ϕv+θ(u,u′),v′+θ(u,u′)(ϕu,u′(x)) . (10.54)
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First, we observe that (10.24) means that ϕu,u′(x) = min(u′,max(x, u))+ θ(u, u′).
Thus, as x increases, the function ϕu,u′(x) increases until it reaches the value v +
θ(u, u′) for x = v and then the value v′ + θ(u, u′) for x = v′. Next, the function on
the right-hand side of (10.54) is constant until ϕu,u′(x) reaches the value v+θ(u, u′),
i.e., until x = v, then has a slope 1, and then is constant again after ϕu,u′(x) passes
the value v′ + θ(u, u′), i.e., after x = v′. It is also 0 for x = 0. Thus this function is
ϕv,v′ , which is characterized by these properties, and we have proved (10.54).

For j = (i, u) ∈ J ∗, let us define the set

Hj = (G′
i ∩ [u, u+])+ θ(u, u+) ,

so that, recalling the sets Gi,u = G′
i ∩ [u, u+[, we have

H−
j = Gi,u + θ(u, u+) (10.55)

when j = (i, u). Using the definition of J ∗ the left-hand side of (10.53) is then

E sup
s∈T ′

∑

i≥1

∑

u∈G−i

∑

v∈H−
(i,u)

ε∗v,(i,u)ϕv,v+(s(i,u))

= E sup
s∈T ′

∑

i≥1

∑

u∈G−i

∑

v∈Gi,u

ε∗v,(i,u)ϕv+θ(u,u+),v++θ(u,u+)(s(i,u))

= E sup
t∈T

∑

i≥1

∑

u∈G−i

∑

v∈Gi,u

ε∗v,(i,u)ϕv+θ(u,u+),v++θ(u,u+)(ϕu,u+(ti ))

= E sup
t∈T

∑

i≥1

∑

u∈G−i

∑

v∈Gi,u

ε∗v,(i,u)ϕv,v+(ti) . (10.56)

Here, we use (10.55) in the second line. In the third line, we use the definition
of T ′:

T ′ = {(Φ(t)j )j∈J ∗ ; t ∈ T } = {(ϕu,u+(ti))i∈N∗,u∈G−i ; t ∈ T }. (10.57)

Finally we use (10.54) in the fourth line. Next, (10.46) ensures that G′−
i =

∪u∈G−i Gi,u. Thus the sequence

(ε∗v,(i,u))i∈N∗,u∈G−i ,v∈Gi,u

is simply a copy of an independent sequence (εv,i)i∈N∗,v∈G′−i , and the expression on

the last line of (10.56) equals E supt∈T
∑

i≥1
∑

v∈G′−i εv,iϕv,v+(ti). Since this last

quantity is E supt∈T Xt (G′), this concludes the proof. �
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10.3.3 Functionals

We are now ready to define the functionals which we will use to prove Theo-
rem 6.2.8, but the motivation for these definitions will become only gradually clear.
These functionals depend on four parameters, two integers k ≤ h ∈ Z, (yes, h
denotes an integer), a point w ∈ �2, and a subset I of N∗. We fix an integer r ≥ 2,
which will be chosen later on. First, for x ∈ R and k ∈ Z, we define the set

G(x, k) = {pr−k ; p ∈ Z , |pr−k − x| ≤ 4r−k} . (10.58)

If pr−k and p′r−k ∈ G(x, k), then |p − p′| ≤ 8 so that cardG(x, k) ≤ 9. We also
observe that (see Fig. 10.2)

x − 4r−k ≤ minG(x, k) ≤ x − 3r−k ≤ x ≤ x + 3r−k ≤ maxG(x, k) ≤ x + 4r−k .

(10.59)

Next, given k ≤ h ∈ Z and x ∈ R, we define the set

G(x, k, h) = {pr−h ; p ∈ Z , minG(x, k) ≤ pr−h ≤ maxG(x, k)} . (10.60)

In words, G(x, k, h) consists of about 9 · rh−k points evenly spaced (with a spacing
of r−h) roughly centered on the point x. We should think of k as a scale parameter:
the length of G(x, k, h) is of order r−k . We should think of h as a “granularity
parameter”: the distance between consecutive points of G(x, k, h) is r−h. We should
think of x as a location parameter: G(x, k, h) is roughly centered at x.

Let us note that G(x, k) = G(x, k, k) (so that cardG(x, k, k) ≤ 9), that

minG(x, k, h) = minG(x, k) ; maxG(x, k, h) = maxG(x, k) . (10.61)

Furthermore G(x, k, h) increases with h, in the sense that G(x, k, h) ⊂ G(x, k, h′)
if h ≤ h′, and decreases with k in the sense that if k ≤ k′ then G(x, k′, h) ⊂
G(x, k, h).

0 1 x 2

20 1 x

Fig. 10.2 The set G(x, 1) on top. The spacing between the points is 1/3. The set G(x, 1, 2) on
bottom. The spacing between the points is 1/9. Here r = 3 and 4/3 < x < 5/3
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Definition 10.3.11 For a set T ⊂ �2, integers k ≤ h, a point w ∈ �2, and a subset
I of N∗, we define

F(T , I,w, k, h) = E sup
t∈T

∑

i∈I

∑

u∈G(wi,k,h)−
εu,iϕu,u+(ti) . (10.62)

We denote by dI,w,k,h the corresponding distance

dI,w,k,h(s, t)
2 =

∑

i∈I

∑

u∈G(wi,k,h)−
(ϕu,u+(si )− ϕu,u+(ti ))

2 , (10.63)

and Δ(T , I,w, k, h) the diameter of T for this distance

Δ(T , I,w, k, h) = sup
s,t∈T

dI,w,k,h(s, t) . (10.64)

When I = N
∗ the distance dI,w,k,h is simply the distance dG of (10.35) when

Gi = G(wi, k, h). The effect of the parameter w ∈ �2 is that the set G(wi, k, h) is
roughly centered around wi .

Even if we forget to mention it again, when writing these expressions, it is always
assumed that h ≥ k.

Let us look at the summation (10.62): decreasing I and increasing k decreases the
number of terms in it. This opens the door to the use of Proposition 10.1.1 (Latała’s
principle).

Let us first point out some regularity properties of these functionals.

Lemma 10.3.12 If I ′ ⊂ I ⊂ N
∗, k′ ≥ k and h′ ≥ h then

F(T , I ′, w, k′, h′) ≤ F(T , I,w, k, h) (10.65)

and

Δ(T , I ′, w, k′, h′) ≤ Δ(T , I,w, k, h) . (10.66)

Proof That F(T , I,w, k, h) is an increasing function of I follows from Jensen’s
inequality, by moving now the expectation over the r.v.s εu,i for i ∈ I ′ \ I

inside the supremum rather than outside. Next if k ≤ k′ ≤ h then the inequality
F(T , I,w, k′, h) ≤ F(T , I,w, k, h) follows similarly since G(wi, k

′, h)− ⊂
G(wi, k, h)

−, by moving inside the supremum expectation with respect to the r.v.s
εu,i for u ∈ G(wi, k, h)

− \ G(wi, k
′, h)−. That F(T , I,w, k, h) is a decreasing

function of h follows from Proposition 10.3.10 and (10.61). The statements
concerning Δ(T , I,w, k, h) are easier, using now (10.47). �
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Another key idea is that the distances (10.63) associated with the function-
als (10.62) relate well to the distance considered in (9.12) in Theorem 9.2.4 (in
the case where ν is the counting measure). Our next lemmas provide the main step
in this direction.

Lemma 10.3.13 Consider x, y, z ∈ R and assume that |y − x| ≤ 2r−k . Then

|y − z|2 ∧ r−2h ≤ 2
∑

u∈G(x,k,h)−
(ϕu,u+(y)− ϕu,u+(z))

2 . (10.67)

Proof First we reduce to the case where |y − z| ≤ r−h. To do this, we replace z

by the closest point to z in the interval [y − r−h, y + r−h]. This does not change
the left-hand side of (10.67) and decreases the right-hand side because the functions
ϕu,u+ are non-decreasing. So we assume now |y − z| ≤ r−h. Since |y − x| ≤ 2r−h
we have x − 3r−h ≤ y, z ≤ x + 3r−h so that (10.59) implies that minG(x, k, h) ≤
y, z ≤ maxG(x, k, h). Then by the equality case of Lemma 10.3.1, we have

|y − z| =
∑

u∈G(x,k,h)−
|ϕu,u+(y)− ϕu,u+(z)| .

Now, since |y − z| ≤ r−h, there are at most two non-zero terms in the right-hand
side, and (a + b)2 ≤ 2(a2 + b2). �
Lemma 10.3.14 Consider s, t, w ∈ �2. Consider a set I of integers and assume
that

∀i ∈ I , |si − wi | ≤ 2r−k . (10.68)

Then

∑

i∈I
|rh(ti − si )|2 ∧ 1 ≤ 2r2hdI,w,k,h(t, s)

2 . (10.69)

Proof We use (10.67) for x = wi, y = si, z = ti to obtain

|ti − si |2 ∧ r−2h ≤ 2
∑

u∈G(w,k,h)−
(ϕu,u+(ti)− ϕu,u+(si ))

2 .

We then sum over i ∈ I and we use (10.3.1). �
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10.4 Philosophy, II

In this section we try to shed some light on the construction we have started. Let us
recall our goal: starting with T ⊂ �2, we try to decompose each t ∈ T as t = t1+ t2

is such a way that {t1; t ∈ T } is well behaved and that ‖t2‖1 ≤ Lb(T ). For the
purpose of the philosophical discussions, we will call t2 the peaky part of t , even
though the name is not really appropriate.

To prove the required decomposition, we will recursively construct an increasing
sequence of partitions of T , and then the decomposition of T will be provided by
Theorem 9.2.4 (used for the counting measure). At each level, for each element
A of the partition, we will control a certain diameter Δ(A, I,w, k, h) and the
corresponding functional F(A, I,w, k, h). The first thought is that in order that the
functional (10.62) really bear on A, “A should be chosen close to w”. The precise
meaning of this will be understood later, but for the time being, we keep in mind
the idea that w provides information about the “location” of A. A second thought
coming to mind will be that information seems lost when there are coordinates i and
elements t ∈ A with |wi − ti | ≥ 4r−k; see Exercise 10.3.2. This looks like a serious
problem: the Latała-Bednorz theorem is absolutely sharp; we can never allow any
essential information to be lost. The solution to that riddle was given at the end of
Sect. 9.3: what we really need to keep track of are the values of πn(t)i , and this we
really do as we explain below.

The details of what happens will be given as the proof develops, but we start
to reveal some secrets. In order to be able to apply Theorem 9.2.4 (when ν is the
counting measure), we need to have the crucial condition

∀t ∈ T , ∀n ≥ 0 ,
∑

i∈Ωn(t)

|rjn(t)(ti − πn(t)i )|2 ∧ 1 ≤ u2n , (10.70)

where7

Ωn(t) =
{
i ; 0 ≤ q < n⇒ |πq+1(t)i − πq(t)i | ≤ r−jq (t)

}
. (10.71)

Not being precise about Ωn(t) yet, we see that our best shot is to deduce (10.70)
from (10.69) used for s = πn(t). We then guess that the number h relates to jn(t).
We also realize the importance of the condition

∀i ∈ I , |πn(t)i −wi | ≤ 2r−k . (10.72)

The value of k will be decided later, but we should form the following picture: The
value of k tells us that the range around wi where we are getting some information

7 In words, the points of Ωn(t) are those for which the sequence (πq(t))q≤n+1 does not have big
jumps.
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on the i-th coordinate of the points of A is about r−k . Most importantly, the value of
πn(t)i falls well within this range. It is necessary to keep this range, which might be
much larger than r−jn(t), because we do not have better information on the location
of πn(t) than (10.72).

10.5 Latała’s Step

We now state and prove the key new step in the proof of Theorem 6.2.8 (compared
with the Gaussian case Theorem 2.10.1).

Proposition 10.5.1 There exists a constant L2 with the following property. Con-
sider w,w′ ∈ �2, a set I ⊂ N

∗, and integers k ≤ h. Consider a subset T of �2 such
that

Δ(T , I,w, k, h + 2) ≤ c . (10.73)

Assume that for a certain number σ

c ≤ σ

L2
; r−h−1

√
logm ≤ σ . (10.74)

Let8

I ′ = {i ∈ I ; |wi −w′i | ≤ 2r−k} . (10.75)

Then we can find m′ ≤ m + 1 and a partition (A�)�≤m′ of T such that for each
� ≤ m′ we have either

Δ(A�, I,w, k, h + 1) ≤ σ (10.76)

or else

F(A�, I
′, w′, h+ 2, h+ 2) ≤ F(T , I,w, k, h + 1)− σ

L

√
logm , (10.77)

Δ(A�, I
′, w′, h+ 2, h+ 2) ≤ c . (10.78)

In words, the proposition states that each piece produced by the previous
decomposition is either such that its diameter for the large distance is small
(when (10.76) holds), or else its size measured by the proper functionals has
decreased (when (10.77) holds).

8 The reader should notice that the set I ′ is not constructed, but is known once w and w′ are known.
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The fundamental point of this result is that the hypothesis on T involves a
control of Δ(T , I,w, k, h + 2), not of the larger quantity Δ(T , I,w, k, h + 1),
whereas the size of the pieces A� in (10.76) involves a control of the larger quantity
Δ(A�, I,w, k, h + 1), not of the smaller quantity Δ(A�, I,w, k, h + 2).

Proof The proof relies on Latała’s principle, Proposition 10.1.1, but requires some
skills. There is no loss of generality to assume for notational convenience that I =
N
∗. For i ∈ N

∗ consider the sets

Gi = G(wi, k, h+ 1) ,

and G = (Gi)i≥1. For i ∈ N
∗ \ I ′ let G′

i = Gi and for i ∈ I ′, define G′
i =

Gi ∪G(w′i , h+ 2, h+ 2) and define G′ = (G′
i )i≥1. The central object of the proof

is the process (Xt(G′))t∈T .
First we observe that since r ≥ 2 and h ≥ k, and using (10.59) and (10.61),

G(w′i , h+ 2, h+ 2) ⊂ [w′i − 4r−h−2, w′i + 4r−h−2] ⊂ [w′i − r−k, w′i + r−k]

and since |wi − w′i | ≤ 2r−k for i ∈ I ′, it follows then that

G(w′i , h+ 2, h+ 2) ⊂ [wi − 3r−k, wi + 3r−k] .

Consequently from (10.59), we have

maxG(w′i , h+ 2, h+ 2) ≤ wi + 3r−k ≤ maxG(wi, k, k)

= maxG(wi, k, h+ 1) = maxG′
i .

Proceeding similarly for the min shows that the sets Gi and G′
i satisfy (10.46).

Therefore by (10.52) we have

E sup
t∈T

Xt(G′) ≤ E sup
t∈T

Xt(G) = F(T ,N∗, w, k, h + 1) . (10.79)

Next, since cardG(w′i , h + 2, h + 2) ≤ 9 and G′
i = Gi ∪G(w′i , h + 2, h + 2),

for each i and u ∈ G′
i , we have card([u, u+[∩G′

i ) ≤ card([u, u+[∩Gi) +

wi 

w’i

Fig. 10.3 The sets G′
i when r = 8 and h = k + 1. The bottom of the figure represents the part of

the set contained in the box after magnification by a factor 8
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cardG(w′i , h+ 2, h+ 2) ≤ 1+ 9 = 10. Thus the sets Gi and G′
i satisfy

∀i ∈ N
∗ , ∀u ∈ G−

i , card
([u, u+[ ∩G′

i

) ≤ 10 ,

and Proposition 10.3.9 implies that

dG ≤ 4dG ′ . (10.80)

We can appreciate the magic of this proof: neither the process (Xt (G′))t∈T nor the
distance it induces is exactly what we need, but they are related to the quantities of
interest through the inequalities (10.79) and (10.80) which turn out to be in the right
direction.

For i ∈ I ′ we have |wi −w′i | ≤ 2r−k so that (using that h ≥ k and r ≥ 2)

|pr−h−2 −w′i | ≤ 4r−h−2 ⇒ |pr−h−2 − wi | ≤ 2r−k + 4r−h−2 ≤ 3r−k

so hence by (10.59) again G(w′i , h+ 2, h+ 2) ⊂ G(wi, k, h+ 2). In fact the points
of the left-hand set are consecutive points of the right-hand set. Using (10.45) for
q = 1 in the inequality (with I ′ instead of N∗), we obtain

dI ′,w′,h+2,h+2 ≤ dI ′,w′,k,h+2 , (10.81)

and this proves (10.78). Consequently9

Δ(T , I ′, w′, h+ 2, h+ 2) ≤ Δ(T , I ′, w, k, h + 2) ≤ Δ(T ,N∗, w, k, h + 2) ≤ c .

(10.82)

Let us consider the set J ∗ as in (10.33), where the family G has been replaced
by the family G′ so that J ∗ = {(i, u); i ∈ N

∗, u ∈ G′−
i }. Let us consider the

corresponding map Φ as in (10.34). Thus

s, t ∈ T ⇒ dG ′(s, t) = ‖Φ(s)−Φ(t)‖2 , (10.83)

where the norm on the right is in �2(J ∗), and, using (10.79) in the second inequality,

b(Φ(T )) = E sup
t∈T

Xt (G′) ≤ F(T ,N∗, w, k, h + 1) . (10.84)

9 Please observe what is happening here. The information (10.78) is a consequence of (10.73), not
of the fact that we have partitioned the set T . This is coherent with our proof of Latała’s principle.
There is only one piece what satisfies (10.77) and (10.78). This piece is what is left of T after we
have removed some parts which satisfy (10.76), and we took no action to decrease its diameter in
any sense.
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Consider the set J ⊂ J ∗ given by

J = {(i, u) ; i ∈ I ′, u ∈ G(w′i , h+ 2, h+ 2)−} . (10.85)

We will use Proposition 10.1.1, replacing the countable set N∗ by J ∗. With the
notation bJ of Proposition 10.1.1, for A ⊂ T ,

bJ (Φ(A)) = F(A, I ′, w′, h+ 2, h+ 2) . (10.86)

The goal is to apply Proposition 10.1.1 to the set Φ(T ) with σ ′ = σ/8 instead
of σ and with set of indices J ∗ instead of N∗. For this we check (10.1) to (10.3).
First, (10.82) implies (10.1). Next, (10.2) holds since ‖t‖∞ ≤ r−h−1 for t ∈ Φ(T )

and since r−h−1√logm ≤ σ = 8σ ′ by (10.74). Finally (10.3), i.e., the condition
c ≤ σ ′/L1, follows from c ≤ σ/L2 provided that L2 = 8L1. Thus we can apply
Proposition 10.1.1. We then find a partition (B�)�≤m′ of Φ(T ) such that for each
� ≤ m′, we have either

∃t� ∈ Φ(T ) , B� ⊂ B(t�, σ/8) , (10.87)

or else

bJ (B�) ≤ b(Φ(T ))− σ

L

√
logm . (10.88)

We then set A� = Φ−1(B�). When B� satisfies (10.87), (10.83) implies that
the diameter of A� for the distance dG ′ is ≤ σ/4, and since dG ≤ 4dG ′
by (10.80), its diameter for the distance dG is ≤ σ . This distance is exactly the
distance used in computing the diameter in (10.76). When B� satisfies (10.88)
then A� satisfies (10.77) as follows from (10.84) and (10.86), and (10.78) follows
from (10.82). �

10.6 Philosophy, III

There is a simple idea behind the occurrence of w and w′. We have to think of w
as providing information about the “location” of T . As we keep splitting the sets
of our partitions, we keep improving the information about their “location”. The
change from w to w′ in Proposition 10.5.1 reflects the fact we now have a more
accurate information than the one we used in the previous steps of the construction:
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the location of the set T is actually better described using a slightly different point
w′ than using w.10

An intriguing feature is that when we are in the case (10.77), we will obviously
need to replace I by I ′. Why then crucial information is not lost? The answer to that
lies in the mechanism explained in Sect. 9.3: at the time we will drop the coordinates
in I \I ′, the decomposition will already have been determined on these coordinates.
There will be a clever device to ensure that, which we will explain later.

Another intriguing feature of (10.77) is that on the left we have replaced the value
k by the potentially much larger value h+2. It is absolutely essential to be able to do
that to ensure that cardG(w′i , h + 2, h+ 2) remains bounded (in fact ≤ 9) because
this is how we obtain the inequality (10.80) which is essential to obtain (10.76). But
why can we afford to do that without losing critical information? At a high level this
answer is that it is because we have a much better idea of the “localization” of the
piece A� than of T (for the simple reason that A� is a “small part” of T ), but the true
mechanism is related to the fact that what really matters is the condition (10.72), and
you have to wait a few more pages until Sect. 10.13 to have it explained in words.

Finally it cannot hurt to stress again the magic of this proposition, which lies
in the use of the set (10.85). It is the use of this set which allows to use the weak
hypothesis (10.73) while reaching the strong conclusion (10.76).

10.7 A Decomposition Lemma

Besides Proposition 10.5.1, we need another decomposition principle, very similar
to what we did in Lemma 2.9.4 in the Gaussian case, which is just a reformulation
of Lemma 6.6.4 (with a = c/2). Here Δ denotes the diameter for the �2 distance.

Lemma 10.7.1 There exists a universal constant L3 with the following property.
Consider a set T ⊂ �2 and b, c > 0. Assume that ‖t‖∞ ≤ b for all t ∈ T . Consider
m ≥ 2 with b

√
logm ≤ c. Then we can find m′ ≤ m and a partition (B�)�≤m′ of T

such that for each � ≤ m′ we have either

∀D ⊂ B� ; Δ(D) ≤ c

L3
⇒ b(D) ≤ b(T )− c

L

√
logm (10.89)

or else

Δ(B�) ≤ c . (10.90)

We will need the following special case for our construction:

10 You can try to visualize things that way: we use one single point w to describe the “position” of
T . When we break T into small pieces, this gets easier. Furthermore, the position of some of the
small pieces is better described by an other point than w.
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Corollary 10.7.2 Consider a set T ⊂ �2 and w ∈ �2. Consider I ⊂ N
∗, c > 0,

and integers k ≤ h. Assume that r−h
√

logm ≤ c. Then we can find m′ ≤ m and a
partition (A�)�≤m′ of T such that for each � ≤ m′ we have either

∀D ⊂ A� ; Δ(D, I,w, k, h) ≤ c

L3
⇒

F(D, I,w, k, h) ≤ F(T , I,w, k, h) − c

L

√
logm (10.91)

or else

Δ(A�, I,w, k, h) ≤ c . (10.92)

Proof For notational convenience we assume I = N
∗. Set Gi = G(wi, k, h) and

consider the set J ∗ and the map Φ as in (10.33) and (10.34). Then for a subset A
of T , we have b(Φ(A)) = F(A, I,w, k, h). We construct a partition (B�)�≤m′ of
Φ(T ) using Lemma 10.7.1 with b = r−h and we set A� = Φ−1(B�). �

We can now state and prove the basic tool to construct partitions.

Lemma 10.7.3 Assuming that r is large enough, r ≥ L, the following holds.
Consider an integer n ≥ 2. Consider a set T ⊂ �2, a point w ∈ �2, a subset
I ⊂ N

∗, and integers k ≤ j . Then we can find m ≤ Nn and a partition (A�)�≤m
such that for each � ≤ m, we have either of the following three properties:

(a) We have

D ⊂ A� ; Δ(D, I,w, k, j + 2) ≤ 1

L4
2(n+1)/2r−j−1 ⇒

F(D, I,w, k, j + 2) ≤ F(T , I,w, k, j + 2)− 1

L
2nr−j−1 , (10.93)

or
(b)

Δ(A�, I,w, k, j + 1) ≤ 2n/2r−j−1 . (10.94)

or else
(c) There exists w′ ∈ T such that for I ′ = {i ∈ I ; |wi − w′i | ≤ 2r−k} we have

F(A�, I
′, w′, j + 2, j + 2) ≤ F(T , I,w, k, j + 1)− 1

L
2nr−j−1 , (10.95)

Δ(A�, I
′, w′, j + 2, j + 2) ≤ 2n/2r−j−1 . (10.96)
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At a high level, this lemma partitions T into not too many sets on which we have
additional information. In the case (a) the new information is that the subsets of A�

of a small diameter have a smaller size (as measured by the appropriate functional).
In the case (b) it is the set A� itself which has a small diameter. These two cases
are very similar to what happens in Lemma 2.9.4. This was to be expected since
these cases are produced by the application of Lemma 10.7.1 which is very similar
to Lemma 2.9.4. The really new feature is case (c), where again the size of the set
A� has decreased as measured by an appropriate functional, while at the same time
we control the diameter of A� (but for a much smaller distance than in case (b)).
What is harder to visualize (but is absolutely essential) is the precise choice of the
parameters in the distances and the functionals involved. It is absolutely essential
that the condition on D in (10.93) bears on Δ(D, I,w, k, j + 2), whereas the
condition on A� in (10.94) bears on Δ(A�, I,w, k, j + 1). Let us also note that
in the case (c) we have in particular, using (10.65) (i.e., the monotonicity in h and k)

F(A�, I
′, w′, j + 2, j + 2) ≤ F(T , I,w, k, j) − 1

L
2nr−j−1 , (10.97)

Proof The principle of the proof is to apply first Corollary 10.7.2 and then to split
again the resulting pieces of small diameter using Proposition 10.5.1.

Let us define m = Nn−1 − 1. Since we assume n ≥ 2, we have 2n/2/L ≤√
logm ≤ 2n/2. Let us set c = 2n/2r−j−1/L2 so that c

√
logm ≥ 2nr−j−1/L

and r−j−2√logm ≤ r−j−22n/2 ≤ L2c/r . Assuming r ≥ L2 we then have
r−j−2√logm ≤ c.

Let us recall the constant L3 of Corollary 10.7.2. We then apply this corollary
with these values of k, c,m, and with h = j + 2.11This produces pieces (C�)�≤m′
with m′ ≤ m which satisfy either

∀D ⊂ C� ; Δ(D, I,w, k, j + 2) ≤ c

L3
⇒

F(D, I,w, k, j + 2) ≤ F(T , I,w, k, j + 2)− c

L

√
logm (10.98)

or else

Δ(C�, I,w, k, j + 2) ≤ c . (10.99)

Let us set L4 =
√

2L2L3, so that

c

L3
= 1

L4
2(n+1)/2r−j−1 . (10.100)

11 The real reason to use j + 2 rather than j + 1 will become apparent only later. In short, it is
because in (10.98), we absolutely need to have a condition bearing on Δ(D, I,w, k, j + 2), not on
the larger quantity Δ(D, I,w, k, j + 1).
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Thus the pieces C� of the partition which satisfy (10.98) also satisfy (10.93). We are
done with these pieces.

The other pieces C� of the partition satisfy (10.99), that is, they satisfy (10.73) for
h = j . Let us fix w′ ∈ T . We split again these pieces C� into pieces (C�,�′)�′≤m+1
using Proposition 10.5.1, with these values of k,m, with h = j , σ = 2n/2r−j−1,
c = 2n/2r−j−1/L2 = σ/L2. Each of the resulting pieces C�,�′ satisfies either

Δ(C�,�′, I,w, k, j + 1) ≤ σ = 2n/2r−j−1 , (10.101)

and then we are in the case (b), or else (using that σ
√

logm ≥ 2nr−j−1/L) they
satisfy

F(C�.�′, I
′, w′, j + 2, j + 2) ≤ F(T , I,w, k, j + 1)− 1

L
2nr−j−1 , (10.102)

Δ(C�,�′, I
′, w′, j + 2, j + 2) ≤ c ≤ 2nr−j−1 , (10.103)

and then we are in the case (c).
Finally, the total number of pieces produced is ≤ m(m+ 1) ≤ N2

n−1 = Nn. �

10.8 Building the Partitions

We will prove the basic partitioning result by iterating Lemma 10.7.3. A remarkable
new feature of this construction is that the functionals we use depend on the set we
partition. We recall the constant L4 of Lemma 10.7.3. We fix an integer κ ≥ 3 with
2κ/2 ≥ 2L4, and we set r = 2κ (so that r is now a universal constant ≥ 8).

Consider a set T ⊂ �2 with 0 ∈ T . We plan to construct by induction over
n ≥ 0 an increasing sequence (An) of partitions of T , with cardAn ≤ Nn. To
each A ∈ An we will attach a set In(A) ⊂ N

∗, a point wn(A) ∈ �2, and integers
kn(A) ≤ jn(A) ∈ Z, 0 ≤ pn(A) ≤ 4κ − 1. We are going to explain soon the
meaning of these quantities and in particular of the integer pn(A). Let us right away
introduce some basic notation. For n ≥ 0, A ∈ An, and D ⊂ T , we define

Δn,A(D) := Δ(D, In(A),wn(A), kn(A), jn(A)) . (10.104)

We will use this quantity to measure the size of the subsets of A. The following is
obvious from the definition (10.104):

Lemma 10.8.1 Assume that B ∈ An and A ∈ An+1 and In+1(A) =
In(B),wn+1(A) = wn(B), kn+1(A) = kn(B), jn+1(A) = jn(B). Then for D ⊂ T

we have Δn,B(D) = Δn+1,A(D).
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To start the construction, we set n0 = 2. For n ≤ n0 := 2 we set An = {T },
In(T ) = N

∗, wn(T ) = 0, pn(T ) = 0 and kn(T ) = jn(T ) = j0, where j0 satisfies
Δ(T ) ≤ r−j0 .

For n ≥ n0 = 2 we will spell out rules by which we split an element B ∈ An

into elements of An+1 and how we attach the various quantities above to each newly
formed element of An+1. We will also show that certain relations are inductively
satisfied. Two such conditions are absolutely central and bear on a certain diameter
of A:

∀A ∈ An , pn(A) = 0 ⇒ Δn,A(A) ≤ 2n/2r−jn(A) . (10.105)

∀A ∈ An , pn(A) > 0 ⇒ Δn,A(A) ≤ 2(n−pn(A))/2r−jn(A)+2 . (10.106)

Let us observe that (10.106) gets more restrictive as pn(A) increases and that for
the small values of pn(A) (e.g., pn(A) = 1), this condition is very much weaker
than (10.105) because of the extra factor r2.

When pn(B) ≥ 1, observe first that from (10.106) we have

Δn,B(B) ≤ 2(n−pn(B))/2r−jn(B)+2 . (10.107)

The rule for splitting B in that case is simple: we don’t. We decide that B ∈ An+1,
and we set In+1(B) = In(B),wn+1(B) = wn(B), kn+1(B) = kn(B), jn+1(B) =
jn(B). For further reference, let us state

pn(B) > 0 ⇒ B ∈ An+1, jn+1(B) = jn(B) . (10.108)

To define pn+1(B), we proceed as follows:

• If pn(B) < 4κ − 1 we set pn+1(B) = pn(B)+ 1.
• If pn(B) = 4κ − 1 we set pn+1(B) = 0.

When pn+1(B) = pn(B) + 1 > 0, we have to prove that B ∈ An+1
satisfies (10.106), that is

Δn+1,B(B) ≤ 2(n+1−pn+1(B))/2r−jn+1(B)+2 .

This follows from (10.107), Lemma 10.8.1, and the fact that (n+ 1)− pn+1(B) =
n− pn(B).

When pn+1(B) = 0 we have to prove that B ∈ An+1 satisfies (10.105). Using
Lemma 10.8.1 in the equality and (10.107) in the inequality, recalling that pn(B) =
4κ − 1,

Δn+1,B(B) = Δn,B(B) ≤ 2(n−4κ+1)/2r−jn(B)+2 = 2(n+1)/2r−jn+1(B) ,

(10.109)

since 2−2κ = r−2.
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The integer pn(B) is a kind of counter. When pn(B) > 0, this tells us that we
are not permitted to split B, and we increment the counter, pn+1(B) = pn(B) + 1
unless pn(B) = 4κ − 1, in which case we set pn+1(B) = 0, which means we will
split the set at the next step. More generally, the value of the counter tells us in how
many steps we will split B: we will split B in 4κ − pn(B) steps.

Let us now examine the main case, pn(B) = 0. In that case we split B in at
most Nn pieces using Lemma 10.7.3, with I = In(B),w = wn(B), j = jn(B), and
k = kn(B). There are three cases to consider.

(a) We are in case (a) of Lemma 10.7.3; the piece A produced has property (10.93).
We define pn+1(A) = 0. We then set

In+1(A) = In(B) , wn+1(A) = wn(B) ,

jn+1(A) = jn(B) , kn+1(A) = kn(B) . (10.110)

(b) We are in case (b) of Lemma 10.7.3, and the piece A we produce has
property (10.94). We then set pn+1(A) = 0, jn+1(A) = jn(B) + 1, and we
define

In+1(A) = In(B) , wn+1(A) = wn(B) , kn+1(A) = kn(B) . (10.111)

(c) We are in case (c) of Lemma 10.7.3; the piece A produced has properties (10.95)
and (10.96). We set pn+1(A) = 1, and we define

jn+1(A) = kn+1(A) = jn(B)+ 2 .

We define wn+1(A) = w′ ∈ B and

In+1(A) =
{
i ∈ In(B) ; |wn+1(A)i −wn(B)i | ≤ 2r−kn(B)

}
, (10.112)

so that in particular In+1(A) ⊂ In(B).

In order to try to make sense of this, let us start with some very simple
observations. We consider B ∈ An with n ≥ 0 and A ∈ An+1, A ⊂ B.

• In cases (a) and (b), we do not change the value of the counter: pn+1(A) =
pn(B) = 0. Only in case (c) do we change this value, by setting pn+1(A) = 1.
This has the effect that the piece A will not be split in the next 4κ − 1 steps, but
will be split again exactly 4κ steps from now.

• There is a simple relation between jn+1(A) and jn(B). It should be obvious from
our construction that the following conditions hold:

jn(B) ≤ jn+1(A) ≤ jn(B)+ 2 . (10.113)

pn+1(A) = 0 ⇒ jn+1(A) ≤ jn(B)+ 1 . (10.114)

pn+1(A) = 1 ⇒ jn+1(A) = jn(B)+ 2 . (10.115)
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• It is also obvious by construction that “k, I,w did not change from step n to step
n+ 1 unless pn+1(A) = 1”:

pn+1(A) �= 1 ⇒ kn+1(A) = kn(B) ;
In+1(A) = In(B) ; wn+1(A) = wn(B) . (10.116)

• The possibility that pn+1(A) ≥ 2 only arises from the case pn(B) ≥ 1, so we
then have by construction

pn+1(A) ≥ 2 ⇒ pn(B) = pn(A)− 1 . (10.117)

Next we show that our construction satisfies the crucial conditions (10.105)
and (10.106).

Lemma 10.8.2 Conditions (10.105) and (10.106) hold for each n.

Proof The proof goes by induction over n. We perform the induction step from n

to n+ 1, keeping the notation A ⊂ B, B ∈ An, A ∈ An+1. We distinguish cases.

• We are in case (a) of Lemma 10.7.3; the piece A produced has property (10.93)
and pn+1(A) = 0. Using (10.110) and Lemma 10.8.1 and since A ⊂ B we have
Δn+1,A(A) = Δn,B(A) ≤ Δn,B(B), so that (10.105) is satisfied for A and n+ 1
because it was satisfied for B and n.

• We are in case (b) of Lemma 10.7.3, the piece A we produce has property (10.94)
and pn+1(A) = 0. Since jn+1(A) = jn(B) + 1 the condition (10.94) means
exactly that Δn+1,A(A) ≤ 2n/2r−jn+1(A) so that A satisfies (10.105).

• We are in case (c) of Lemma 10.7.3, the piece A produced has properties (10.95)
and (10.96) and pn+1(A) = 1. Then (10.96) means that Δn+1,A(A) ≤
2n/2r−jn(B), so that

Δn+1,A(A) ≤ 2n/2r−jn(B) = 2((n+1)−pn+1(A))/2r−jn+1(A)+2

since jn+1(A) = jn(B)+ 2. Thus condition (10.106) holds for A. �
Let us explore more properties of the construction. For n ≥ 0 and B ∈ An and

D ⊂ T , let us define

Fn,B(D) := F(D, In(B),wn(B), kn(B), jn(B)) . (10.118)

Lemma 10.8.3 For any n ≥ 0 when pn+1(A) = 1 we have

Fn+1,A(A) ≤ Fn,B(B)− 1

L
2n+1r−jn+1(A) , (10.119)

wn+1(A) ∈ B , (10.120)
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In+1(A) =
{
i ∈ In(B) ; |wn+1(A)i − wn(B)i | ≤ 2r−kn(B)

}
. (10.121)

Proof The only possibility that pn+1(A) = 1 is when we are in the case (c) above,
i.e., A is created by the case (c) of Lemma 10.7.3, and then A has property (10.97)
which translates as (10.119). The other two properties hold by construction. �

Let us now introduce new notation. For n ≥ 1, B ∈ An, D ⊂ T we define

Δ∗
n,B(D) := Δ(D, In(B),wn(B), kn(B), jn(B)+ 2) , (10.122)

F ∗n,B (D) := F(D, In(B),wn(B), kn(B), jn(B)+ 2) , (10.123)

and we learn to distinguish these quantities from those occurring in (10.104)
and (10.118): here we have jn(B)+ 2 rather than jn(B).

Lemma 10.8.4 Consider B ∈ An and A ∈ An+1, A ⊂ B. If n ≥ 2 and if
pn+1(A) = 0, either we have pn(B) = 4κ − 1 or jn+1(A) = jn(B)+ 1 or else we
have

D ⊂ A , Δ∗
n+1,A(D) ≤ 1

L4
2(n+1)/2r−jn+1(A)−1 ⇒

F ∗n+1,A(D) ≤ F ∗n+1,A(A)−
1

L
2nr−jn+1(A)−1 . (10.124)

Proof We may assume that pn+1(A) = 0, pn(B) �= 4κ−1, and jn+1(A) �= jn(B)+
1. The set A has been produced by splitting B. There are three possibilities, as
described on page 353. The possibility (b) is ruled out because jn+1(A) �= jn(B)+
1. The possibility (c) is ruled out because pn+1(A) = 0. So there remains only
possibility (a), that is, A has been created by the case (a) of Lemma 10.7.3, and
then (10.93) implies (10.124). �

Let us also observe another important property of the previous construction. If
B ∈ An, A ∈ An+1, A ⊂ B, then

Fn+1,A(A) ≤ Fn,B(B) . (10.125)

Indeed, if pn+1(A) �= 1 this follows from (10.113), (10.116), and (10.65), and if
pn+1(A) = 1, this is a consequence of (10.119).

10.9 Philosophy, IV

Let us stress some features of the previous construction. At a high level, cases
(a) and (b) are just as in the Gaussian case. In these cases we do not change
In(B),wn(B), kn(B) when going from n to n+1. We split B into sets A which either
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have the property the a small D subset of A has a small functional (as is precisely
stated in (10.94)) or which are such that “A is of small diameter”. But the devil
is in the fine print. “A is of small diameter” is not what you would obtain directly
from Lemma 10.7.1, a control of Δ(A, In+1(A),wn+1(A), kn+1(A), jn+1(A)+ 2).
It is the much stronger control of Δ(A, In+1(A),wn+1(A), kn+1(A), jn+1(A)+ 1).
This stronger control of the diameter of A is essential to make the proof work and
is permitted by a further splitting using Latała’s principle.

The cost of using Latała’s principle is that now we get a new case, (c). I like
to think of this case as a really new start. We reset the values of kn+1(A) and
wn+1(A), and we therefore lose a lot of the information we had gathered before.
But the fundamental thing which happens in that case is that we have decreased the
size of the set, as expressed by (10.119).

The counter pn(A) is not important; it is an artifact of the proof, just a way to
slow down matters after we have been in case (c) so that they move at the same
speed as in the other cases (instead of introducing more complicated notation).

10.10 The Key Inequality

Given t ∈ T and n ≥ 0, define then

j (n) := jn(An(t)) ,

where as usual An(t) is the element of An which contains t . The fundamental
property of the previous construction is as follows. It opens the door to the use
of Theorem 9.2.4, since it controls the main quantity occurring there.

Proposition 10.10.1 We have

∀t ∈ T ,
∑

n≥0

2nr−jn(t) ≤ L(r−j0 + b(T )) . (10.126)

We set

a(n) = 2nr−j (n) = 2nr−jn(An(t)) .

Let us first observe that since j (n) = j (0) for n ≤ 2 we have
∑

n≤2 a(n) ≤ Lr−j (0)
so that it suffices to bound

∑
n≥2 a(n). Let us define

F(n) := Fn,An(t)(An(t)) ≥ 0 ,
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where the functional Fn,A has been defined in (10.118). As a consequence
of (10.125) the sequence (F (n))n≥0 is non-increasing, and of course F(0) ≤
b(T ).12

Let us recall the definition n0 = 2 and set

J0 = {n0} ∪ {n > n0 ; j (n+ 1) > j (n)} ,

which we enumerate as J0 = {n0, n1, . . .}. Since nk ∈ J0 we have j (nk + 1) >

j (nk). By (10.113) we have j (nk + 1) ≤ j (nk)+ 2. Also, for nk + 1 ≤ n < nk+1
we have j (n+ 1) = j (n), so that

nk + 1 ≤ n ≤ nk+1 ⇒ j (n) = j (nk + 1) . (10.127)

Taking for granted that the sequence (a(n)) is bounded (which we will show
at the very end of the proof), and observing that a(n + 1) = 2a(n) for n �∈ J0,
Lemma 2.9.5 used for α = 2 implies that

∑
n≥n0

a(n) ≤ L
∑

n∈J0
a(n) =

L
∑

k≥0 a(nk). Let us set

C∗ := {k ≥ 0 ; ∀k′ ≥ 0 , a(nk) ≥ 2−|k−k′|a(nk′)
}
.

Using the Lemma2.9.5 again implies that

∑

k≥0

a(nk) ≤ L
∑

k∈C∗
a(nk) . (10.128)

Thus, our task is to bound this later sum. In the next section, you will find some
words trying to explain the structure of the proof, although they may not make sense
before one had at least a cursory look at the arguments.

A good part of the argument is contained in the following fact, where we use the
notation p(n) := pn(An(t)):

Lemma 10.10.2 Consider k ∈ C∗ with k ≥ 1 and assume that

nk − 1 ≤ m ≤ n∗ := nk+1 + 1 ⇒ p(m) = 0 . (10.129)

Then

a(nk) ≤ L(F(nk)− F(nk+2)) . (10.130)

Proof The proof is very close to the proof of (2.94) which should be reviewed now.
It will be deduced from the key property (10.124). A crucial fact here is that in the
definition (10.122) of Δ∗

n+1,A(A), we have jn+1(A)+ 2 (and not jn+1(A)).

12 Actually we have F(0) = b(T ).
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Let us fix k and set n = nk − 1. The reader must keep this notation in mind
at all time, and remember in particular that n + 1 = nk . We first prove that for
A = An+1(t) = Ank(t), (10.124) holds, i.e.

D ⊂ A , Δ∗
n+1,A(D) ≤ 1

L4
2(n+1)/2r−jn+1(A)−1 ⇒

F ∗n+1,A(D) ≤ F ∗n+1,A(A)−
1

L
2nr−jn+1(A)−1 . (10.131)

Since p(n + 1) = 0, Lemma 10.8.4 states that there are three possibilities: either
p(n) = 4κ − 1 or else j (n) < j (n + 1) or else (10.124) holds. We now rule out
the first two possibilities. The first one is ruled out by (10.129), which asserts in
particular that p(nk − 1) = p(n) = 0. To rule out the second one, we assume for
contradiction that j (n) = j (nk − 1) < j (nk) = j (n+ 1). Then nk − 1 ∈ J0 so that
nk − 1 = nk−1. But since k ∈ C∗, we have a(nk−1) ≤ 2a(nk), i.e., rj (nk)−j (nk−1) ≤
2nk+1−nk−1 = 4. Since j (nk) − j (nk−1) = 1, this is a contradiction since r ≥ 8,
which proves that j (n) = j (n+ 1).

Thus we have proved (10.131), which is the crux of the proof.
It follows from (10.114) that for any m ∈ J0, we have j (m + 1) = j (m) + 1

when p(m+ 1) = 0. In particular (10.129) implies that this is the case for m = nk
and m = nk+1 so that, using also (10.127) in the third equality,

j (n∗) = j (nk+1 + 1) = j (nk+1)+ 1 = j (nk + 1)+ 1 = j (nk)+ 2 , (10.132)

i.e.

jn∗(An∗(t)) = jnk (Ank (t))+ 2 . (10.133)

Furthermore (10.116) implies

wn∗(An∗(t)) = wnk(Ank (t)) ; In∗(An∗(t)) = Ink (Ank (t)) ;
kn∗(An∗(t)) = knk (Ank (t)) . (10.134)

We will prove later that

Δ∗
n+1,A(An∗(t)) ≤ 1

L4
2(n+1)/2r−jn+1(An+1(t))−1 = 1

L4
2nk/2r−jnk (Ank

(t))−1 .

(10.135)

For the time being, we assume that (10.135) holds, and we show how to conclude
the proof of the lemma. Recalling that nk = n + 1, so that jn+1(A) = jnk (A) =
jnk (Ank (t)) = j (nk) we use (10.131) to obtain

F ∗nk,A(An∗(t)) ≤ F ∗nk,A(Ank (t))−
1

L
2nk r−j (nk)−1 . (10.136)
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Using the monotonicity of (10.65) of F in the parameter j in the inequality, we
obtain

F ∗nk,A(Ank (t)) (10.137)

= F(Ank (t), Ink (Ank (t)), wnk (Ank (t)), knk (Ank (t)), j (nk)+ 2)

≤ F(Ank (t), Ink (Ank (t)), wnk (Ank (t)), knk (Ank (t)), j (nk)) = F(nk) .

Using (10.134) and in an absolutely crucial manner that j (n∗) = j (nk) + 2
by (10.132), we obtain

F ∗nk ,A(An∗(t)) (10.138)

= F(An∗(t), Ink (Ank (t)), wnk (Ank (t)), knk (Ank (t)), j (nk)+ 2)

= F(An∗(t), In∗ (An∗(t)), wn∗(An∗(t)), kn∗(An∗(t)), j (n∗)) = F(n∗) .

Thus (10.136) implies

F(n∗) ≤ F(nk)− 1

L
2nk r−j (nk)−1 ,

i.e., a(nk) ≤ L(F(nk) − F(n∗)) ≤ L(F(nk) − F(nk+2)) by (10.125), and this
concludes the proof of the lemma.

We turn to the proof of (10.135). Using (10.132) and (10.134), we first obtain

Δ∗
n+1,A(An∗(t))

= Δ(An∗(t), Ink (Ank (t)), wnk (Ank (t)), knk (Ank (t)), j (nk)+ 2)

= Δ
(
An∗(t), In∗ (An∗(t)), wn∗(An∗(t)), kn∗(An∗(t)), j (n∗))

)

= Δn∗,An∗ (t)(An∗(t)) . (10.139)

Here also it is crucial that j (n∗) = j (nk)+ 2. Then we use (10.105) for n∗ instead
of n and A = An∗(t) to obtain

Δn∗,An∗ (t)(An∗(t)) ≤ 2n
∗/2r−j (n∗) . (10.140)

By the definition of C∗, we have a(nk) ≥ a(nk+1)/2 i.e.

2nk r−j (nk) ≥ 2nk+1r−j (nk+1)/2 ,

and thus, using again that j (nk+1) = j (nk)+ 1,

2nk+1−nk ≤ 2r = 2κ+1
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and therefore nk+1 − nk ≤ κ + 1, so that n∗ = nk + 1 ≤ nk + κ + 2, and since
j (n∗) = j (nk) + 2, we have 2n

∗/2r−j (n∗) ≤ 2(2+κ)/22nk/2r−j (nk)−2. Using that
2κ/2 ≥ 2L4 and r = 2κ , so that 2(2+κ)/2r−1 = 21−κ/2 ≤ 1/L4, we get

2n
∗/2r−j (n∗) ≤ 2(2+κ)/22nk/2r−j (nk)−2 ≤ 1

L4
2nk/2r−j (nk)−1 . (10.141)

Comparing with (10.140) and (10.139) yields the desired inequality (10.135). �
Corollary 10.10.3 Consider the subset C̃ of C∗ consisting of the integers k ≥ 1,
k ∈ C∗ for which (10.129) holds. Then

∑

k∈C̃
a(nk) ≤ Lb(T ) . (10.142)

Proof This follows from the usual “telescoping sum” argument, together with the
fact that F(n) ≤ Lb(0). �

So, we have now reduced the task to controlling a(nk) when k ∈ C∗ \ C̃. We start
by a simple observation.

Lemma 10.10.4 We have

p(m) > 0 ⇒ j (m) = j (m+ 1) (10.143)

∀k ; p(nk) = 0 . (10.144)

Proof Condition (10.143) holds by construction; see (10.108). Condition (10.144)
is a corollary, since j (nk) < j (nk + 1). �

The following lemma gives us precise information on these integers k ∈ C∗ \ C̃:

Lemma 10.10.5 If for a certain k > 0 we have p(nk−1) = p(nk+1) = p(nk+1+
1) = 0 then k ∈ C̃.

Proof We have to prove that p(m) = 0 for nk − 1 ≤ m ≤ nk+1 + 1. Assume
for contradiction that there exists nk − 1 ≤ m ≤ nk+1 + 1 with p(m) > 0, and
consider the smallest such m. Then certainly nk+1 < m < nk+1 since p(nk−1) =
p(nk + 1) = 0 by hypothesis and since p(nk) = p(nk+1) = 0 by (10.108). Next
we prove that p(m) = 1. Indeed otherwise p(m) ≥ 2 and by (10.117) we have
p(m− 1) = p(m)− 1 ≥ 1 which contradicts the minimality of m. Thus p(m) = 1.
But by construction when p(m) = 1 then j (m) = j (m − 1)+ 2 (see (10.115)) so
that m − 1 ∈ J0. But since nk < m − 1 < nk+1, this contradicts the definition of
nk+1 which is the smallest element of J0 larger than nk . �
Corollary 10.10.6 For k ∈ C∗ \ C̃, we have either k = 0 or p(nk − 1) > 0 or
p(nk + 1) = 1 or p(nk+1 + 1) = 1.
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Proof According to Lemma 10.10.5 if k ≥ 1 does not belong to C̃ then on of the
quantities p(nk − 1), p(nk + 1), p(nk+1 + 1) is > 0. Now, since p(nk) = 0 and
p(n+ 1) ≤ p(n)+ 1 we have p(nk + 1) ≤ 1. �

The goal now is to produce specific arguments to control a(nk) in the various
situations which can happen when k ∈ C∗ \ C̃, as brought forward by the previous
corollary

Lemma 10.10.7 Let J1 = {n ≥ 0 ; p(n+ 1) = 1}. Then

∑

n∈J1

a(n) ≤ Lb(T ) . (10.145)

Proof Indeed (10.119) implies that for n ∈ J1,

a(n) ≤ L(F(n)− F(n+ 1)) ,

and the telescopic sum is bounded by LF(0) ≤ Lb(T ). �
Corollary 10.10.8 Let C1 = {k ∈ C∗ ; p(nk + 1) = 1} = {k ∈ C∗ ; nk ∈ J1}.
Then

∑

k∈C1

a(nk) ≤ Lb(T ) . (10.146)

Lemma 10.10.9 Let C2 := {k ≥ 0; nk+1 ∈ J1}. Then

∑

k∈C2

a(nk) ≤ Lb(T ) . (10.147)

Proof We have

a(nk) = 2nk r−j (nk) ≤ r22nk+1r−j (nk+1) = r2a(nk+1) ,

where we have used in the first inequality that j (nk+1) ≤ j (nk) + 2 by (10.113),
and therefore (10.146) implies the result. �
Lemma 10.10.10 Let C3 := {k ≥ 0;p(nk − 1) > 0}. Then

∑

k∈C3

a(nk) ≤ Lb(T ) . (10.148)

Proof Let us recall that by construction p(n + 1) = p(n) + 1 when 1 ≤ p(n) ≤
4κ − 2. Consequently the only possibility to have p(n) > 0 and p(n + 1) = 0
is to have p(n) = 4κ − 1. Also, since j (nk + 1) > j (nk), by construction we
have p(nk) = 0. Thus for k ∈ C3 we have p(nk) = 0 and p(nk − 1) > 0 so
that p(nk − 1) = 4κ − 1, and then p(nk − 4κ + 1) = 1, i.e., nk − 4κ ∈ J1.
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Iteration of the relation a(n) ≤ 2a(n − 1) shows that a(nk) ≤ 24κa(nk − 4κ).
Thus

∑
k∈C3

a(nk) ≤ L
∑

k∈C3
a(nk − 4κ) ≤ ∑n∈J1

a(n), and the result follows
from (10.145). �

The following is a consequence of Corollary 10.10.6 and the subsequent lemmas:

Proposition 10.10.11 We have

∑

k∈C∗
a(nk) ≤ L(r−j0 + b(T )) . (10.149)

Proof of Proposition 10.10.1 It follows by combining (10.128) and (10.149). But
it remains to prove that the sequence (a(n)) is bounded. Using a much simplified
version of the previous arguments, we prove that in fact

∀n , a(n) ≤ L(r−j0 + b(T )) . (10.150)

By (10.145) this is true if n ∈ J1. Next we recall that if p(n) > 2 then p(n − 1) =
p(n) − 1. Consequently n ∈ J2 := {n;p(n− 1)+ p(n) > 0}, there exists n′ ∈ J1
with n′ ≥ n − 4κ . Also, since a(m + 1) ≤ 2a(m), we have a(n) ≤ La(n′), and
we have shown that (10.150) holds for n ∈ J2. Next we show that it also holds for
n ∈ J3 := {n ≥ 3; j (n − 1) = j (n), p(n − 1) = p(n) = 0}. Indeed in that case,
we use Lemma 10.8.4 for n − 1 rather than n. Since p(n) = p(n − 1) = 0, we are
in the third case of the lemma, and (10.124) holds. Taking D reduced to a single
point proves the required equality a(n) ≤ LF(n0). Now, if n ≥ 3 and n �∈ J2 ∪ J3,
we have j (n) > j (n − 1), and since r > 4, we have a(n − 1) > a(n). So to
prove (10.150), we may replace n by n−1. Iteration of the procedure until we reach
a point of J2 ∪ J3 ∪ {1, 2} concludes the argument. �

10.11 Philosophy, V

In this section we try to describe at a high level some features of the previous proof.
When in that proof j (nk + 1) > j (nk), according to (10.114) and (10.115), there
are two cases. First, it might happen that p(nk +1) = 1 and j (nk +1) = j (nk)+2.
Second, it might happen that p(nk + 1) = 0 and j (nk + 1) = j (nk) + 1. Let
us think of the first case as an exceptional case. This exceptional case is a good
thing because we then have no problem to control a(nk) thanks to (10.145). As
expressed in (10.147) and (10.148), for semi-trivial reasons, we have no problem
either to control a(nk) when p(nk − 1) = 1 or p(nk+1 + 1) = 1, so that, so to
speak, the problem is to control the a(nk) in the special case where there is no
exceptional value k′ near k. This is what Lemma 10.10.2 does. In that lemma we
get by construction the information (10.131) on the small subsets D of A = Ank(t).
The idea is to use that information on a set D = An′(t). For this we need to control
the diameter of An′(t). We should think of this diameter as governed by 2n

′/2r−j (n′).
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For this to be small enough, we need j (n′) ≥ j (nk) + 2. The smallest value of n′
for which this happens is n∗ = nk+1 + 1. An important feature of the argument is
that our bound on the size of Ank+1+1 is smaller by a factor 2/r than the bound we
had on the size of Ank+1 (which itself is not so much larger than the bound we had
on the size of Ank thanks to the use of Lemma 2.9.5). In this manner we obtain the
control a(nk) ≤ L(F(nk)− F(n∗)).

10.12 Proof of the Latała-Bednorz Theorem

Without loss of generality, we assume 0 ∈ T . First we use Lemma 6.3.6 to find j0
such that Δ(T , d2) ≤ 2r−j0 ≤ Lb(T ) so that in particular |ti | < r−j0/2 for t ∈ T

and i ∈ N. We then build a sequence of partitions as in Sect. 10.8, using this value
of j0. Then (10.126) yields

sup
t∈T

∑

n≥0

2nr−jn(t) ≤ Lb(T ) . (10.151)

The plan is to produce the required decomposition of T using Theorem 9.2.4 for
Ω = N and μ the counting measure (and using also (10.151)). To apply this
theorem, given n and given A ∈ An, we will define an elements πn(A) ∈ T . We
will then define πn(t) = πn(An(t)). However, in contrast with what happened in
many previous proofs, we will not require that πn(A) ∈ A. It could be helpful to
recall (9.9) and (9.10), which are the most stringent of the conditions we require on
πn(t):

∀t ∈ T , ∀n ≥ 0 , jn(t) = jn+1(t)⇒ πn(t) = πn+1(t) , (9.9)

∀t ∈ T , ∀n ≥ 0 , jn+1(t) > jn(t)⇒ πn+1(t) ∈ An(t) . (9.10)

The construction of the points πn(A) proceeds as follows. We choose π0(T ) = 0.
Consider A ∈ An+1 and A ⊂ B, B ∈ An. According to (10.113) there are three
disjoint cases which cover all possibilities:

• jn+1(A) = jn(B). We then set πn+1(A) = πn(B).
• jn+1(A) = jn(B)+ 1. We take for πn+1(A) any point of B.
• jn+1(A) = jn(B)+2. According to (10.114) we then have pn+1(A) = 1, so that

we are in the case (c) considered on page 353. We set πn+1(A) = wn+1(A) so
that πn+1(A) ∈ B using (10.120).

The important property (which obviously holds by construction) is that

jn+1(A) = jn(B)⇒ πn+1(A) = πn(B) , (10.152)

jn+1(A) > jn(B)⇒ πn+1(A) ∈ B . (10.153)
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Defining πn(t) = πn(An(t)), this implies that (9.9) and (9.10) hold, while (9.7)
is obvious by construction. Also, according to (10.114) and (10.115), we have
jn+1(A) = 1 if and only if jn+1(A) = jn(B), so that

pn+1(A) = 1 ⇒ πn+1(A) = wn+1(A) . (10.154)

Let us consider the set

Ωn(t) =
{
i ∈ N

∗ ; ∀q < n , |πq(t)i − πq+1(t)i | ≤ r−jq (t)
}
. (10.155)

The key of the argument is to establish the inequality

∀t ∈ T , ∀n ≥ 0 ,
∑

i∈Ωn(t)

|rjn(t)(ti − πn(t)i )|2 ∧ 1 ≤ L2n . (10.156)

This inequality means that (9.12) holds for u = L. We can then apply Theorem 9.2.4
to obtain the required decomposition of T , since T3 = {0} by the choice of j0.

We start the preparations for the proof of (10.156). Let us define

kn(t) := kn(An(t)) ; wn(t) := wn(An(t)) ; pn(t) := pn(An(t)) .

Then by (10.116) we have

pq+1(t) �= 1 ⇒ wq+1(t) = wq(t) ; kq+1(t) = kq(t) , (10.157)

and (10.154) implies

pq+1(t) = 1 ⇒ πq+1(t) = wq+1(t) . (10.158)

Also, since kn(A) ≤ jn(A) for A ∈ An, we have

kn(t) ≤ jn(t) . (10.159)

Our next goal is to prove the inequality

i ∈ Ωn+1(t)⇒ |πn+1(t)i −wn(t)i | ≤ 2r−kn(t) . (10.160)

To prepare for the proof, let J ′ = {0}∪{n′;pn′(t) = 1}. Given n ≥ 0 let us consider
the largest n′ ∈ J ′ with n′ ≤ n. Then by definition of n′ for n′ ≤ q < n we have
pq+1(t) �= 1, so that by (10.157) we have wq+1(t) = wq(t) and kq+1(t) = kq(t).
Consequently we have

wn(t) = wn′(t) ; kn(t) = kn′(t) . (10.161)
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We prove next that πn′(t) = wn′ (t). If n′ = 0 this is true because we defined
w0(T ) = π0(T ) = 0. If n′ > 0, by (10.158) we have πn′(t) = wn′(t), and
recalling (10.161) we have proved that πn′(t) = wn′(t) as desired.

We observe next that by (10.159) we have k′
n′(t) ≤ jn′(t). Recalling (10.161), to

prove (10.160) it suffices to prove that |πn+1(t)i − πn′(t)i | ≤ 2r−jn′ (t). We write

|πn+1(t)i − πn′(t)i | ≤
∑

n′≤q≤n
|πq+1(t)i − πq(t)i | =

∑

i∈U
|πq+1(t)i − πq(t)i | ,

(10.162)

where

U = {q ; n′ ≤ q ≤ n , πq+1(t)− πq(t) �= 0} .

Now, recalling (10.155), since i ∈ Ωn+1(t) for q ∈ U we have |πq+1(t)i−πq(t)i | ≤
r−jq (t), so that by (10.162) we get

|πn+1(t)i − πn′(t)i | ≤
∑

q∈U
r−jq(t) . (10.163)

Since the sequence jn(t) is non-decreasing, for q ∈ U we have jq(t) ≥ jn′(t). Also,
by the first part of (10.153) for q ∈ U , we have jq+1(t) �= jq(t) so that the numbers
jq(t) for q ∈ U are all different and the sum on the right-hand side of (10.163) is
≤∑j≥jn′ (t) r

−j ≤ 2r−jn′ (t) proving (10.160).
Next we prove by induction over n that Ωn(t) ⊂ In(t) := In(An(t)). This holds

for n = 0 since I0(t) = N
∗. The argument for the induction from n to n + 1

depends on the value of pn+1(t). We start with the easy case is where pn+1(t) �= 1.
Then Ωn+1(t) ⊂ Ωn(t) ⊂ In(t) and In+1(t) = In(t) by (10.116), concluding
the argument. Let us now assume that pn+1(t) = 1. We first note that according
to (10.112) we then have

In+1(t) = {i ∈ In(t) ; |wn+1(t)i − wn(t)i | ≤ 2r−kn(t)} . (10.164)

Also, by construction of πn+1(A), we have πn+1(t) = wn+1(t), and then (10.160)
implies that for i ∈ Ωn+1(t) we have |wn+1(t)i − wn(t)i | ≤ 2r−kn(t). Combining
with the induction hypothesis, (10.164) concludes the proof that Ωn+1(t) ⊂ In+1(t)

and the induction.
Using (10.160) for n− 1 rather than n, we obtain

i ∈ Ωn(t)⇒ |πn(t)i −wn−1(t)i | ≤ 2r−kn−1(t) . (10.165)
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Since Ωn(t) ⊂ In(t) ⊂ In−1(t), it follows from (10.69) that

∑

i∈Ωn(t)

|rjn(t)(ti − πn(t)i )|2 ∧ 1 ≤ 2r2jn(t)dIn−1(t),wn−1(t),kn−1(t),jn(t)(t, πn(t))
2

≤ 2r2jn(t)dIn−1(t),wn−1(t),kn−1(t),jn−1(t)(t, πn(t))
2 , (10.166)

where in the second line we use that jn−1(t) ≤ jn(t) and that dI,w,k,j decreases
when j increases.

Finally we are ready to prove the main inequality (10.156). Let us assume first
that jn−1(t) < jn(t). In that case by (10.153) we have πn(t) ∈ An−1(t) so that the
right-hand side of (10.166) is bounded by

2r2jn(t)Δ(An−1(t), In−1(t), wn−1(t), kn−1(t), jn−1(t))
2

= 2r2jn(t)Δn−1,An−1(t)(An−1(t))
2 ≤ 2nr2jn(t)−2jn−1(t) ,

where we have used (10.105) for n−1 rather than n in the inequality. This concludes
the proof of (10.156) in that case since jn−1(t) ≥ jn(t) − 2 and r is a universal
constant.

To prove (10.156) in general, we proceed by induction over n. The inequality
holds for n = 0 by our choice of j0. For the induction step, according to the previous
result, it suffices to consider the case where jn(t) = jn−1(t). Then, according
to (10.152) we have πn(t) = πn−1(t), so the induction step is immediate since
Ωn(t) ⊂ Ωn−1(t). �

10.13 Philosophy, VI

Maybe we should stress how devilishly clever the previous argument is. On the one
hand, we have the information (10.153) on πn(t), which, together with (10.105),
allows us to control the right-hand side of (10.166). But we do not care about the
right-hand side of this inequality; we care about the left-hand side. In order to be able
to relate them using (10.69), we need to control the difference |πn(t)i − wn−1(t)i |
for many coordinates i. The coordinates for which we can achieve that depend on t .

Let us try to take the mystery out of the interplay between the sets Ωn(t) and
In(t). The magic is already in the definition of the sets Ωn(t) : when going from
Ωn(t) to Ωn+1(t), we drop the coordinates i for which πn+1(t)i is significantly
different from πn(t)i . Another important feature is that wn(t) = wn+1(t) unless
pn+1(t) = 1, i.e., unless we are in the case (c) of Lemma 10.7.3. We then use a
marvelously simple device. Each time we have just changed the value of wn(t) (i.e.,
we are at stage n + 1 with pn+1(t) = 1), we ensure that πn+1(t) = wn+1(t). The
point of doing this is that for the coordinates i, we have kept (i.e., those belonging to
the set Ωn+1(t)) the value of πn+1(t)i is nearly the same as the value wn′(t)i , where
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n′ is the last time we changed the value of wq(t). This is true whatever our choice
for πn+1(t) and in particular for πn+1(t) = wn+1(t). Thus we are automatically
assured that for the coordinates i we keep wn+1(t)i is nearly wn′(t)i (i.e., that
Ωn+1(t) ⊂ In+1(t)).

The purpose of (10.120) is precisely to be able to set πn+1(A) = wn+1(A) when
pn+1(A) = 1 while respecting the crucial condition (10.153).

10.14 A Geometric Characterization of b(T )

The majorizing measure theorem (Theorem 2.10.1) asserts that for a subset T of
�2, the “probabilistic” quantity g(T ) = E supt∈T

∑
i≥1 giti is of the same order

as the “geometric” quantity γ2(T , d). In this section we prove a similar result for
the probabilistic quantity b(T ). The corresponding geometric quantity will use a
familiar “family of distances” which we recall now. We fix r ≥ 8, and for j ∈ Z

and s, t ∈ �2, we define (as we have done through Chap. 7)

ϕj (s, t) =
∑

i≥1

(r2j |si − ti |2) ∧ 1 . (10.167)

Let us then consider the following “geometric measure of size of a subset T of �2”:

Definition 10.14.1 Given a subset T of �2, we denote by b̃(T ) the infimum of the
numbers S for which there exists an admissible sequence (An) of partitions of T ,
and for A ∈ An an integer jn(A) with the following properties:

s, t ∈ A⇒ ϕjn(A)(s, t) ≤ 2n , (10.168)

Δ(T , d2) ≤ r−j0(T ) , (10.169)

S = sup
t∈T

∑

n≥0

2nr−jn(An(t)) . (10.170)

We recall the quantity b∗(T ) from Definition 6.2.6.

Theorem 10.14.2 For a subset T of �2 one has

b̃(T ) ≤ Lr2b∗(T ) . (10.171)

This theorem is a kind of converse to Theorem 2.10.1. Together with Corol-
lary 9.4.3, it shows that the measures of size b∗(T ) and b̃(T ) are equivalent.
The Latała-Bednorz theorem shows that the measures of size b(T ) and b∗(T ) are
equivalent. Thus all three measures of size b(T ), b∗(T ), and b̃(T ) are equivalent.
The equivalence of b(T ) and b̃(T ) parallels, for Bernoulli processes, the equivalence
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of g(T ) and γ2(T , d) for Gaussian processes. Observe that the proof of the
equivalence of b̃(T ) and b(T ) is somewhat indirect, since we show that both
quantities are equivalent to b∗(T ). There laid a considerable difficulty in discovering
the proof of the Latała-Bednorz theorem: even though b(T ) and b̃(T ) are equivalent,
it does not seem possible to directly construct the partition witnessing that b̃(T ) ≤
Lb(T ).

Theorem 10.14.2 is a consequence of the Latała-Bednorz result and of the
following facts:

Proposition 10.14.3 Consider a > 0. The set Ba = {t ∈ �2;∑i≥1 |ti | ≤ a}
satisfies b̃(Ba) ≤ Lra.

Proposition 10.14.4 For a subset T of �2 one has b̃(T ) ≤ Lrγ2(T ).

Proposition 10.14.5 Recalling that T + T ′ denotes the Minkowski sum of T and
T ′, for T , T ′ ⊂ �2 one has

b̃(T + T ′) ≤ Lr(b̃(T )+ b̃(T ′)) . (10.172)

The proof of Proposition 10.14.3 is delayed until Sect. 19.2.1 because this result
has little to do with probability and bears on the geometry of Ba . The proof of
Proposition 10.14.4 should be obvious to the reader having reached this point. If it
is not, please review the discussion around (9.46), and if this does not suffice, try to
figure it out by solving the next exercise.

Exercise 10.14.6 Write the proof of Proposition 10.14.4 in complete detail.

Proof of Proposition 10.14.5 We first observe that for a translation-invariant dis-
tance d , we have

d(s + s′, t + t ′) ≤ d(s + s′, t + s′)+ d(t + s′, t ′ + s′) ≤ d(s, t) + d(s′, t ′) ,

so that since ϕj is the square of a translation-invariant distance,

ϕj (s + s′, t + t ′) ≤ 2(ϕj (s, t) + ϕj (s
′, t ′)) . (10.173)

For each t ∈ T +T ′ let us pick in an arbitrary manner u(t) ∈ T and u′(t) ∈ T ′ with
t = u(t)+ u′(t ′). For A ⊂ T ,A′ ⊂ T ′ let us define

A ∗A′ = {t ∈ T ; u(t) ∈ A , u′(t) ∈ A′} .

According to the definition of b̃, there exist admissible sequences (An) and (A′
n) on

T and T ′, respectively, and for A ∈ An and A′ ∈ A′
n corresponding integers jn(A)

and j ′n(A′) as in (10.168) and (10.169) with

∑

n≥0

2nr−jn(t) ≤ 2b̃(T ) ;
∑

n≥0

2nr−j ′n(t) ≤ 2b̃(T ′) . (10.174)
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Consider the family of subsets Bn of T +T ′ consisting of the sets of the type A∗A′
for A ∈ An and A′ ∈ A′

n. It obviously forms a partition of T + T ′. The sequence
(Bn) of partitions is increasing and cardBn ≤ N2

n ≤ Nn+1. Also, for t = u(t) +
u′(t) ∈ T + T ′, we have t ∈ An(u(t)) ∗ A′n(u′(t)), so An(u(t)) ∗ A′n(u′(t)) is the
element Bn(t) of Bn containing t . For B = A ∗A′ ∈ Bn, we set

bn(B) = min(jn(A), j ′n(A′)) . (10.175)

Thus for s, t ∈ B, we have, using (10.173) and also (10.168) in the last inequality,

ϕbn(B)(s, t) = ϕbn(B)(u(s)+ u′(s), u(t)+ u′(t)) (10.176)

≤ 2ϕbn(B)(u(s), u(t))+ 2ϕbn(B)(u
′(s), u′(t)) ≤ 2n+2 .

Let us then define a sequence (Cn) of partitions of T + T ′ by setting Cn = Bn−2
for n ≥ 3 and Cn = {T + T ′} for n ≤ 2. Obviously, this sequence of partitions is
admissible. Let us further define kn(B) = bn−2(B) for B ∈ Cn = Bn−2 with n ≥ 3
and kn(T + T ′) = min(j0(T ), j

′
0(T

′)) − 1 for n ≤ 2. We will now check that the
admissible sequence of partitions (Cn) together with the associated numbers kn(C)

witness that b̃(T + T ′) ≤ Lr(b̃(T ) + b̃′(T )). First, for any t ∈ T + T ′ we have,
using (10.174) in the third line,

∑

n≥0

2nr−kn(Cn(t)) ≤ Lr−min(j0(T ),j
′
0(T

′))+1 +
∑

n≥3

2nr−bn−2(Bn−2(t))

≤ Lr−min(j0(T ),j
′
0(T

′))+1 + L
∑

n≥1

2nr−bn(Bn(t))

≤ Lr
∑

n≥0

2nr−min(jn(An(u(t))),j
′
n(A

′
n(u

′(t))))

≤ Lr(b̃(T )+ b̃(T ′)) . (10.177)

Next, recalling (10.169), and using that r ≥ 2 in the last inequality,

Δ(T + T ′, d2) ≤ Δ(T , d2)+Δ(T ′, d2) ≤ r−j0(T ) + r−j ′0(T ′)

≤ 2r−min(j0(T )+j ′0(T ′)) ≤ r−k0(T+T ′) , (10.178)

and we have checked that the sequence (Cn) satisfies (10.169). It remains to
check (10.168). We use the inequalities ϕj (s, t) ≤ r2jd(s, t)2 to obtain that for
s, t ∈ T + T ′ and n ≤ 2, we have

ϕkn(T+T ′)(s, t) ≤ r2kn(T+T ′)Δ(T + T ′, d2)
2 ≤ 1 ≤ 2n ,
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since kn(T + T ′) = k0(T + T ′) and using (10.178). That is, for n ≤ 2 and s, t ∈
C ∈ Cn, we have ϕkn(C)(s, t) ≤ 2n. This is also true for n ≥ 3 because for C ∈ Cn,
we have C ∈ Bn−2 and kn(C) = bn−2(C) and using (10.176). Thus we have also
checked (10.168) and (10.172) follows from (10.177). �

10.15 Lower Bounds from Measures

At this stage we advise the reader to review Sect. 3.3, as the main result of the
present section, Theorem 10.15.1, is closely connected to Proposition 3.3.1. Given
a set T ⊂ �2 and a probability measure μ on T , we are now going to provide a
lower bound for b(T ) using μ. This will be very useful later, in the study of certain
random series in Chap. 11. We define j0 to be the largest integer j such that

∀s, t ∈ T , ϕj (s, t) ≤ 1 . (10.179)

Thus we can find s, t ∈ T with ϕj0+1(s, t) > 1, and since ϕj0+1(s, t) ≤
r2(j0+1)d2(s, t)

2, we have rj0+1Δ(T , d2) > 1 and

r−j0−1 < Δ(T , d2) . (10.180)

Given t ∈ T we define j̄0(t) = j0, and for n ≥ 1 we define

j̄n(t) = sup
{
j ∈ Z ; μ({s ∈ T ; ϕj (t, s) ≤ 2n}) ≥ N−1

n

}
, (10.181)

so that the sequence (j̄n(t))n≥0 increases. We then set

Iμ(t) =
∑

n≥0

2nr−j̄n(t) . (10.182)

Theorem 10.15.1 For any probability measure μ on T , we have

∫

T

Iμ(t)dμ(t) ≤ Lr3b(T ) . (10.183)

According to (10.171) it suffices to prove the following:

Proposition 10.15.2 Given a probability measure μ on T , we have

∫

T

Iμ(t)dμ(t) ≤ Lrb̃(T ) . (10.184)

Proof Consider an admissible sequence (An) of partitions of T . For A ∈
An consider an integer jn(A) as in (10.168) and (10.169), and let S =
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supt∈T
∑

n≥0 2nr−jn(An(t)). Comparing (10.169) and (10.180) yields r−j0−1 ≤
r−j0(T ) = r−j0(A0(t)) ≤ S. Consider n ≥ 1 and A ∈ An. Then for t ∈ A we have

A ⊂ {s ∈ T ; ϕjn(A)(s, t) ≤ 2n
} ⊂ {s ∈ T ; ϕjn(A)(s, t) ≤ 2n+1} .

Thus, by the definition (10.181) of j̄n+1(t), if μ(A) ≥ N−1
n+1 then j̄n+1(t) ≥ jn(A)

and thus
∫

A

2n+1r−j̄n+1(t)dμ(t) ≤ 2
∫

A

2nr−jn(An(t))dμ(t) . (10.185)

On the other hand if μ(A) < N−1
n+1 then, since j̄n+1(t) ≥ j̄0(t) = j0,

∫

A

2n+1r−j̄n+1(t)dμ(t) ≤ 2n+1r−j0N−1
n+1 .

Summation over all A ∈ An implies (using in the second term that cardAn ≤ Nn

and NnN
−1
n+1 ≤ N−1

n )

∫

T

2n+1r−j̄n+1(t)dμ(t) ≤ 2
∫

T

2nr−jn(An(t))dμ(t)+ 2n+1r−j0N−1
n .

Summation over n ≥ 0 implies

∫

T

∑

n≥1

2nr−j̄n(t)dμ(t) ≤ LS + Lr−j0 .

Since 2nr−j̄n(t) ≤ Lr−j0 ≤ LrS for n = 0 or n = 1, we proved that∫
T
Iμ(t)dμ(t) ≤ LS, which proves the result by definition of b̃(T ). �
One piece is missing to our understanding of Bernoulli processes. In the case

of a metric space (T , d), one knows how to identify simple structures (trees), the
presence of which provides a lower bound on γ2(T , d). One then can dream of
identifying geometric structures inside a set T ⊂ �2, which would provide lower
bounds for b(T ) of the correct order. Maybe this dream is impossible to achieve,
and not the least remarkable feature of the Latała-Bednorz proof of Theorem 6.2.8
is that it completely bypasses this problem. The following exercise gives an example
of such a structure:

Exercise 10.15.3 For n ≥ 1 let In = {0, 1}n and let I =⋃n≥1 In. For σ ∈ {0, 1}N∗
let us denote by σ |n ∈ In the restriction of the sequence to its first n terms. Consider
a sequence (αn) with αn > 0 and

∑
n≥1 αn = 1. Consider the set T ⊂ �1(I)

consisting of the elements x = (xi)i∈I such that there exists σ ∈ {0, 1}N∗ for
which xi = αn if i ∈ In and i = σ |n and xi = 0 otherwise. Prove that
E supt∈T

∑
i∈I εi ti ≥ 3/4.
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The following direction of investigation is related to Proposition 3.4.1:

Research Problem 10.15.4 Consider a T ⊂ �2. Can we find a probability measure
μ on T such that

b(T ) ≤ L inf
t∈T Iμ(t) ?

Key Ideas to Remember

• The main difficulty in proving the Latała-Bednorz theorem is that we know little
about Bernoulli processes unless we control their supremum norm. Such a control
is required in particular to use the Sudakov minoration for these processes.

• To control the supremum norm, the main technical tool is chopping maps, which
replace the process by a related process with a better control of the supremum
norm.

• The strategy to prove the Latała-Bednorz theorem is to recursively construct
increasing sequences of partitions of the index set. The size of each element of
the partition is controlled by the value of a functional, which however depends
on the element of the partition itself.

• Compared with the case of Gaussian processes, a fundamentally new partitioning
principle is required, Latała’s principle. Applying this partitioning principle
requires changing the chopping map.

• The difficulty of the construction is to ensure that no essential information is lost
at any stage.

• There is a natural geometric characteristic of a set T ⊂ �2 equivalent to the
size of the corresponding Bernoulli process. This geometric property involves the
existence of an admissible sequences of partitions of the index set with precise
smallness properties with respect to the canonical family of distances.

• The existence of such an admissible sequence of partitions in turn controls how
“scattered” a probability measure on the index set can be. This property will be
the key to using the Latała-Bednorz theorem.

10.16 Notes and Comments

I worked many years on the Bernoulli conjecture. The best I could prove is that
if p > 1 for any set T ⊂ �2, we can write T ⊂ T1 + T2 with γ2(T1) ≤ K(p)

and T2 ⊂ K(p)Bp where Bp is the unit ball of �p. This statement has non-trivial
applications to Banach Space theory: it is sufficient to prove Theorem 19.1.5, but it
is otherwise not very exciting. Nonetheless many results presented in Part II were
results of efforts in this general direction.



Chapter 11
Random Series of Functions

As in the case of Chap. 7, the title of the chapter is somewhat misleading: our focus
is not on the convergence of series, but on quantitative estimates bearing on sums of
random functions.

11.1 Road Map

There are two fundamentally different reasons why a sum of random functions is
not too large.1

• There is a lot of cancellation between the different terms.
• The sum of the absolute values of the functions is not too large.

One may of course also have mixtures of the previous two situations. Under
rather general circumstances, we will prove the very striking fact that there are
no other possibilities: every situation is a mixture of the previous two situations.
Furthermore we will give an exact quantitative description of the cancellation, by
exhibiting a chaining method which witnesses it.

Let us describe more precisely one of our central results in this direction, which
is a vast generalization of Theorem 6.8.3.2 (The central result of this chapter,
Theorem 11.10.3, is an abstract version of Theorem 11.1.1 which is conceptually
very close.) Consider independent r.v.s (Xi)i≤N valued in a measurable space Ω ,
and denote by λi the distribution of Xi . Set ν = ∑i≤N λi . We consider a set T of

1 We have already seen this idea in Sect. 6.8 in the setting of empirical processes.
2 Not only the proof of this generalization is identical to the proof of Theorem 6.8.3, but the
generalization is powerful, as we will experience in Sect. 11.12.
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functions on Ω , and we denote s, t, . . . the elements of T . We denote by d2 and d∞
the distances on T corresponding to the L2 and L∞ norm for ν.

Theorem 11.1.1 (The Decomposition Theorem for Empirical Processes) There
is a decomposition T ⊂ T1 + T2 such that

γ2(T1, d2)+ γ1(T1, d∞) ≤ LE sup
t∈T

∑

i≤N
εit (Xi) (11.1)

and

E sup
t∈T2

∑

i≤N
|t (Xi)| ≤ LE sup

t∈T

∑

i≤N
εit (Xi) . (11.2)

To explain why this result fits in the previous conceptual framework, let us lighten
notation by setting

S(T ) = E sup
t∈T

∑

i≤N
εit (Xi) ,

and let us observe that when T ⊂ T1 + T2, we have S(T ) ≤ S(T1)+ S(T2). When
T ⊂ T1 + T2 we may think of T as a mixture of the sets T1 and T2, and to control
S(T ) it suffices to control S(T1) and S(T2). There is a very clear reason why for
t ∈ T2 the sums

∑
i≤N εit (Xi) are not too large: it is because already the sums∑

i≤N |t (Xi)| are not too large. This is the content of (11.2).
To understand what happens for T1, we recall the following fundamental bound:

Lemma 11.1.2 We have S(T ) ≤ L(γ2(T , d2)+ γ1(T , d∞)).

Proof This follows from Bernstein’s inequality (4.44) and Theorem 4.5.13 just as
in the case of Theorem 4.5.16. �

Thus the information γ2(T1, d2)+γ1(T1, d∞) ≤ LS(T ) of (11.1) is exactly what
we need to prove that chaining controls S(T1).

Since this chaining is obtained through Bernstein’s inequality, and since no
cancellation is needed to explain the size of S(T2), we may picturesquely formulate
Theorem 11.1.1 as chaining using Bernstein’s inequality captures all the cancella-
tion.

Despite the fact that Theorem 11.1.1 is of obvious theoretical importance, one
must keep realistic expectations. The theorem does not contain a practical recipe to
find the decomposition. In practical situations, such as those studied in Chap. 14, it
is the part without cancellations which is difficult to control, and the cancellations
are easily controlled through chaining (just as expected from Theorem 11.1.1).

The reader should review Sect. 6.8 now as well as Chap. 7, at least up to Sect. 7.7.
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11.2 Random Series of Functions: General Setting

The setting in which we will work is more general than the setting of Theo-
rem 11.1.1, and we describe it first. We consider an index set T and a random
sequence (Zi)i≥1 of functions on T . We do not assume that this sequence is indepen-
dent.3 Consider an independent Bernoulli sequence (εi)i≥1, which is independent of
the sequence (Zi)i≥1. We are interested in the random sums

∑
i≥1 εiZi(t). We will

measure their “size” by the quantity

S := E sup
t∈T

∑

i≥1

εiZi(t) . (11.3)

The crucial technical feature here is that given the randomness of the Zi , we are
considering a Bernoulli process. The most important case is when the sum in (11.3)
is a finite sum (i.e., Zi = 0 for i large enough). In the next chapter we will also
consider situations where the sum in (11.3) is infinite, and we will then consider
actual series of functions. To make sure that in this case the series (11.3) converges
a.s., we assume

∀t ∈ T ,
∑

i≥1

E(|Zi |2 ∧ 1) <∞ , (11.4)

a condition which is automatically satisfied when Zi = 0 for i large enough.
Our main technical tool is that to each random sequence of functions, we can

naturally associate a natural family of distances, and we explain this now. We fix a
number r ≥ 4 a number j ∈ Z and a given realization of the sequence (Zi)i≥1. We
then consider the quantities

ψj,ω(s, t) :=
∑

i≥1

(|rj (Zi(s)− Zi(t))|2 ∧ 1) . (11.5)

In this notation ω symbolizes the randomness of the sequence (Zi)i≥1. We also
define (please compare to (7.63))

ϕj (s, t) := Eψj,ω(s, t) =
∑

i≥1

E(|rj (Zi(s)− Zi(t))|2 ∧ 1) , (11.6)

which is finite for each j, s, t . This is the “family of distances” we will use to control
the size of T .

3 Rather, we assume condition (11.8), which, as Lemma 11.2.1 shows, holds when the sequence
(Zi) is independent, but also in other cases which will be essential in Chap. 12.
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It follows from Lebesgue’s convergence theorem and (11.4) that

∀s, t ∈ T , lim
j→−∞ ϕj(s, t) = 0 . (11.7)

We will make the following (essential) additional hypothesis:

∀j ∈ Z , ∀s, t ∈ T , P
(
ψj,ω(s, t) ≤ ϕj (s, t)/4

) ≤ exp(−ϕj (s, t)/4) . (11.8)

Lemma 11.2.1 The condition (11.8) is satisfied when the r.v.s Zi are independent.

Proof This follows from Lemma 7.7.2(a), used for Wi = |rj (Zi(s) − Zi(t))|2 ∧ 1
and A = ϕj (s, t)/4 = (1/4)

∑
i≥1 EWi . �

In Chap. 12 we will however meet slightly different situations where (11.8) is
satisfied. Our main result will imply that under the previous conditions, an upper
bound on S implies the existence of an admissible sequence of partitions of T whose
size is suitably controlled by the ϕj .

11.3 Organization of the Chapter

The key result of the chapter, Theorem 11.7.1, states that a control of S =
E supt∈T

∑
i≥1 εiZi(t) from above implies a kind of smallness of the index space

T , in the form of the existence of a family of admissible partitions which is suitably
small with respect to the family of distances (ϕj ). It can be viewed as a lower
bound for S. It can be seen as a generalization of Theorem 7.5.1 (or more precisely
of (7.72)) to the case where one no longer has translation invariance.4 It can also be
seen as a generalization of Theorem 5.2.1. The main motivation of the author for
presenting separately the results of Chap. 5 is actually to prepare the reader for the
scheme of proof of Theorem 11.7.1, so the reader should review that chapter.

As in the case of Theorem 5.2.1, and in contrast with the situation of Chap. 7, the
lower bound of Theorem 11.7.1 is by no means an upper bound. One should however
refrain from the conclusion that this lower bound is “weak”. In a precise sense, it is
optimal. In the setting of Theorem 11.1.1, it contains the exact information needed
to obtain (11.1) so that one could say that it contains the exact information needed
to perform chaining witnessing whatever cancellation occurs between the terms of
the random sum

∑
i≥1 εiZi . What makes the situation subtle is that it may very

well happen that such cancellation does not really play a role in the size of the
random sum, that is, the sum

∑
i≥1 εiZi is not large simply because the larger sum∑

i≥1 |Zi | is not large. In this case the lower bound of Theorem 11.7.1 brings no

4 So sequences of admissible partitions replace the “entropy numbers” implicitly used in (7.72) as
explained in Exercise 7.5.4.
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information, but we have another precious piece of information, namely, that the
sum

∑
i≥1 |Zi | is not large.

The main tool of the proof of Theorem 11.7.1 is the Latała-Bednorz theorem
(Theorem 6.2.8). There is no question that this proof is rather difficult, so the reader
may like, after understanding the statement of the theorem, to study as a motivation
Sect. 11.8, where one learns to gain control of sums such as

∑
i≥1 |Zi| and Sect. 11.9

where one proves Theorem 11.1.1.
The next three sections each contain a step of the proof of Theorem 11.7.1. Each

of these steps corresponds quite closely to a step in the proof of Theorem 5.2.1, and
this should help the reader to perceive the structure of the proof. In Sect. 11.10 we
prove a decomposition theorem for random series which extends Theorem 11.1.1,
and in the final section , we provide a spectacular application.

11.4 The Main Lemma

The reader should review the proof of Lemma 5.4.2 and of (5.17). We consider a
random series of functions as in the previous section. We assume that T is finite and
we keep (11.7) in mind. We define5

j0 = sup
{
j ∈ Z ; ∀s, t ∈ T , ϕj (s, t) ≤ 4

} ∈ Z ∪ {∞} . (11.9)

We denote by M+ the set of probability measures on T such that μ({t}) > 0 for
each t in T . Given a μ ∈M+ and t ∈ T , we define

j̄0(t) = j0 (11.10)

and for n ≥ 1 we define

j̄n(t) = sup
{
j ∈ Z ; μ(Bj (t, 2n)) ≥ N−1

n

} ∈ Z ∪ {∞} , (11.11)

where as usual Bj(t, 2n) = {s ∈ T ; ϕj (s, t) ≤ 2n}. This should be compared
to (7.70). Thus the sequence (j̄n(t))n≥0 increases, and j̄n(t) = ∞ whenever
μ({t}) ≥ N−1

n , and in particular for n large enough. We define6

Jμ(t) :=
∑

n≥0

2nr−j̄n(t) . (11.12)

Our goal in this section is to prove the following, where we recall (11.3):

5 It may well happen that ϕj (s, t) ≤ 4 for all j , for example, if Zi = 0 for i ≥ 5.
6 The point of assuming μ({t}) > 0 is to ensure that Jμ(t) <∞.
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Lemma 11.4.1 For each probability measure μ ∈M+, we have

∫

Jμ(t)dμ(t) ≤ KS . (11.13)

Here and below, K depends on r only. To prove Lemma 11.4.1, we define

j0,ω = sup
{
j ∈ Z ; ∀s, t ∈ T , ψj,ω(s, t) ≤ 1

} ∈ Z ∪ {∞} ,

and we set j0,ω(t) = j0,ω. For n ≥ 1 we define

jn,ω(t) = sup
{
j ∈ Z ; μ

({
s ∈ T ; ψj,ω(t, s) ≤ 2n

}) ≥ N−1
n

}
∈ Z ∪ {∞} .

Then the sequence (jn,ω(t))n≥0 increases. We define

Iμ,ω(t) :=
∑

n≥0

2nr−jn,ω(t) . (11.14)

Given ω (i.e., given the sequence (Zi)i≥1) the process Xt := ∑
i≥1 εiZi(t) is a

Bernoulli process, so that using Theorem 10.15.1 at a given ω, and denoting by Eε

expectation in the εi only, we obtain

∫

Iμ,ω(t)dμ(t) ≤ KEε sup
t∈T

∑

i≥1

εiZi(t)

and taking expectation yields

E
∫

Iμ,ω(t)dμ(t) ≤ KS . (11.15)

Lemma 11.4.2 For each t we have Jμ(t) ≤ LEIμ,ω(t).

Proof The proof is very similar to the proof of Lemma 7.7.3 (but is easier as we
prove a weaker result). We will prove that

P(j0,ω(t) ≤ j̄0(t)) = P(j0,ω ≤ j0) ≥ 1/L , (11.16)

n ≥ 3 ⇒ P(jn−3,ω(t) ≤ j̄n(t)) ≥ 1/2 . (11.17)

These relations imply respectively that Er−j0,ω(t) ≥ r−j0/L and that

n ≥ 3 ⇒ E2n−3r−jn−3,ω(t) ≥ 2nr−j̄n(t)/L .
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Summing these relations implies
∑

n≥3 2nr−j̄n(t) ≤ LE
∑

n≥0 2nr−jn,ω(t) =
LEIμ,ω . Since the sequence (j̄n(t)) increases, for n ≤ 2 we have 2nr−j̄n(t) ≤
4r−j0 ≤ 4Er−j0,ω ≤ 4EIμ,ω, and this completes the proof.

We first prove (11.16). There is nothing to prove if j0 = ∞. Otherwise, by
definition of j0, there exist s, t ∈ T with ϕj0+1(s, t) > 4, and by (11.8) we have

P(ψj0+1,ω(s, t) > 1) ≥ 1− 1/e .

When ψj0+1,ω(s, t) > 1, by definition of j0,ω, we have j0,ω ≤ j0 and we have
proved that P(j0,ω ≤ j0) ≥ 1− 1/e.

We turn to the proof of (11.17). There is nothing to prove if j̄n(t) = ∞.
Otherwise, by definition of j̄n(t) we have

μ1 := μ({s ∈ T ; ϕj̄n(t)+1(t, s) ≤ 2n}) ≤ 1

Nn

. (11.18)

For n ≥ 2 it follows from (11.8) that

ϕj̄n(t)+1(s, t) ≥ 2n ⇒ P(ψj̄n(t)+1,ω(s, t) ≤ 2n−2) ≤ exp(−2n−2) ≤ N−1
n−2 ,

so that

Eμ
({
s ∈ T ; ϕj̄n(t)+1(s, t) ≥ 2n , ψj̄n(t)+1,ω(s, t) ≤ 2n−2}) ≤ N−1

n−2

and thus, by Markov’s inequality, with probability≥ 1/2 we have

μ2 := μ
({
s ∈ T ; ϕj̄n(t)+1(s, t) ≥ 2n , ψj̄n(t)+1,ω(s, t) ≤ 2n−2}) ≤ 2N−1

n−2 .

When this occurs, recalling (11.18) we obtain

μ({s ∈ T ; ψj̄n(t)+1,ω(s, t) ≥ 2n−2}) ≤ μ1 + μ2 ≤ N−1
n + 2N−1

n−2 < N−1
n−3 ,

so that jn−3,ω(t) ≤ j̄n(t). �
Proof of Lemma 11.4.1 Combine the previous lemma with (11.15). �

11.5 Construction of the Majorizing Measure Using
Convexity

The reader should review Sect. 3.3.2. The goal of this section is to prove the
following:
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Theorem 11.5.1 Assume that T is finite. Then there exists a probability measure μ

on T with

sup
t∈T

Jμ(t) ≤ KS . (11.19)

For historical reasons (which have been briefly explained in Chap. 3), we call
the measure μ a majorizing measure, and this explains the title of the section. It
will then be a simple technical task to use this measure for a fruitful application in
Theorem 11.6.3.

It is interesting to compare (11.19) with (7.71), which basically asserts that

P
(∥
∥
∑

i

εiZi

∥
∥ ≥ 1

K
sup
t∈T

Jμ(t)
)
≥ α0 ,

where μ is the Haar probability on T . The previous inequality implies that
E‖∑i εiZi‖ ≥ supt∈T Jμ(t)/K , and Theorem 11.5.1 can be seen as a generaliza-
tion of this fact. To clarify the relationship further, it can be shown in the translation
invariant setting that for any probability measure ν one has supt∈T Jμ(t) ≤
L supt∈T Jν(t) where μ is the Haar measure (which we may assume here to be a
probability). Thus, when one probability measure satisfies (11.19), then the Haar
measure also satisfies it.

Our approach to Theorem 11.5.1 is to combine Lemma 11.4.1 with 3.3.2.

Corollary 11.5.2 Assume that T is finite. Then there exist an integer M , probability
measures (μi)i≤M and numbers (αi)i≤M with αi ≥ 0 and

∑
i≤M αi = 1 such that

∀t ∈ T ,
∑

i≤M
αiJμi (t) ≤ KS .

Proof Consider the set S of functions of the type f (t) = Jμ(t) where μ ∈ M+.7

Consider a probability measure ν on T and μ ∈M+ with μ ≥ ν/2 (e.g.,μ = ν/2+
λ/2 where λ is uniform over T ). Then

∫
Jμ(t)dν(t) ≤ 2

∫
Jμ(t)dμ(t) ≤ KS, using

(11.13) in the last inequality. Thus by Lemma 3.3.2 there is a convex combination
of functions of S which is ≤ KS. �

Theorem 11.5.1 is then a consequence of Corollary 11.5.2 and the next result.

Lemma 11.5.3 Assume that T is finite and consider probability measures (μi)i≤M
on T and numbers (αi)i≤M with αi ≥ 0 and

∑
i≤M αi = 1. Then the probability

7 The reason for which we require μ ∈M+ is to ensure that f (t) <∞ for each t so that f is true
function, as is required by our version of Lemma 3.3.2.
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measure μ :=∑i≤M αiμi satisfies

∀t ∈ T , Jμ(t) ≤ L
∑

i≤M
αiJμi (t) . (11.20)

Proof Let us fix t ∈ T . With obvious notation, for n ≥ 1 let us define

Un :=
{
i ≤ M ; r−j̄n,i (t ) ≤ 2

∑

s≤M
αj r

−j̄n,s (t )
}
.

Consider the probability measure P on {1, . . . ,M} such that P({i}) = αi and
the function f on {1, . . . ,M} given by f (i) = r−j̄n,i (t ). By Markov’s inequality
we have P(f ≥ 2

∫
f dP) ≤ 1/2, so that P(f ≤ 2

∫
f dP) ≥ 1/2, i.e.,∑

i∈Un
αi ≥ 1/2. For n ≥ 1, let us denote by jn the smallest integer with

r−jn ≤ 2
∑

i≤M αir
−j̄n,i (t ). Then j̄n,i (t) ≥ jn for i ∈ Un. Thus by definition of

j̄n,i(t) we have μi(Bjn(t, 2n)) ≥ N−1
n and consequently

μ(Bjn(t, 2n)) ≥ N−1
n

∑

i∈Un

αi ≥ 1

2Nn

≥ 1

Nn+1
,

so that by definition j̄n+1(t) ≥ jn. Thus (using also that j̄0,i(t) = j0 = j̄0(t) where
j0 is given by (11.9))

∑

n≥0

2nr−j̄n(t) ≤ L
∑

n≥0

2nr−jn ≤ L
∑

i≤M
αi
∑

n≥0

2nr−j̄n,i (t ) = L
∑

i≤M
αiJμi (t) . �

11.6 From Majorizing Measures to Partitions

In the setting of one single distance, we had the inequality (3.41) to go from
majorizing measures to sequences of partitions. We do not know how to generalize
the proof of (3.41) to the setting of a family of distances, and we give a direct
argument to pass directly from the existence of a majorizing measure to the
existence of an appropriate increasing sequence of partitions. The very same
argument was given in the case of one single distance in Sect. 3.3.3. Let us consider
again the functions ϕj as in (11.6), so they satisfy

ϕj : T × T → R
+ , ϕj+1 ≥ ϕj ≥ 0 , ϕj (s, t) = ϕj (t, s) .

Since the ϕj are squares of distances, they also satisfy the properties

∀s, t, u ∈ T , ϕj (s, t) ≤ 2(ϕj (s, u) + ϕj (u, t)) , (11.21)
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and ϕj (t, t) = 0. We recall the notation Bj (t, r) = {s ∈ T ; ϕj(t, s) ≤ r}. As a
consequence of (11.21) we have the following:

Lemma 11.6.1 If ϕj (s, t) > 4a > 0 the balls Bj (s, a) and Bj (t, a) are disjoint.

We assume that T is finite and we fix a probability measure μ on T .8 We assume
that there is a j0 ∈ Z with

∀s, t ∈ T , ϕj0(s, t) ≤ 4 . (11.22)

We assume that for t ∈ T and n ≥ 0, we are given an integer jn(t) ∈ Z with the
following properties:

∀t ∈ T , j0(t) = j0 , (11.23)

∀t ∈ T , ∀n ≥ 0 , jn(t) ≤ jn+1(t) ≤ jn(t)+ 1 , (11.24)

∀t ∈ T , ∀n ≥ 1 , μ(Bjn(t)(t, 2n)) ≥ N−1
n . (11.25)

Let us observe that we do require that jn(t) is the largest possible which would
satisfy (11.25). Rather, we require the technical condition (11.24). To understand
that important point, we urge the reader to study the following exercise:

Exercise 11.6.2 Assume that T is a group, and μ is the Haar measure, a probability.
Assume r ≥ 4. Assume that j0 satisfies (11.22) and for n ≥ 1 consider the numbers
jn defined as in (7.70). Prove that for t ∈ T there exist numbers jn(t) satisfy-
ing (11.23) to (11.25) and for which supt∈T

∑
n≥0 2nr−jn(t) ≤ L

∑
n≥0 2nr−jn .

Hint: jn(t) = supp≤n n− p + jp.

Theorem 11.6.3 Under the previous conditions there exists an admissible sequence
of partitions (An)n≥0 of T and for A ∈ An an integer jn(A) ∈ Z such that

s, t ∈ A ∈ An ⇒ ϕjn(A)(s, t) ≤ 2n+2 (11.26)

and that the following holds for any value of r ≥ 1:

∀t ∈ T ,
∑

n≥0

2nr−jn(An(t)) ≤ L
∑

n≥0

2nr−jn(t) . (11.27)

In particular if S∗ := supt∈T
∑

n≥0 2nr−jn(t) (11.27) implies

sup
t∈T

∑

n≥0

2nr−jn(An(t)) ≤ LS∗ .

8 For reasons explained in Chap. 3, we think of μ as a “majorizing measure”. This explains the title
of this section.
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We note that (11.27) does not require a specific relation between the value of r and
the ϕj , but this result will be interesting only when the relation (11.25) brings a
precise control of S∗.

The basic brick of the construction is the following partitioning lemma, in the
spirit of (2.46):

Lemma 11.6.4 Consider a set A ⊂ T , an integer j ∈ Z, and n ≥ 1. Assume that
μ(Bj (t, 2n)) ≥ 1/Nn for each t ∈ A. Then we can find a partition A of A with
cardA ≤ Nn such that for each B ∈ A,

s, t ∈ B ⇒ ϕj (s, t) ≤ 2n+4 . (11.28)

Proof Consider a subset U of A such that ϕj (s, t) > 2n+2 for each s, t ∈ U ,
s �= t . According to Lemma 11.6.1, the balls Bj (t, 2n) for t ∈ U are disjoint. These
balls are of measure ≥ N−1

n , so their union has measure ≥ N−1
n cardU . Since the

measure is a probability, this proves that cardU ≤ Nn. If cardU is taken as large
as possible the balls Bj(t, 2n+2) centered at the points of U cover A. It follows
from (11.21) that these balls satisfy (11.28). And A can be partitioned in at most Nn

pieces, each of which is contained in a ball Bj (t, 2n+2) where t ∈ U . �
Proof of Theorem 11.6.3 We are going to construct the partitions An and for A ∈
An integers jn(A). Our construction will satisfy the following property: For n ≥ 2,
A ∈ An, the integer jn(A) is such that

t ∈ A⇒ jn−2(t) = jn(A) . (11.29)

To start the construction, we set A0 = A1 = A2 = {T }, and for n ≤ 2 and
A ∈ An we set jn(A) = j0.9 According to (11.23), for t ∈ T we have j0(t) = j0 so
that (11.29) holds for n = 2 because then j0(t) = j0 = j2(A).

The rest of the construction proceeds by recursion. Having constructed An for
some n ≥ 2 we proceed as follows. According to (11.29) we have jn−2(t) = jn(A)

for t ∈ A, so that according to (11.24) for t ∈ A we have jn−1(t) ∈ {jn(A), jn(A)+
1}. We set

A0 = {t ∈ A ; jn−1(t) = jn(A)} ; A1 = {t ∈ A ; jn−1(t) = jn(A)+ 1} .

Recalling (11.25), we can then apply Lemma 11.6.4 with n − 1 rather than n and
j = jn(A) + 1 to partition the set A1 into Nn−1 pieces. According to (11.28), for
each piece B of A1 thus created, we have

s, t ∈ B ⇒ ϕj (s, t) ≤ 2n+3 . (11.30)

9 Since the only element of An is T , this means that jn(T ) = j0 for n ≤ 2.
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For each piece B of A1 thus created, we set jn+1(B) = jn(A)+ 1, so that this piece
satisfies (11.26) (for n + 1 rather than n). For a piece B contained in A1 we set
jn+1(B) = jn(A) + 1. We do not partition A0, and we set jn+1(A0) = jn(A0). In
this manner, we have partitioned A into at most Nn−1 + 1 ≤ Nn pieces. We apply
this procedure to each element A of An to obtain An+1. Then cardAn+1 ≤ N2

n =
Nn+1. Condition (11.29) is satisfied for n + 1 by construction, and so is (11.26)
(see (11.30)). As for (11.27), it follows from the fact that jn(An(t)) = j0 if n ≤ 2
and jn(An(t)) = jn−2(t) if n ≥ 2 (as follows from (11.29)). �

11.7 The General Lower Bound

Still in the setting of Sect. 11.2, we have the following, where T is now countable
rather than finite:

Theorem 11.7.1 Assume that T is countable. Then there exists an admissible
sequence (An) of partitions of T and for A ∈ An an integer jn(A) such that the
following holds:

∀t ∈ T ,
∑

n≥0

2nr−jn(An(t)) ≤ KS , (11.31)

A ∈ An , C ∈ An−1 , A ⊂ C ⇒ jn−1(C) ≤ jn(A) ≤ jn−1(C)+ 1 , (11.32)

s, t ∈ A ∈ An ⇒ ϕjn(A)(s, t) ≤ 2n+2 . (11.33)

Proof Assume first that T is finite. Consider the probability measure μ on T

provided by Theorem 11.5.1 and the corresponding numbers jn(t). Let us define
jn(t) = min0≤p≤n(j̄p(t) + n − p), so that j0(t) = j0(t) = j0 and jn(t) ≤
jn+1(t) ≤ jn(t) + 1. Since jn(t) ≤ j̄n(t), by definition (11.11) of j̄n(t) we have
μ(Bjn(t)(t, 2n)) ≥ N−1

n . Also, r−jn(t) ≤∑p≤n r−j̄p(t)−n+p so that, since r ≥ 4,

∑

n≥0

2nr−jn(t) ≤
∑

n≥0

2n
∑

p≤n
r−j̄p(t)−n+p =

∑

p≥0

2pr−j̄p(t)
∑

n≥p

(2

r

)n−p ≤ 2Jμ(t) .

The result then follows from Theorem 11.6.3.
Assume next that T is countable. We write T as the union of an increasing

sequence (Tk)k≥1 of finite sets. We apply the previous result to each Tk , obtaining an
admissible sequence (An,k) of partitions of Tk . We number in an arbitrary way the
sets of An,k as (An,k,�)�≤Nn , and for t ∈ Tk we denote by �n,k(t) the unique integer
� ≤ Nn such that An,k(t) = An,k,�. For each t ∈ T and each n ≥ 0, the integer
�n,k(t) is defined for k large enough since then t ∈ Tk. We may then assume by
taking a subsequence that this integer is eventually equal to a number �n(t). Also,
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since the sequence (An,k) is admissible, for each � ≤ Nn, there exists �̄ ≤ Nn−1
such that An,k,� ⊂ An−1,k,�̄. We denote this integer by �̄n,k(�). We may also assume
by taking a subsequence that �̄n,k(�) is eventually equal to an integer �̄n(�). For
� ≤ Nn define An,� = {t ∈ T ; �n(t) = �}. Obviously the sets An,� for � ≤ Nn

define a partition An of T and cardAn ≤ Nn. Next for t ∈ An,�, for large k we
have t ∈ An,k,� ⊂ An−1,k,�̄n,k(�) = An,�̄n(�)

. This proves that An,� ⊂ An−1,�̄n(�),
so that the sequence (An) is admissible. For s, t ∈ Tk we have ϕj0(Tk)(s, t) ≤ 4.
If the sequence (j0(Tk)) is not bounded, then for all s, t ∈ T and each j ∈ Z,
we have ϕj (s, t) ≤ 4, and the result is trivial since (11.33) is automatically
satisfied. Thus we may assume that the sequence (j0(Tk))k≥1 stays bounded. Since
jn(An,k,�) ≤ j0(Tk)+ n by (11.32), each sequence (jn(An,k,�))k≥1 stays bounded.
We may then assume that for each n and �, this sequence is eventually equal to a
number jn(An,�). It is straightforward to check that these numbers satisfy the desired
requirements. �

The hypothesis that T is countable is of course largely irrelevant, as the following
exercise shows:

Exercise 11.7.2 Extend Theorem 11.7.1 to the case where T is provided with a
metric such that T is separable10 and each function ϕj(s, t) is continuous for this
metric.

11.8 The Giné-Zinn Inequalities

Before we proceed we must build our tool kit. In this section we change topic,
and we investigate a number of simple but fundamental inequalities. The main
inequality, (11.37), allows to gain a control of supt∈T

∑
i≤N |t (Xi)|.

We consider a class T of functions on a measurable space Ω . The elements of T
will be denoted s, t, . . .. We consider independent r.v.s (Xi)i≤N valued in Ω .

We denote by (εi)i≤N an independent sequence of Bernoulli r.v.s, independent
of the sequence (Xi)i≤N . We lighten notation by writing

S̄(T ) = E sup
t∈T
∣
∣
∑

i≤N
εit (Xi)

∣
∣ . (11.34)

The reader should not be disturbed by the fact that there are absolute values
in (11.34) but not in (11.3). This is a purely technical matter, and in the key situations
below, the absolute values do not matter by Lemma 2.2.1.

10 That is, there is countable subset of T which is dense in T .
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Lemma 11.8.1 We have

E sup
t∈T
∣
∣
∑

i≤N
(t (Xi)− Et (Xi))

∣
∣ ≤ 2S̄(T ) . (11.35)

Proof Consider an independent copy (X′i )i≤N of the sequence (Xi)i≤N . Then,
using Jensen’s inequality (i.e., taking expectation in the randomness of the X′i inside
the supremum and the absolute value on the left and outside these on the right)

E sup
t∈T
∣
∣
∑

i≤N
(t (Xi)− Et (Xi))

∣
∣ ≤ E sup

t∈T
∣
∣
∑

i≤N
(t (Xi)− t (X′i ))

∣
∣ .

Now, the processes (t (Xi)− t (X′i ))i≤N and (εi(t (Xi)− t (X′i )))i≤N have the same
distribution so that

E sup
t∈T
∣
∣
∑

i≤N
(t (Xi)− t (X′i ))

∣
∣ = E sup

t∈T
∣
∣
∑

i≤N
εi(t (Xi)− t (X′i ))

∣
∣ .

The conclusion then follows from the triangle inequality. �
Lemma 11.8.2 We have

E sup
t∈T
∣
∣
∑

i≤N
εi |t (Xi)|

∣
∣ ≤ 2S̄(T ) . (11.36)

Proof Use Corollary 6.5.2 at a given value of the (Xi)i≤N . �
Theorem 11.8.3 (The Giné-Zinn Theorem [35]) We have

E sup
t∈T

∑

i≤N
|t (Xi)| ≤ sup

t∈T

∑

i≤N
E|t (Xi)| + 4S̄(T ) . (11.37)

To better understand this bound, observe that by Jensen’s inequality, we have
supt∈T

∑
i≤N E|t (Xi)| ≤ E supt∈T

∑
i≤N |t (Xi)|. The Giné-Zinn theorem is a kind

of converse of this simple inequality. Once we control S̄(T ) (a sum which involves
cancellations) and supt∈T

∑
i≤N E|t (Xi)|, we control the left-hand side of (11.37),

a sum which does not involve cancellations (as all the terms are of the same sign).

Proof We have

∑

i≤N
|t (Xi)| ≤

∑

i≤N
E|t (Xi)| +

∣
∣
∑

i≤N

(|t (Xi)| − E|t (Xi)|
)∣
∣ ,

so that

E sup
t∈T

∑

i≤N
|t (Xi)| ≤ sup

t∈T

∑

i≤N
E|t (Xi)| + E sup

t∈T
∣
∣
∑

i≤N

(|t (Xi)| − E|t (Xi)|
)∣
∣ .
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The first term to the right is the same as the first term to the right of (11.37).
Applying Lemma 11.8.1 to the second term to the right (and replacing T by the
class {|t|; t ∈ T }) and then using (11.36) concludes the proof. �

The following is also useful:

Lemma 11.8.4 If Et (Xi) = 0 for each t ∈ T and each i ≤ N then

S̄(T ) ≤ 2E sup
t∈T
∣
∣
∑

i≤N
t(Xi)

∣
∣ . (11.38)

Proof We work conditionally on the sequence (εi)i≤N . Setting I = {i ≤ N; εi =
1} and J = {i ≤ N; εi = −1}, we obtain

E sup
t∈T
∣
∣
∑

i≤N
εit (Xi)

∣
∣ ≤ E sup

t∈T
∣
∣
∑

i∈I
t (Xi)

∣
∣+ E sup

t∈T
∣
∣
∑

i∈J
t (Xi)

∣
∣ .

Now, since Et (Xi) = 0 for each t ∈ T and each i ≤ N , denoting EJ expectation in
the r.v.s Xi for i ∈ J , we have EJXi = Xi if i ∈ I and EJXi = 0 if i /∈ I so that
Jensen’s inequality implies

sup
t∈T
∣
∣
∑

i∈I
t (Xi)

∣
∣ = sup

t∈T
∣
∣EJ

∑

i≤N
t(Xi)

∣
∣ ≤ EJ sup

t∈T
∣
∣
∑

i≤N
t(Xi)

∣
∣ ,

so that taking expectations,

E sup
t∈T
∣
∣
∑

i∈I
t (Xi)

∣
∣ ≤ E sup

t∈T
∣
∣
∑

i≤N
t(Xi)

∣
∣ . �

11.9 Proof of the Decomposition Theorem for Empirical
Processes

Consider independent r.v.s (Xi)i≤N valued in a measurable space Ω , and denote by
λi the distribution of Xi . Set ν =∑i≤N λi . We consider a set T of functions on Ω ,
we use the notation

S(T ) = E sup
t∈T

∑

i≤N
εit (Xi) ; S̄(T ) = E sup

t∈T
∣
∣
∑

i≤N
εit (Xi)

∣
∣ , (11.39)

and we start the preparations for the proof of Theorem 11.1.1. First we observe that
without loss of generality, we may assume 0 ∈ T . Indeed, if we fix t0 ∈ T , the set
T − t0 := {t− t0; t ∈ T } satisfies S(T − t0) = S(T ), and if we have a decomposition
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T −t0 ⊂ T 1+T 2, we have a decomposition T ⊂ (T 1+t0)+T 2. So we now assume
that 0 ∈ T and according to Lemma 2.2.1 we have

S̄(T ) ≤ 2S(T ) . (11.40)

For i ≤ N consider the random function Zi on T given by Zi(t) = t (Xi).
Define Zi(t) = 0 for i > N , so that the functions (Zi)i≥1 are independent. Then
S = E supt∈T

∑
i≥1 εiZi(t) = S(T ). The expressions (11.5) and (11.6) take the

form

ψj,ω(s, t) =
∑

i≤N
(|rj (s(Xi)− t (Xi)|2 ∧ 1) , (11.41)

ϕj (s, t) =
∑

i≤N
E(|rj (s(Xi)− t (Xi)|2 ∧ 1) =

∫

|rj (s − t)|2 ∧ 1dν . (11.42)

The main idea is to combine Theorem 11.7.1 and Theorem 9.2.1, but we need
an extra piece of information. Let us denote by j0 = j0(T ) the integer provided
by (11.33) so that ϕj0(s, t) ≤ 4 for s, t ∈ T .

Lemma 11.9.1 Given t ∈ T we have
∫

|t|1{2|t |≥r−j0}dν ≤ LS̄(T ) ≤ LS(T ) . (11.43)

Proof Since 0 ∈ T and ϕj0(0, t) ≤ 4 we have
∫ |rj0 t|2 ∧ 1dν ≤ 4. In particular

if U = {2|t| ≥ r−j0} then ν(U) ≤ 16, that is,
∑

i≤N λi(U) ≤ 16. Let A =
{i ≤ N ; λi(U) ≥ 1/2}, so that cardA ≤ 32. For i �∈ A we have 1 − λi(U) ≥
exp(−2λi(U)), so that

∏
j �∈A(1 − λj (U)) ≥ exp(−32). For i ≤ N consider the

event Ξi given by Xi ∈ U and Xj �∈ U for j �= i and j �∈ A. Then

P(Ξi) = λi(U)
∏

j �=i,j /∈A
(1− λj (U)) ≥ λi(U)/L .

Given Ξi , the r.v. Xi is distributed according to the restriction of λi to U , so that

1

P(Ξi)
E1Ξi |t (Xi)| = 1

λi(U)

∫

U

|t|dλi ,

and hence
∫

U

|t|dλi ≤ LE1Ξi |t (Xi)| ≤ LE1Ξi

∣
∣
∑

j≤N
εj t (Xj )

∣
∣ , (11.44)

where the last inequality follows by Jensen’s inequality, averaging in the r.v.s εj for
j �= i outside the absolute values rather than inside. As the events Ξi for i /∈ A are
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disjoint, and since cardA ≤ 32, we have

∑

i≤N
1Ξi ≤

∑

i �∈A
1Ξi +

∑

i∈A
1Ξi ≤ 1+ 32 = 33 .

Summation of the inequalities (11.44) over i ≤ N and using (11.40) yields the
result. �
Proposition 11.9.2 We can decompose T ⊂ T1 + T2 where the set T1 satisfies
0 ∈ T1 and

γ2(T1, d2)+ γ1(T1, d∞) ≤ LS(T ) (11.45)

and where

∀t ∈ T2 ,

∫

|t|dν ≤ LS(T ) . (11.46)

Proof We apply Theorem 11.7.1 and then Theorem 9.2.1, calling T2 what is called
T2 + T3 there. Then (11.46) is a consequence of Lemma 11.9.1. �
Proof of Theorem 11.1.1 Combining (11.45) and Lemma 11.1.2 yields S(T1) ≤
LS(T ), so that also S̄(T1) ≤ LS(T ) since 0 ∈ T1. We may assume that T2 ⊂ T −T1,
simply by replacing T2 by T2 ∩ (T − T1). Thus S̄(T2) ≤ S̄(T ) + S̄(T1) ≤ LS(T ).
Combining with (11.46), Theorem 11.8.3 then implies E supt∈T2

∑
i≤N |t (Xi)| ≤

LS(T ) and finishes the proof. �
Proof of Theorem 6.8.3 We apply Theorem 11.1.1 to the case where λi = λ is
independent of i so that ν = Nλ. Then, with obvious notation, γ2(T1, d2,ν) =√
Nγ2(T1, d2,λ). We also use Lemma 11.8.4. �

11.10 The Decomposition Theorem for Random Series

We will now apply the previous result to random series, and we go back to that
setting, as in Sect. 11.2. We assume that for some integer N , we have Zi = 0 for
i > N and that (Zi)i≤N are independent, but not necessarily identically distributed.
We consider on T the following two distances:

d2(s, t)
2 =

∑

i≤N
E|Zi(s)− Zi(t)|2 (11.47)

d∞(s, t) = inf
{
a ; ∀i ≤ N ; |Zi(s)− Zi(t)| ≤ a a.e.

}
, (11.48)
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and we assume that they are both finite. The following provides an upper bound for
S = E supt∈T

∑
i≤N εiZi(t):

Theorem 11.10.1 We have

S ≤ L
(
γ2(T , d2)+ γ1(T , d∞)

)
. (11.49)

Proof As always, this follows from Bernstein’s inequality (4.44) and Theo-
rem 4.5.13. �

In another direction, the following trivial bound does not involve cancellation:

Proposition 11.10.2 We have

S ≤ E sup
t∈T

∑

i≤N
|Zi(t)| . (11.50)

As our next result shows, these two methods are the only possible methods to
bound S. In other words, every situation is a mixture of these. In loose words:
chaining using Bernstein’s inequality explains all the part of the boundedness which
is due to cancellation.

Theorem 11.10.3 For any independent sequence (Zi)i≤N of random functions, we
may find a decomposition Zi = Z1

i + Z2
i such that each of the sequences (Z1

i )i≤N
and (Z2

i )i≤N are independent, and the following hold: First,

γ2(T , d
1
2 )+ γ1(T , d

1∞) ≤ LS , (11.51)

where the distances d1
2 and d1∞ are given by (11.47) and (11.48) where Zi is

replaced by Z1
i . Second,

E sup
t∈T

∑

i≤N
|Z2

i (t)| ≤ LS . (11.52)

Certainly it would be of interest to consider more precise situations, such as
the case where T is a metric space and where Zi is a continuous function on T .
In that case however, it is not claimed that the previous decomposition consists of
continuous functions. The possibility of this is better left for further research.

Proof Theorem 11.10.3 is a simple consequence of Theorem 11.1.1. The one
difficulty lies in the high level of abstraction required. The independent sequence
of random functions (Zi)i≤N is just an independent sequence of random variables
valued in the space Ω = R

T . We denote by λi the law of Zi on Ω = R
T , and we

set ν =∑i≤N λi .
To each element t ∈ T we associate the corresponding coordinate function θ(t)

on Ω = R
T . That is, for x = (x(s))s∈T ∈ Ω we have θ(t)(x) = x(t). Thus we
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have θ(t)(Zi) = Zi(t).11 It should be obvious that

S = E sup
t∈T

∑

i≤N
εiZi(t) = E sup

t∈T

∑

i≤N
εiθ(t)(Zi) = S(θ(T )) ,

where θ(T ) = {θ(t); t ∈ T } is a set of functions on Ω . We use the decomposition
of θ(T ) provided by Theorem 11.1.1. For each t ∈ T we fix a decomposition θ(t) =
θ(t)1 + θ(t)2 where θ(t)1 ∈ θ(T )1 and θ(t)2 ∈ θ(T )2.

We define then the random functions Z1
i and Z2

i on T by

Z1
i (t) = θ(t)1(Zi) ; Z2

i (t) = θ(t)2(Zi) , (11.53)

so that Zi(t) = Z1
i (t) + Z2

i (t). The definition of Z2
i (t) should make it obvious

that (11.52) follows from (11.2). Next,

d1
2 (s, t)

2 =
∑

i≤N
E|Z1

i (s)− Z1
i (t)|2 =

∑

i≤N
E|θ(s)1(Zi)− θ(t)1(Zi)|2

=
∫

C
|θ(s)1 − θ(t)1|2dν ,

so that, with obvious notation, d1
2 (s, t) = ‖θ(s)1 − θ(t)1‖2,ν . That is, the map t �→

θ(t)1 witnesses that the metric space (T , d1
2 ) is isometric to a subspace of the metric

space (θ(T )1, d2,ν) and thus γ2(T , d
1
2 ) ≤ γ2(θ(T )1, d2,ν) ≤ LS, using (11.45) in

the last inequality. The rest is similar. �
It is probably worth insisting on the highly non-trivial definition (11.53). For

j = 1, 2 we may define a map Ξj : Ω → Ω = R
T by Ξj (x)(t) = θ(t)j (x). These

are fairly complicated maps. The formula (11.53) reads as Zj
i = Ξj(Zi). The next

example stresses this point.

Example 11.10.4 We should stress a subtle point: we apply Theorem 11.1.1 to
θ(T ), a set of functions on C. When T itself is naturally a set of functions on
some other space, say on [0, 1], it is not the same to decompose T as a set of
functions on [0, 1], or θ(T ) as a set of functions on C. To explain this, consider
a set T of functions on [0, 1] and independent r.v.s (ξi, Xi)i≤N valued in R× [0, 1].
To study the quantity supt∈T

∑
i≤N εiξi t (Xi), we have to consider the functions

θ(t) on R × [0, 1], given for (x, y) ∈ R × [0, 1] by θ(t)(x, y) = xt (y). It is this
function which is decomposed. In particular, there is no reason why one should have
θ(t)1(x, y) of the type xt ′(y) for a certain function t ′ on [0, 1].

11 The best way to write the proof is to lighten notation by writing t (Zi) rather than θ(t)(Zi ) and to
think of T as a set of functions on Ω . Please attempt this exercise after you understand the present
argument.
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11.11 Selector Processes and Why They Matter

Given a number 0 < δ < 1, we consider i.i.d. r.v.s (δi)i≤M with

P(δi = 1) = δ ; P(δi = 0) = 1− δ . (11.54)

We will assume that δ ≤ 1/2, the most interesting case.12 The r.v.s δi are often
called selectors, because they allow to select a random subset J of {1, . . . ,M} of
cardinality about E card J = δM , namely, the set {i ≤ M; δi = 1}. They will be
used for this purpose in Sects. 19.3.1 and 19.3.2.

Selector processes are also important as that they provide a discrete approxi-
mation of the fundamental procedure of constructing independent random points
(Xj )j≤N distributed according to μ in a probability space (Ω,μ). We will explain
this is a very informal manner. Assuming for clarity that μ has no atoms, let us
divide Ω into M small pieces Ωi of equal measure, where M is much larger than
N . Consider then selectors (δi)i≤M where δ in (11.54) is given by δ = N/M . When
δi = 1 let us choose a point Yi in Ωi . Since Ωi is small, how we do this is not very
important, but let us be perfectionist and choose Yi according to the conditional
probability that Yi ∈ Ωi . Then the collection of points {Yi; δi = 1} resembles
a collection {Xj ; j ≤ N ′} where the points (Xj )j≤M ′ are independent, distributed
according to μ, and where N ′ = ∑

i≤M δi . For M large, N ′ is nearly a Poisson
r.v. of expectation δM = N . So a more precise statement is that selector processes
approximate the operation of choosing a set of N ′ independent random points in
a probability space, where N ′ is a Poisson r.v.13 Many problems are “equivalent”,
where one considers this random number of points (Xj )j≤N ′ , or a fixed number of
points (Xj )j≤N (the so-called Poissonization procedure).

We will call a family of r.v.s of the type
∑

i≤M ti(δi − δ) where t varies over a
set T of sequences a “selector process”, and we set

δ(T ) := E sup
t∈T
∣
∣
∑

i≤M
ti(δi − δ)

∣
∣ . (11.55)

According to the previous discussion, we expect for selector processes a result
similar to Theorem 6.8.3. This will be proved in the next section as a consequence
of Theorem 11.1.1.

12 The case δ ≥ 1/2 actually follows by the transformation δi → 1− δi and δ → 1− δ.
13 If you want to emulate an independent sequence (Xj )j≤N ′ by this procedure, you first consider
the collection {Yi; δi = 1} and you number those Yi in a random order.
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11.12 Proving the Generalized Bernoulli Conjecture

Since E(δi − δ)2 = δ(1− δ) ≤ 1/4, in the present case Bernstein’s inequality (4.44)
yields

P
(∣
∣
∑

i≤M
ti(δi − δ)

∣
∣ ≥ v

)
≤ 2 exp

(
−min

( v2

δ
∑

i≤M t2
i

,
v

2 maxi≤M |ti |
))

.

(11.56)

Combining with Theorem 4.5.13, (11.56) implies a first bound on selector processes.
If T is a set of sequences with 0 ∈ T , then (recalling the quantity δ(T ) of (11.55)),

δ(T ) ≤ L
(√

δγ2(T , d2)+ γ1(T , d∞)
)
. (11.57)

The following shows that the chaining argument of (11.57) takes care of all “the
part of boundedness which comes from cancellation”:

Theorem 11.12.1 Given a set T of sequences we can write T ⊂ T1 + T2 with

γ2(T1, d2) ≤ Lδ(T )√
δ

; γ1(T1, d∞) ≤ Lδ(T ) (11.58)

and

E sup
t∈T2

∑

i≤M
|ti |δi ≤ Lδ(T ) . (11.59)

Proof We will show that this is a special case of Theorem 11.1.1. Consider the
space Ω = {0, 1, . . . ,M}, and for an element t = (ti)i≤M ∈ T , consider the real-
valued function t̃ on Ω given by t̃ (0) = 0 and t̃ (i) = ti for 1 ≤ i ≤ M . Conversely,
for a real-valued function u on Ω , denote by P(u) the sequence (u(i))1≤i≤M , and
note that P(t̃ ) = t = (ti )i≤M . For 1 ≤ i ≤ M consider the r.v. Xi valued in Ω given
by Xi = 0 if δi = 0 and Xi = i if δi = 1. Then t̃ (Xi) = δiti and if T̃ = {t̃; t ∈ T }
then

S(T̃ ) := E sup
t̃∈T̃

∑

i≤M
εi t̃(Xi) = E sup

t∈T

∑

i≤M
εiδi ti . (11.60)

We will prove later that

E sup
t∈T
∣
∣
∑

i≤M
εiδi ti

∣
∣ ≤ 4δ(T ) , (11.61)
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so that in particular

S(T̃ ) ≤ Lδ(T ) . (11.62)

The law λi of Xi is such that λi({i}) = P(Xi = i) = δ and λi({0}) = P(Xi = 0) =
1 − δ. The measure ν = ∑

i≤M λi is then such that for any function u on Ω , we
have

δ‖P(u)‖2 = δ
∑

i≤M
(u(i))2 ≤

∫

u2dν = ‖u‖2 ,

where the norms are, respectively, in �2(M) and in L2(ν). Consequently,

√
δ‖P(u)‖2 ≤ ‖u‖2 ; ‖P(u)‖∞ ≤ ‖u‖∞ . (11.63)

Consider the decomposition T̃ ⊂ U1 + U2 provided by Theorem 11.1.1, so that,
using (11.62) in the last inequality,

γ2(U1, d2)+ γ1(U1, d∞) ≤ LS(T̃ ) ≤ Lδ(T ) (11.64)

and

E sup
u∈U2

∑

i≤M
|u(Xi)| ≤ LS(T̃ ) ≤ Lδ(T ) . (11.65)

Since T = P(T̃ ), this provides a decomposition T ⊂ T1 + T2 where Tj = P(Uj ).
It follows from (11.63) that

γ2(T1, d2) ≤ 1√
δ
γ2(U1, d2) ; γ1(T1, d∞) ≤ γ1(U1, d∞) ,

and then (11.64) implies that (11.58) holds. Furthermore since |u(Xi)| ≥
δi |u(i)| (11.65) implies (11.59).

It remains only to prove (11.61). For this let us denote by (δ′i )i≤M a copy of the
sequence (δi)i≤M , which is independent of all the other r.v.s previously used. We
first note that by the triangle inequality we have

E sup
t∈T
∣
∣
∑

i≤M
(δi − δ′i )ti

∣
∣ ≤ 2δ(T ) . (11.66)
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Next, the sequences (εi |δi − δ′i |)i≤M , (εi(δi − δ′i ))i≤M and (δi − δ′i )i≤M have the
same distribution, so that

E sup
t∈T
∣
∣
∑

i≤M
εi |δi − δ′i |ti

∣
∣ = E sup

t∈T
∣
∣
∑

i≤M
εi(δi − δ′i )ti

∣
∣ = E sup

t∈T
∣
∣
∑

i≤M
(δi − δ′i )ti

∣
∣ .

(11.67)

Now, using Jensen’s inequality, and since E|δi − δ′i | = 2δ(1− δ) ≥ δ,

δE sup
t∈T
∣
∣
∑

i≤M
εiti
∣
∣ ≤ E sup

t∈T
∣
∣
∑

i≤M
εi|δi − δ′i |ti

∣
∣ ≤ 2δ(T ) , (11.68)

where we use (11.67) and (11.66) in the last inequality. Next, we write

E sup
t∈T
∣
∣
∑

i≤M
εiδi ti

∣
∣ ≤ E sup

t∈T
∣
∣
∑

i≤M
εi(δi − δ)ti

∣
∣+ δE sup

t∈T
∣
∣
∑

i≤M
εiti
∣
∣ . (11.69)

Using Jensen’s inequality and (11.66) to obtain

E sup
t∈T
∣
∣
∑

i≤M
εi(δi − δ)ti

∣
∣ ≤ E sup

t∈T
∣
∣
∑

i≤M
εi(δi − δ′i )ti

∣
∣ ≤ 2δ(T ) ,

and combining (11.68) and (11.69) we obtain (11.61). �
Exercise 11.12.2 Consider a set T of sequences and assume that for a certain
number A > 0,

γ2(T , d2) ≤ A√
δ
; γ1(T , d∞) ≤ A .

(a) Prove that then convT ⊂ T1 + T2 where E supt∈T2

∑
i≤M |ti |δi ≤ LA and

γ2(T1, d2) ≤ LA/
√
δ ; γ1(T1, d∞) ≤ LA .

(b) Prove that it is not always true that

γ2(convT , d2) ≤ LA√
δ
; γ1(convT , d∞) ≤ LA .

Hint: Use Exercise 8.3.7 and choose δ appropriately small.

Theorem 11.12.1 shows that chaining, when performed using Bernstein’s
inequality, already captures all the possible cancellation. This is remarkable because
Bernstein’s inequality is not always sharp. We can see that by comparing it with the
following simple lemma:
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Lemma 11.12.3 Consider a fixed set I . If u ≥ 6δ card I we have

P
(∑

i∈I
δi ≥ u

)
≤ exp

(
− u

2
log

u

2δ card I

)
. (11.70)

Proof We are dealing here with the tails of the binomial law and (11.70) follows
from the Chernov bounds. For a direct proof, considering λ > 0 we write

E expλδi ≤ 1+ δeλ ≤ exp(δeλ)

so that we have

E expλ
∑

i∈I
δi ≤ exp(δeλ card I)

and

P
(∑

i∈I
δi ≥ u

)
≤ exp(δeλ card I − λu) .

We then take λ = log(u/(2δ card I)), so that λ ≥ 1 since u ≥ 6δ card I and
δeλ card I = u/2 ≤ λu/2. �
Exercise 11.12.4 Prove that the use of (11.56) to bound the left-hand side
of (11.70) is sharp (in the sense that the logarithm of the bound it provides is
of the correct order) only for u of order δ card I .

Key Ideas to Remember

• A natural way to bound the discrepancy E supf∈F |
∑

i≤N εif (Xi)| of a class of
functions is to use chaining and Bernstein’s inequality.

• An alternate way to control this discrepancy is to give up on possible cancella-
tions and to use the inequality

E sup
f∈F

∣
∣
∑

i≤N
εif (Xi)

∣
∣ ≤ E sup

f∈F

∑

i≤N
|f (Xi)| .

• Amazingly, there is never a better method than interpolating between the
previous two methods: all possible cancellation can be witnessed by Bernstein’s
inequality.

• The previous result can be interpreted in terms of certain random series of func-
tions. The uniform convergence of these can either be proved from Bernstein’s
inequality, or without using cancellation, or by a mixture of these two methods.



11.13 Notes and Comments 397

11.13 Notes and Comments

Even though Theorem 11.6.3 uses only ideas that are also used elsewhere in the
book, I formulated it only after reading the paper [18] by Witold Bednorz and Rafał
Martynek, where the authors prove in a more complicated way that chaining can
be performed from a majorizing measure. In fact, the possibility of performing
chaining from such a measure goes back at least to [112]. The contents of Sect. 11.5
and in particular Lemma 11.5.3 are taken from [18]. The use of convexity to
construct majorizing measures goes back to Fernique (see Sect. 3.3.2) but is used
for the first time in [18] in the context of families of distances.



Chapter 12
Infinitely Divisible Processes

The secret of the present chapter can easily be revealed. Infinite divisible processes
can be seen as sums of random series

∑
i≥1 εiZi of functions where the sequence

(εi)i≥1 is an independent sequence of Bernoulli r.v.s, which is independent of
the sequence (Zi), and where the sequence of functions (Zi)i≥1 shares enough
properties with an independent sequence to make all results of the previous chapter
go through. Moreover, when Zi is a multiple of a character, the process behaves just
as a random Fourier series, and the results on these extend to this case.

The main result of this chapter is a decomposition theorem for infinitely divisible
processes, Theorem 12.3.5 in the spirit of Theorem 11.1.1. It is a consequence of
Theorem 11.10.3, our main result on random series of functions.

12.1 Poisson r.v.s and Poisson Point Processes

We start by recalling some classical facts. A reader needing more details may refer
to her favorite textbook.

A Poisson r.v. X of expectation a is a r.v. such that

∀n ≥ 0 ; P(X = n) = an

n! exp(−a) , (12.1)

and indeed EX = a. Then, for any b ∈ C,

EbX = exp(−a)
∑

n≥0

bn
an

n! = exp(a(b − 1)) , (12.2)
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and in particular

E exp(λX) = exp
(
a(expλ− 1)

)
. (12.3)

Consequently, the sum of two independent Poisson r.v.s is Poisson.
Consider a σ -finite measure ν on a measurable space Ω . A Poisson point

process of intensity ν is a random subset Π (at most countable) with the following
properties: For any measurable set, A of finite measure,

card(A ∩Π) is a Poisson r.v. of expectation ν(A) , (12.4)

and moreover

If A1, . . . , Ak are disjoint measurable sets, the r.v.s

(card(A� ∩Π))�≤k are independent . (12.5)

A very important result (which we do not prove) is as follows:

Lemma 12.1.1 Consider a Poisson point process of intensity ν and a set A with
0 < ν(A) <∞. Given card(Π ∩ A) = N , the set Π ∩ A has the same distribution
as a set {X1, . . . , XN }, where the variables Xi are independent and distributed
according to the probability λ on A given by λ(B) = ν(A ∩ B)/ν(A) for B ⊂ A.

The purpose of the next exercise is to provide a proof of the previous result and
give you a chance to really understand it.1

Exercise 12.1.2 Assuming that ν(Ω) < ∞ consider a subset Π of Ω generated
by the following procedure. First, consider a Poisson r.v. M with EM = ν(Ω).
Second, given M , consider i.i.d. points Y1, . . . , YM distributed according to the
probability P(A) on Ω given by P(A) = ν(A)/ν(Ω), and set Π = {Y1, . . . , YM }.
Prove that (12.4) holds for a subset A of Ω and that the property of Lemma 12.1.1
holds too. When ν(Ω) is not finite but Ω is σ -finite, show how to actually construct
a Poisson point process on it.

We will enumerate all the points of the set Π as (Zi)i≥1.2 We observe first that
as a consequence of (12.4) for any set A

∑

i≥1

P(Zi ∈ A) = E card(Π ∩ A) = ν(A) . (12.6)

1 If this does not suffices, you may look into [46] Proposition 3.8.
2 Here we implicitly assume that there are infinitely many such points, i.e., ν has infinite mass,
which is the case of interest. One should also keep in mind that there are many possible way
to enumerate the points, and one should be careful to write only formulas with make sense
independently of the way these points are enumerated.
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Consequently, if f is an integrable function on Ω we have

E
∑

i≥1

f (Zi) =
∫

f (β)dν(β) , (12.7)

as is seen by approximation by functions taking only finitely many values. If A is a
measurable set of finite measure, f = c1A and X = cardA∩Π then

∑
i≥1 f (Zi) =

cX so that

E expλ
∑

i≥1

f (Zi) = E exp(λcX) = exp(ν(A)(expλc − 1)) .

where we use that X is a Poisson r.v. of expectation ν(A) and (12.3) in the second
equality. When f is a step function, f = ∑�≤k c�1A� :=

∑
�≤k f� for disjoint sets

A�, the previous formula combined with (12.5) implies

E expλ
∑

i≥1

f (Zi) =
∏

�≤k
E expλ

∑

i≥1

f�(Zi) = exp
(∑

�≤k
ν(A�)(expλc� − 1)

)

= exp
( ∫

(exp(λf (β))− 1)dν(β)
)
, (12.8)

a formula which also holds by approximation under the condition that the exponent
in the right-hand side is well defined. This is in particular the case if f is bounded
above and if

∫ |f | ∧ 1dν < ∞, where we recall the notation a ∧ b = min(a, b).
This formula will let us obtain bounds on the quantities

∑
i≥1 f (Zi) pretty much as

if the Zi were independent r.v.s. It contains almost all that we need to know about
Poisson point processes. Let us state right away the basic lemma.

Lemma 12.1.3 Consider 0 ≤ f ≤ 1. Then:

(a) If 4A ≤ ∫ f dν we have

P
(∑

i≥1

f (Zi) ≤ A
)
≤ exp(−A) . (12.9)

(b) If A ≥ 4
∫
f dν we have

P
(∑

i≥1

f (Zi) ≥ A
)
≤ exp

(
− A

2

)
. (12.10)

Proof Using (12.8) the proof is nearly identical to that of Lemma 7.7.2. �
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12.2 A Shortcut to Infinitely Divisible Processes

Infinitely divisible r.v.s are standard fare of probability theory. Intuitively they
are r.v.s which are sums of infinitely small independent r.v.s. We will call an
infinitely divisible random process a family (Xt) of r.v.s such that every finite linear
combination of them is infinitely divisible.

Let us not be misled by our terminology. What is called in the literature an
infinitely divisible process is usually a very much more special structure.3 The
“infinitely divisible processes” of the literature are to the processes we study what
Brownian motion is to general Gaussian processes.

The beautiful classical body of knowledge about infinitely divisible r.v.s (such as
the so-called Lévy-Kintchin representation of their characteristic functional) bears
little on our study because what matters here is a certain representation of infinitely
divisible processes as sums of random series which are conditionally Bernoulli
processes. For this reason we will directly define infinitely divisible processes as
sums of certain random series, and we postpone to Appendix C the task of relating
this definition to the classical one.

Consider an index set T and the measurable space C = C
T , provided with the

σ -algebra generated by the coordinate functions.4 We consider a σ -finite measure ν
on C, and we make the fundamental hypothesis that

∀t ∈ T ;
∫

C
|β(t)|2 ∧ 1dν(β) <∞ . (12.11)

A Poisson process of intensity measure ν generates a sequence (Zi)i≥1 of points
of C, that is, a sequence of functions on T . Under (12.11), given t ∈ T it
follows form the formula (12.7) (applied to the function β �→ |β(t)|2 ∧ 1) that
E
∑

i≥1 |Zi(t)|2∧1 = ∫C |β(t)|2∧1dν(β) <∞, so that
∑

i≥1 |Zi(t)|2∧1 <∞ a.s.,
and hence also

∑
i≥1 |Zi(t)|2 < ∞. Consider an independent Bernoulli sequence

(εi)i≥1, independent of the process (Zi). Then the series Xt = ∑
i≥1 εiZi(t)

converges a.s.

Definition 12.2.1 An infinitely divisible (symmetric and without Gaussian compo-
nent) process is a collection (Xt)t∈T as above where

Xt =
∑

i≥1

εiZi(t) . (12.12)

The measure ν is called the Lévy measure of the process.

3 That is, a process on R with stationary increments
4 As usual, we will not care about measure-theoretic details because when considering processes
(Xt )t∈T are only interested in the joint distribution of finite collections of the r.v.s Xt .
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Thus, given the randomness of the (Zi), an infinitely divisible process is
a Bernoulli process. This will be used in a fundamental way. Typically, the
convergence of the series

∑
i≥1 εiZi(t) is permitted by cancellation between the

terms.
There is no reason why Xt should have an expectation. (It can be shown that this

is the case if and only if
∫
C |β(t)|dν(β) < ∞.) When studying infinitely divisible

processes, medians are a better measure of their size than expectation. To keep the
statements simple, we have however decided to stick to expectations.

It is an important fact that p-stable processes (in the sense of Sect. 5.1) are
infinitely divisible processes in the sense of Definition 12.2.1. This is explained
in the next section.

12.3 Overview of Results

Throughout this section (Xt)t∈T denotes an infinitely divisible process, as in
Definition 12.2.1, of which we keep the notation. Following our general philosophy,
our goal is to relate the size of the r.v. supt∈T Xt with a proper measure of “the size
of T ”. Given a number r ≥ 4, we will use the “family of distances” on T × T given
by

ϕj (s, t) =
∫

C
|rj (β(s)− β(t))|2 ∧ 1dν(β) (12.13)

(where j ∈ Z) to measure the size of T , where of course ν is the Lévy measure of
the process.

12.3.1 The Main Lower Bound

Let us stress that for the time being, we consider only real-valued processes.
In words our main lower bound shows that the boundedness of an infinitely

divisible process implies a certain smallness condition of the index set T .The level
of abstraction reached here makes it difficult to understand the power of this result,
which will become apparent in the next section, which relies on it.
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Theorem 12.3.1 Consider an infinitely divisible process (Xt)t∈T , as in Defini-
tion 12.2.1, and assume that T is countable. Then there exists an admissible
sequence (An) of partitions of T and for A ∈ An an integer jn(A) such that the
following holds:

∀t ∈ T ,
∑

n≥0

2nr−jn(An(t)) ≤ KE sup
t∈T

Xt , (12.14)

s, t ∈ A ∈ An ⇒ ϕjn(A)(s, t) ≤ 2n+2 , (12.15)

where ϕj (s, t) is given by 12.13.

Proof This is a special instance of Theorem 11.7.1. The condition (11.8) is a
consequence of Lemma 12.1.3. �
Exercise 12.3.2 Analyze the proof to convince yourself that in the right-
hand side of (12.14), one could write instead KM where M is a median of
Eε supt∈T

∑
i≥1 εiZi(t).

We explain now why Theorem 12.3.1 can be seen as a considerable extension of
Theorem 5.2.1. As is explained in Sect. C.4, a p-stable process is infinitely divisible,
and moreover its Lévy measure ν is obtained by the following construction.
Denoting by λ Lebesgue’s measure on R

+, there exists a finite positive measure
m on C = C

T such that ν is the image of the measure μ ⊗ λ on R
+ × C under the

map (x, β) �→ x−1/pβ. By change of variable, it is obvious that

∫

R+
(|ax−1/p|2 ∧ 1)dx = C1(p)|a|p . (12.16)

Consequently

ϕj (s, t) =
∫

C

∫

R+

(|x−1/prj (ω(s)− ω(t))|2 ∧ 1
)
dm(ω)dx

= C1(p)r
jp

∫

C
|ω(s)− ω(t)|pdm(ω) = C1(p)r

jpd̄(s, t)p ,

where d̄(s, t)p = ∫C |ω(s) − ω(t)|pdm(ω). It is possible to show that the distance
d associated with the p-stable process (Xt) as in (5.4) is a multiple of d̄ (see
Appendix C). Then (12.15) implies Δ(A, d) ≤ K2n/pr−jn(A), and (12.14) yields

∑

n≥0

2n/qΔ(An(t), d) ≤ KE sup
t∈T

Xt̃ ,

where 1/q = 1 − 1/p and thus γq(T , d) ≤ KE supt∈T Xt , which is the content of
Theorem 5.2.1.
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12.3.2 The Decomposition Theorem for Infinitely Divisible
Processes

Let us now turn to the difficult problem of bounding infinitely divisible processes.
Let us first show how to bound infinitely divisible processes using chaining. On T

we consider the distances

d2
2 (s, t) =

∫

C
|β(s)− β(t)|2dν(β) , (12.17)

d∞(s, t) = inf
{
a > 0 ; |β(s)− β(t)| ≤ a ν-a.e.

}
. (12.18)

The distance d∞ is simply the distance induced by the norm of L∞(ν) when one
considers a point t of T as the functions on C given by the map β �→ β(t), and
similarly the distance d2 is the distance induced by the norm of L2(ν). We will
prove a suitable version of Bernstein’s inequality which will make the next result
appear as a chaining bound (4.56).

Theorem 12.3.3 We have

E sup
t∈T

Xt ≤ L
(
γ2(T , d2)+ γ1(T , d∞)

)
. (12.19)

There is however a method very different from chaining to control the size of
an infinitely divisible process, a method which owes nothing to cancellation, using
the inequality |Xt | = |∑i≥1 εiZi(t)| ≤∑i≥1 |Zi(t)|. This motivates the following
definition:

Definition 12.3.4 Consider a set T , a σ -finite measure ν on C = C
T and assume

that
∫ |β(t)| ∧ 1dν(β) < ∞ for each t ∈ T . Then we define the process (|X|t )t∈T

by

|X|t =
∑

i≥1

|Zi(t)| . (12.20)

When we control the supremum of the process (|X|t )t∈T , we may say that the
boundedness of the process (Xt )t∈T owes nothing to cancellation.

We have described two very different reasons why an infinitely divisible process
(Xt)t∈T may be bounded.

• The boundedness may be witnessed by chaining as in (12.19).
• It may happen that the process (|X|t )t∈T is already bounded, and then the

boundedness of (Xt) owes nothing to cancellation.

The main result of this chapter, the decomposition theorem for infinitely divisible
processes below states that there is no other possible reason: every bounded
infinitely divisible process is a mixture of the previous two situations.
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Theorem 12.3.5 (The Decomposition Theorem for Infinitely Divisible Pro-
cesses) Consider an infinitely divisible process (Xt)t∈T , as in Definition 12.2.1,
and assume that T is countable. Let S = E supt∈T Xt . Then we can write Xt =
X1

t + X2
t in a manner that each of the processes (X1

t )t∈T and (X2
t )t∈T is infinitely

divisible and that

γ2(T , d
1
2 )+ γ1(T , d

1∞) ≤ KS , (12.21)

where the distances d1
2 and d1∞ are given by (12.18) and (12.17) (for the process

(X1
t ) rather than (Xt )) whereas

E sup
t∈T

|X2|t ≤ KS . (12.22)

This decomposition witnesses the size of E supt∈T Xt . Indeed E supt∈T Xt ≤
E supt∈T X1

t +E supt∈T X2
t . The first term on the right is bounded through chaining;

see (12.19). The second term is bounded because E supt∈T2
|Xt | ≤ E supT ∈T2

|X|t
is already bounded by (12.22).

The decomposition theorem is a close cousin of Theorem 11.10.3. In words it
can be formulated as follows:

Chaining using Bernstein’s inequality captures exactly the part of the
boundedness of an infinitely divisible process that is due to cancellation.

Exercise 12.3.6 Learn about the Lévy measure of a p-stable process in Sect. C.4
(which was described at the end of Sect. 12.3.1). Show that if such a process is
not zero, the process (|X|t )t∈T is not defined. Conclude that when applying the
decomposition theorem to a p-stable process (Xt )t∈T , it is not possible to take the
pieces (X1

t )t∈T and (X2
t )t∈T both p-stable.

12.3.3 Upper Bounds Through Bracketing

Our result is called a “bracketing theorem” because for each A ∈ An, we control the
size of the “brackets” hA(ω) = [inft∈A ω(t), supt∈A ω(t)] = sups,t∈A |ω(s)−ω(t)|.
Theorem 12.3.7 Consider an admissible sequence (An) of T , and for A ∈ An and
ω ∈ C = R

T consider hA(ω) = sups,t∈A |ω(s) − ω(t)|. Assume that for A ∈ An

we are given jn(A) ∈ Z satisfying

A ∈ An , C ∈ An−1 , A ⊂ C ⇒ jn(A) ≥ jn−1(C) .
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Assume that for some numbers r ≥ 2 and S > 0 we have

∀A ∈ An ,

∫
(
r2jn(A)h2

A ∧ 1
)
dν ≤ 2n , (12.23)

∫

hT 1{2hT≥r−j0(T )}dν ≤ S , (12.24)

and

∀t ∈ T ,
∑

n≥0

2nr−jn(An(t)) ≤ S . (12.25)

Then E supt∈T |Xt | ≤ KS.

The principle of Theorem 12.3.7 goes back at least to [112], but its power does
not seem to have been understood.

12.3.4 Harmonizable Infinitely Divisible Processes

Motivated by Chap. 7, we may expect that when “there is stationarity” (in the sense
that there is a kind of translation invariant structure), it will be much easier to find
upper bounds for infinitely divisible processes. In this section, in contrast with the
rest of the chapter, infinitely divisible processes are permitted to be complex-valued.

Consider (for simplicity) a metrizable compact group T , and its dual G, the set
of continuous characters on T . We denote by CG the set of functions on T which
are of the type αχ where α ∈ C and χ is a character.

Definition 12.3.8 If T is a metrizable compact group, an infinitely divisible process
(Xt)t∈T as in Definition 12.2.1 is called harmonizable if its Lévy measure is
supported by CG.

Special classes of such processes were extensively studied by M. Marcus and G.
Pisier [62] and later again by M. Marcus [59]. Although it would be hard to argue
that these processes are intrinsically important, our results exemplify the amount
of progress permitted by the idea of families of distances.5 To bring forward that
the study of these processes is closely related to that of random Fourier series, we
state four results which parallel Lemmas 7.10.4 to 7.10.7 and provide a complete
understanding of when these processes are bounded a.s.6 Here μ denotes the Haar

5 For example, Marcus [59] obtains necessary and sufficient conditions for boundedness only in
the case of harmonizable p-stable processes considered in Sect. 12.3.5.
6 Since the proofs of these results are, in a high level sense, mere translations of the proofs of the
results for the random Fourier series, we will not provide them.
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measure of G and (Xt )t∈T an infinitely divisible harmonizable process. The first
lemma is obvious.

Lemma 12.3.9 If the process (Xt)t∈T is a.s. uniformly bounded, given α > 0 there
exists M such that P(supt∈T |Xt | ≥ M) ≤ α.

Theorem 12.3.10 There exists a number α1 > 0 with the following property.
Assume that for a certain number M we have

P
(

sup
t∈T

|Xt | ≥M
)
≤ α1 . (12.26)

Then there exists an integer j0 such that

∀ s, t ∈ T , ϕj0(s, t) ≤ 1 , (12.27)

and for n ≥ 1 an integer jn with

μ({s ∈ T ; ϕjn(s, 0) ≤ 2n}) ≥ N−1
n , (12.28)

for which

∑

n≥0

2nr−jn ≤ KM . (12.29)

Theorem 12.3.11 Consider a harmonizable infinitely divisible process and integers
jn ∈ Z, n ≥ 0 that satisfy the conditions (12.27) and (12.28). Then we can split the
Lévy measure in three parts ν1, ν2, ν3, such that ν1, the restriction of ν to the set
{β; |β(0)| ≥ 2r−j0}, is such that its total mass |ν1| satisfies |ν1| ≤ L and that

∫

|β(0)|dν2(β) ≤ K
∑

n≥0

2nr−jn . (12.30)

γ2(T , d) ≤ K
∑

n≥0

2nr−jn , (12.31)

where the distance d is given by

d(s, t)2 =
∫

|β(s)− β(t)|2dμ(β) . (12.32)

Theorem 12.3.12 When the Lévy measure is as in Theorem 12.3.11, the process
(Xt)t∈T is almost surely bounded.

Keeping in mind the representation (12.12), this is proved by considering
separately the case of ν� for � = 1, 2, 3. For � = 1, a.s. there are only finitely
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many Zi since ν1 is of finite mass. For � = 2 we have E
∑

i |Zi(0)| < ∞, and
|∑i Zi(t)| ≤ ∑

i |Zi(0)| since Zi ∈ CG. For � = 3 we use a suitable version
of (7.23). Let us stress the content of the previous results.

Theorem 12.3.13 For a harmonizable infinitely divisible process (Xt)t∈T we
have supt∈T |Xt | < ∞ a.s. if and only if there exist integers j0, (jn)n≥1 in Z

satisfying (12.27) and (12.28) for which
∑

n≥0 2nr−jn <∞.

This theorem should be compared to Theorem 7.5.16.

12.3.5 Example: Harmonizable p-Stable Processes

Let us illustrate Theorem 12.3.13 in the simpler case of “harmonizable p-stable
processes”, where 1 < p < 2. By definition such a process is infinitely divisible
such that its Lévy measure ν is obtained by the following construction: Starting
with a finite measure m on G, ν is the image on CG of the measure μ ⊗ m on
R
+ × G under the map (x, χ) → xχ , where μ has density x−p−1 with respect

to Lebesgue’s measure on R
+. In that case for a certain constant Cp, we have

ϕj (s, t) = Cpr
jpd(s, t)p for a certain distance d on T . We explore the situation

through a sequence of exercises.7

Exercise 12.3.14

(a) When ϕj (s, t) = Cpr
jpd(s, t)p for p > 1 prove that there exists a sequence

(jn) satisfying the conditions (12.27) and (12.28) as well as
∑

n≥0 2nr−jn <∞
if and only if γq(T , d) < ∞, where q is the conjugate exponent of p. Hint:
Basically because ϕj (s, t) ≤ 2n if and only if d(s, t) ≤ 2n/pr−j .

(b) When p = 1 prove that this is the case if and only if there exists a sequence
(εn)n≥0 such that

∑
n≥0 εn <∞ and

μ({s ∈ T ; d(s, t) ≤ εn}) ≥ N−1
n . (12.33)

Exercise 12.3.15 In the case p = 1, prove that the condition
∑

n εn < ∞ is
equivalent to the condition γ∞(T , d) < ∞ where the quantity γ∞(T , d) is defined
in (5.20).

Exercise 12.3.16 Prove that the Lévy measure ν of a harmonizable p-stable
process satisfies ν({β; |β(0)| ≥ u}) ≤ Cu−p for a constant C independent of u.

Exercise 12.3.17 Prove that if 1 < p < 2 then E supt∈T |Xt | < ∞ if and only
if γq(T , d) < ∞. Prove that if p = 1, then supt∈T |Xt | < ∞ a.s. if and only if
there exists a sequence (εn) such that

∑
n εn <∞ and (12.33) holds. Hint: Use the

previous exercise.

7 The sketch of proofs of which are especially concise.
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Exercise 12.3.18 In the case of harmonizable 1-stable processes, prove the estimate
P(supt∈T |Xt | ≥ u) ≤ C/u for a number C independent of u. Hint: Use
Exercise 12.3.16.

12.4 Proofs: The Bracketing Theorem

Proof of Theorem 12.3.7 The plan is to use Theorem 9.4.1. Given u ≥ 1,
Lemma 12.1.3 (b) implies that for each n and each A ∈ An we have

P
(∑

i≥1

(r2jn(A)hA(Zi)
2 ∧ 1) ≤ u2n+2

)

≥ 1− exp(−u2n+1) .

Consequently, the r.v. U defined as

U = sup
{
2−n−2(r2jn(A)hA(Zi)

2 ∧ 1) ; n ≥ 0, A ∈ An

}

satisfies P(U ≥ u) ≤ ∑n≥0 exp(−u2n+1) ≤ L exp(−u) for u ≥ L. In particular
EU ≤ L. We observe the fundamental fact: if s, t ∈ A then

∑

i≥1

|rjn(A)(Zi(s)− Zi(t))|2 ∧ 1 ≤
∑

i≥1

(r2jn(A)hA(Zi)
2 ∧ 1) ≤ 2n+2U ,

and therefore using (9.44) with p = 1 and u = 4U , we obtain

Eε sup
t∈T

∣
∣
∣
∑

i≥1

εiZi(t)

∣
∣
∣ ≤ KUS +K

∑

i≥1

hT (Zi)1{2hT (Zi)≥r−j0(T )} , (12.34)

where K depends on r only. Since EU ≤ L, taking expectation yields

E sup
t∈T

∣
∣
∣
∑

i≥1

εiZi(t)

∣
∣
∣ ≤ KS +KE

∑

i≥1

hT (Zi)1{2hT (Zi)≥r−j0(T )} . (12.35)

Now (12.7) yields

E
∑

i≥1

hT (Zi)1{2hT (Zi)≥r−j0(T )} =
∫

hT (β)1{2hT (β)≥r−j0(T )}dν(β) ,

and (12.24) proves that this quantity is ≤ S. Combining with (12.35) proves that
E supt∈T |Xt | ≤ KS. �
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We have imposed condition (12.24) in order to get a clean statement. Its use is
simply to control the size of the last term in (12.34). This hypothesis is absolutely
inessential: this term is a.s. finite because the sum contains only finitely many non-
zero terms. Its size can then be controlled in specific cases through specific methods.

We refer the reader to [132] where it is shown how to deduce recent results of
[63] from Theorem 12.3.7.

12.5 Proofs: The Decomposition Theorem for Infinitely
Divisible Processes

The decomposition theorem for infinitely divisible processes is a close cousin of
Theorem 11.10.3 and also ultimately relies on Theorem 9.2.1. As in the proof of
Theorem 11.10.3, a significant level of abstraction is required, so that before we
get into the details, it could be worth to give an outline of proof. The main idea is
to consider the elements of T as functions on C = C

T , that is, to each t ∈ T we
associate the function θ(t) on C given by θ(t)(β) = β(t). We will then suitably
decompose each function θ(t) as a sum θ(t) = θ1(t) + θ2(t) of two functions
on C, and for j = 1, 2 we will define the process X

j
t as

∑
i≥1 εiθ

j (t)(Zi). To
describe these processes in the language of Definition 12.2.1, for j = 1, 2 let us
define a map Ξj : C → C = C

T by the formula Ξj(β)(t) = θj (t)(β), so that
θj (t)(Zi) = Ξj (Zi)(t). Define then the positive measure νj on C as the image of
ν under the map Ξj . It is simple to see that the points Ξj(Zi) arise from a Poisson
point process of intensity measure νj , the image of ν under the map Ξj , so that νj

is the Lévy measure of the process (Xj
t )t∈T .

This having been spelled out, to lighten notation we consider T as space of
functions on C by simply identifying an element t ∈ T with the function β �→ β(t)

on C, so that we write t (Zi) rather than Zi(t).
We first prove a suitable version of Bernstein’s inequality.

Lemma 12.5.1 Consider a function u on C. Assume that ‖u‖2 <∞ where ‖u‖2
2 =∫ |u(β)|2dν(β) and that ‖u‖∞ = supβ∈Ω |u(β)| <∞. Then for v ≥ 0 we have

P
(∣
∣
∑

i≥1

εiu(Zi)
∣
∣ ≥ v

)
≤ 2 exp

(
− 1

L
min

( v2

‖u‖2 ,
v

‖u‖∞
))

. (12.36)

Proof Leaving some convergence details to the reader8, we get

Eε expλ
∑

i≥1

εiu(Zi) =
∏

i≥1

coshλu(Zi) = exp
∑

i≥1

log coshλu(Zi) ,

8 It might be a good idea here to review Exercise (6.1.2).
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and taking expectation and using (12.8), we obtain

E expλ
∑

i≥1

εiu(Zi) = exp
∫

(coshλu(β)− 1)dν(β) .

Since cosh x ≤ 1 + Lx2 for |x| ≤ 1 it follows that for λ‖u‖∞ ≤ 1 we have
coshλu(β)− 1 ≤ Lλ2u(β)2 and then

E expλ
∑

i≥1

εiu(Zi) ≤ exp
(
Lλ2

∫

u(β)2dν(β)
)
,

and as in the proof of Bernstein’s inequality (Lemma 4.5.6), this implies (12.36).
�

Proof of Theorem 12.3.3 It follows from (12.36) that for s, t ∈ T and v > 0, we
have

P
(∣
∣
∑

i≥1

εi(s(Zi)− t (Zi))
∣
∣ ≥ v

)
≤ exp

(
− 1

L
min

( v2

d2(s, t)2 ,
v

d∞(s, t)

))
,

where the distance d2 and d∞ are those defined in (12.17) and (12.18), so
that (12.19) follows from Theorem 4.5.13. �

The next result is in the spirit of the Giné-Zinn theorem (Sect. 11.8.)

Theorem 12.5.2 We have

E sup
t∈T

|X|t ≤ sup
t∈T

∫

|t (β)|dν(β)+ 4E sup
t∈T

|Xt | .

Proof Consider a subset A ⊂ C with ν(A) <∞. Consider an independent sequence
(Yi)i≤N of r.v.s which are distributed according to the probability P on A given by
P(B) = ν(B ∩ A)/ν(A). Consider an independent sequence (εi)i≥1 of Bernoulli
r.v.s which is independent of the sequence (Yi). We apply (11.37) so that E|t (Yi)| =
ν(A)−1

∫
A
|t (β)|d(β)ν, and we obtain

E sup
t∈T

∑

i≤N
|t (Yi)| ≤ N

ν(A)
sup
t∈T

∫

A

|t (β)|dν(β)+ 4E sup
t∈T

∣
∣
∣
∑

i≤N
εit (Yi)

∣
∣
∣ . (12.37)

Consider then a Poisson point process (Zi) of intensity measure ν and let N =
card{i ≥ 1;Zi ∈ A}. Given N , according to Lemma 12.1.1, the r.v.s Zi1A(Zi) are
distributed like an independent sequence (Yi)i≤N , where Yi is distributed according
to the probability P above. We use (12.37) given N = card{i ≥ 1;Zi ∈ A} for the
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sequence (Yi)i≤N , and we take expectation to obtain (and since EN = ν(A)):

E sup
t∈T

∑

i≥1

|t (Zi)|1A(Zi) ≤ sup
t∈T

∫

A

|t (β)|dν(β)+ 4E sup
t∈T

∣
∣
∣
∑

i≤N
εit (Zi)1A(Zi)

∣
∣
∣

≤ sup
t∈T

∫

|t (β)|dν(β)+ 4E sup
t∈T

∣
∣
∣
∑

i≤N
εit (Zi)

∣
∣
∣ , (12.38)

by using Jensen’s inequality in the second line (i.e., taking expectation in the r.v.s
εi for which 1A(Zi) = 0 outside the supremum and the absolute value rather than
inside). The result follows since A is arbitrary. �

Let us now prepare for the proof of Theorem 12.3.5. Without loss of generality,
we may assume that 0 ∈ T , so that E supt∈T |Xt | ≤ 2S by Lemma 2.2.1.

Lemma 12.5.3 Let j0 = j0(T ) be as in Theorem 12.3.1. Then we have

∀t ∈ T ;
∫

Ω

|t|1{2|t |≥r−j0 }dν ≤ LS . (12.39)

Proof Using (12.15) for n = 0 and since 0 ∈ T we have

∫

Ω

r2j0 |t2| ∧ 1dν ≤ 4

so that by Markov’s inequality U := {2|t| ≥ r−j0} satisfies ν(U) ≤ 16 and

∫

Ω

|t|1{2|t |≥r−j0 }dν =
∫

U

|t|dν . (12.40)

Consider the event Ξ given by card{i ≥ 1;Zi ∈ U} = 1. We lighten notation by
assuming that the r.v.s Zi are numbered in such a way that Z1 ∈ U when Ξ occurs.
According to Lemma 12.1.1, conditionally on Ξ the r.v. Z1 is uniformly distributed
on U , so that

1

P(Ξ)
E1Ξ |t (Z1)| = 1

ν(U)

∫

U

|t|dν .

Furthermore, since (Zi) is a Poisson point process of intensity ν, we have P(Ξ) =
ν(U) exp(−ν(U)) ≥ ν(U)/L so that

∫

U

|t|dν ≤ LE1Ξ |t (Z1)| . (12.41)
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Now, denoting by Eε expectation in the r.v.s. εi only, we have, using Jensen’s
inequality in the first inequality,

1Ξ |t (Z1)| = Eε1Ξ |ε1t (Z1)| ≤ Eε1Ξ
∣
∣
∣
∑

i≥1

εit (Zi)

∣
∣
∣ = Eε1Ξ |Xt | ≤ Eε|Xt | .

Taking expectation we obtain E1Ξ |t (Z1)| ≤ E|Xt | ≤ 2S, and using (12.41)
and (12.40) concludes the proof. �
Proposition 12.5.4 There exists a decomposition T ⊂ T1 + T2, such that 0 ∈ T1
and

γ2(T1, d2) ≤ KS , γ1(T1, d∞) ≤ KS , (12.42)

sup
t∈T2

∫

|t (β)|dν(β) ≤ KS . (12.43)

Here d2 and d∞ are as always the distances induced by the L2 and the L∞ norm
when T is seen as a space of functions on the measured space (C, ν). These are the
same distances as in (12.17) and (12.18).

Proof We combine Theorem 12.3.1 with Theorem 9.2.1, calling T2 what is called
T2 + T3 there. Lemma 12.5.3 asserts that

∫ |t (β)|dν(β) ≤ KS for t ∈ T3. �
Proof of Theorem 12.3.5 Consider the decomposition of T provided by Proposi-
tion 12.5.4. Combining (12.42) with Theorem 12.3.3 yields E supt∈T1

Xt ≤ KS.
Since 0 ∈ T1, combining with Lemma 2.2.1 yields E supt∈T1

|Xt | ≤ KS. We may
assume that T2 ⊂ T − T1, simply by replacing T2 by T2 ∩ (T − T1). Thus

E sup
t∈T2

|Xt | ≤ E sup
t∈T1

|Xt | + E sup
t∈T

|Xt | ≤ KS .

Combining with (12.43), Theorem 12.5.2 then implies E supt∈T2
|X|t ≤ KS. Every

element t ∈ T has a decomposition t = t1 + t2 with t1 ∈ T1 and t2 ∈ T2. We
set X1

t = Xt1 and X2
t = Xt2 to finish the proof since (12.21) is a consequence

of (12.42). �
Key Ideas to Remember

• Infinitely divisible processes (symmetric, without Gaussian components) are
standard fare of probability theory. They can be viewed as sum of certain random
series of functions (the terms of which are not independent).

• Our general results about random series of functions apply to this setting
and considerably clarify the question of boundedness of such processes. This
boundedness can always be witnessed by a suitable use of Bernstein’s inequality,
or by forgetting about possible cancellations, or by a mixture of both methods.



12.6 Notes and Comments 415

12.6 Notes and Comments

Theorem 12.3.5 (the decomposition theorem) was first proved in [112] under an
extra technical hypothesis. Basically the same proof was given in [132]. While
preparing the present edition, I discovered a much simpler proof (still using the
same extra technical hypothesis) based on the Latała-Bednorz theorem. Namely,
I proved Lemma 11.4.1, and I used the functionals Fn(A) = supμ inft∈A Jμ(t)

(where the supremum is taken over all probability measures μ with μ(A) = 1) and
Theorem 8.1.2 to obtain Theorem 12.3.1. The technical condition was necessary
to prove that these functionals satisfy the appropriate growth condition. Witold
Bednorz and Rafał Martynek [18], who had the early version of this book, combined
the method of Lemma 11.4.1 with the use of convexity9 as in Lemma 3.3.2 to
construct the majorizing measure of Theorem 11.5.1 and to show (in a somewhat
complicated manner) that this majorizing measure can be used to perform the appro-
priate chaining. In this manner in [18] they proved Theorem 12.3.5 in the slightly
weaker form where in (12.22) there is an extra term K supt∈T

∫
Ω |t|1{2|t |≥r−j0}. This

extra term was removed here using the simple Lemma 12.5.3.

9 This use of convexity goes back to Fernique [32].



Chapter 13
Unfulfilled Dreams

We have made much progress on several of the dreams which were born in
Sect. 2.12 (which the reader should review now). Some of this progress is partial;
in Theorems 6.8.3, 11.12.1, and 12.3.5, we have shown that “chaining explains all
the boundedness due to cancellation”. But what could we say about boundedness of
processes where no cancellation occurs? In this chapter, we dream about this, in the
simplest case of positive selector processes. Our goal does not vary: trying to show
that when a process is bounded, this can be witnessed in a simple manner: using the
union bound (through chaining), maybe taking convex hull, or some other simple
idea (we will use positivity below). The most important material in this chapter is
in Sect. 13.2, where the analysis leads us to a deep question of combinatorics. The
author has spent considerable time studying it and offers a prize for its solution.

13.1 Positive Selector Processes

Theorem 11.12.1 reduces the study of the boundedness of selector processes to
the study of the boundedness of positive selector processes. That is, we have to
understand the quantity

δ+(T ) := E sup
t∈T

∑

i≤M
tiδi (13.1)

where T is a set of sequences t = (ti)i≤M with ti ≥ 0, and where the r.v.s δi
are independent, P(δi = 1) = δ, and P(δi = 0) = 1 − δ. The study of positive
selector processes is in any case fundamental, since, following the same steps as
in Sect. 11.11, it is essentially the same problem as understanding the quantity
E supf∈F

∑
i≤N f (Xi) when F is a class of non-negative functions.
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It is difficult to imagine as a function of which geometrical characteristics of T
one should evaluate the quantity (13.1). We shall discuss in Sect. 13.4 the case where
T consists of indicator of sets, and in particular we shall give concrete examples
which illustrate this point.

An important feature of positive selector processes is that we can use positivity
to construct new processes from processes we already know how to bound. To
implement the idea, given a set T , we denote by solidT its “solid convex hull”,
i.e., the set of sequences (si )i≤M for which there exists t ∈ convT such that si ≤ ti
for each i ≤ M . It should be obvious that

sup
t∈solidT

∑

i≤M
tiδi = sup

t∈T

∑

i≤M
tiδi . (13.2)

Taking expectation shows that δ+(solid T ) = δ+(T ). Thus, to bound δ+(T ) from
above, it suffices to find a set T ′ for which T ⊂ solid T ′ and such that we control
δ+(T ′). Recalling (2.149), we define

S(T ) = inf
{
S > 0 ;

∫ ∞

S

∑

t∈T
P
(∑

i≤M
tiδi ≥ u

)
du ≤ S

}
. (13.3)

In Lemma 2.12.1, we proved that δ+(T ) ≤ 2S(T ), so that if T ⊂ solid T ′,
then δ+(T ) ≤ 2S(T ′). Wishful thinking, supplemented by a dreadful lack of
imagination1, leads to the following:

Research Problem 13.1.1 Does there exist a universal constant L such that for any
set T of sequences t = (ti ), ti ≥ 0, one can find a set T ′ with S(T ′) ≤ Lδ+(T ) and
T ⊂ solid T ′?

13.2 Explicitly Small Events

Our ultimate goal should be to give a complete description of the quantity δ+(T )
“as a function of the geometry of the metric space (T , d)”. This motivated Research
Problem 13.1.1. At present, we simply have no clue on how to approach this
problem, and in the rest of the chapter, we explore different directions.

We proved that as a consequence of Theorem 2.11.9, for any Gaussian process,
we can find a jointly Gaussian sequence (uk) such that

{
sup
t∈T

|Xt | ≥ LE sup
t∈T

|Xt |
}
⊂
⋃

k≥1

{uk ≥ 1} (13.4)

1 In other words, we could not think of any other way to bound δ+(T ).
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and moreover

∑

k≥1

P(uk ≥ 1) ≤ 1

2
.

The sets {uk ≥ 1} are simple concrete witnesses that the event on the left-hand side
of (13.4) has a probability at most 1/2.2

Let us explore the same idea for positive selector processes. Does there exist a
universal constant L such that for each set T of sequences t = (ti )i≥1, ti ≥ 0, there
exist “simple witnesses” that the event

sup
t∈T

∑

i≤M
δiti ≥ Lδ+(T ) (13.5)

has a probability at most 1/2?
There is a simple and natural choice for these witnesses. For a finite subset I of

{1, . . . ,M}, let us consider the event HI defined by

HI = {∀i ∈ I, δi = 1} , (13.6)

so that P(HI ) = δcard I . The events HI play the role that the half-spaces play for
Gaussian processes in (13.4) (see (2.153)).

Definition 13.2.1 Given a positive number η > 0, an event Ω is η-small if we can
find a family G of subsets I of {1, . . . ,M} with

∑

I∈G
ηcard I ≤ 1/2 (13.7)

and

Ω ⊂
⋃

I∈G
HI . (13.8)

The choice of the constant 1/2 in (13.7) is rather arbitrary. Since P(HI ) = δcard I ,
a δ-small event is of probability≤ 1/2, but it is such in an “explicit” way (hence the
title of the section). The sets HI as in (13.8) are “simple concrete witnesses” of that.

The first point to make is that there exist sets of small probability which do not
look at all like δ-small sets. A typical example is as follows. Let us consider two
integers k, r , and r disjoint subsets I1, . . . , Ir of {1, . . . ,M}, each of cardinality k.

2 The existence of these witnesses is a not as strong as the information provided by Theorem 2.10.1.
It is easy to deduce it from Theorem 2.10.1, but it does not seem easy to go the other way around.
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Let us consider the set

A = {(δi)i≤M ; ∀ � ≤ r , ∃i ∈ I� , δi = 1} . (13.9)

It is straightforward to see that P(A) = (1 − (1 − δ)k)r . In particular, given k, one
can choose r large so that P(A) is small. We leave the following as a teaser to the
reader:

Exercise 13.2.2 Prove that the set A is not 1/k-small. Hint: A carries a probability
measure ν such that ν(HI ) ≤ k− card I for each I .

The following asks if the event (13.5) is “explicitly small”:

Research Problem 13.2.3 Is it true that we can find a universal constant L such
that for any class of sequences T as in (13.5), the event

{
sup
t∈T

∑

i≤M
δiti ≥ Lδ+(T ) = LE sup

t∈T

∑

i≤M
δiti

}
(13.10)

is δ-small?

Even proving that the set (13.10) is αδ-small, where α is some universal constant,
would be of interest. The main result of Sect. 13.4 is a positive answer to this
problem when T consists of indicators of sets.

Proposition 13.2.4 If Problem 13.1.1 has a positive answer, then so does Prob-
lem 13.2.3.

In view of (13.2), this proposition is an immediate consequence of the following,
where S(T ) is defined in (13.3):

Proposition 13.2.5 For any set T , the event

{
sup
t∈T

∑

i≤M
δiti ≥ LS(T )

}

is δ-small.

This result is very much weaker than a positive answer to Problem 13.2.3
because we expect S(T ) to by typically infinite or much larger than δ+(T ).3 Thus,
Proposition 13.2.4 achieves little more than checking that our conjectures are not
blatantly wrong, and it seems better to refer to [132] for a proof.4

3 It would be an astonishing fact if it were true that S(T ) ≤ Lδ+(T ), and proving it would be a
sensational result.
4 We do not reproduce this proof here because it uses the rather complicated Theorem 11.1 of
[131], and we hope that a creative reader will invent a better argument.
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13.3 My Lifetime Favorite Problem

Problem 13.2.3 motivates a more general question, which the author believes to be
of fundamental importance.5 It is considerably easier to explain this question if we
identify {0, 1}M with the class M of subsets of M∗ := {1, . . . ,M} in the obvious
manner, identifying a point (xi)i≤M ∈ {0, 1}M with the set {i ≤ M; xi = 1}. We do
this throughout this section.

We first explain the central combinatorial definition.

Definition 13.3.1 Given a class D ⊂ M and an integer q , we define the class
D(q) ⊂M as the class of subsets of M∗ which are not included in the union of any
q subsets of M∗ belonging to D.

It is useful to think of the points of D(q) as being “far from D”. To make sure
you understand the definition, convince yourself that if for an integer k we have

D = {J ⊂M∗ ; cardJ ≤ k} , (13.11)

then

D(q) = {J ⊂ M∗ ; card J ≥ kq + 1} . (13.12)

Given 0 < δ < 1 and the corresponding independent sequence (δi)i≤m, let us
denote by Pδ the law of the random set {i ≤ M; δi = 1} ∈M.

Research Problem 13.3.2 Prove (or disprove) that there exists an integer q with
the following property. Consider any value of δ, any value of M , and any subset D
of M with Pδ(D) ≥ 1− 1/q . Then the set D(q) is δ-small.

In other words, we simply look for ε > 0 small and q large such that D(q) is
δ-small whenever Pδ(D) ≥ 1− ε.

To understand this problem, it helps to analyze the example (13.11). Then the set
HI of (13.6) is now described by HI = {J ∈M; I ⊂ J }. According to (13.12), we
have

D(q) ⊂
⋃

I∈G
HI ,

where G = {I ∈M; card I = kq + 1}. Thus, using the elementary inequality

(
n

k

)

≤
(en

k

)k
(13.13)

5 Far more so than Problem 13.2.3 itself
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we obtain

∑

I∈G
δcard I =

(
M

kq + 1

)

δkq+1 ≤
( eMδ

kq + 1

)kq+1
. (13.14)

It is elementary to show that when Pδ(D) ≥ 1/2, one has k ≥ δM/L. It then follows
that if q is a large enough universal constant, the right-hand side of (13.14) is≤ 1/2.
That is, we have proved that sets D of the type (13.11) have the property described
in Problem 13.3.2 that D(q) is δ-small.

To believe that Problem 13.3.2 has a positive solution, one has to believe that the
simple case above is “extremal”, i.e., “the worst possible”. It might be possible to
provide a negative solution to Problem 13.3.2 in a few lines: it “suffices” to invent a
new type of set D to solve it negatively!

A solution to Problem 13.3.2 will be rewarded by a $1000 prize, even if it applies
only to sufficiently small values of δ. It seems probable that progress on this problem
requires methods unrelated to those of this book. A simple positive result in the right
direction is provided in the next section.

Proposition 13.3.3 A positive solution to Problem 13.3.2 implies a positive solu-
tion to Problem 13.2.3.

Proof Let q be as provided by the positive solution of Problem 13.3.2. It follows
from Markov’s inequality that the event {supt∈T

∑
i≤M δiti ≤ qδ+(T )} has

probability≥ 1− 1/q which in our current language means that Pδ(D) ≥ 1− 1/q
where D = {J ∈ M; supt∈T

∑
i∈J ti ≤ qδ+(T )}. Now, if J 1, . . . , J q ∈ D and

J = ∪�≤qJ �, it is obvious that supt∈T
∑

i∈J ti ≤ q2δ+(T ). Consequently,

{
J ∈M ; sup

t∈T

∑

i∈J
ti > q2δ+(T )

}
⊂ D(q) (13.15)

and the positive solution of Problem 13.3.2 asserts that this set is δ-small. �
The author has spent considerable energy on Problem 13.3.2. It would not be

realistic to attempt to convey the depth of this problem in a few pages. A sequence
of conjectures of increasing strength, of which a positive answer to (a weak version
of) Problem 13.3.2 is the weakest, can be found in [131].

13.4 Classes of Sets

In this section, we consider positive selector processes in the simpler case where T

consists of indicators of sets. Please be careful that the notation does not coincide
with that of the previous section. It is the elements of T which are now identified
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to points of M. Considering a class J of subsets of M∗ = {1, . . . ,M}, we try to
bound the quantity

δ(J ) := E sup
J∈J

∑

i∈J
δi .

The main result of this section is Theorem 13.4.4. Before we come to it, we explore
a few naive ways to bound δ(J ).

Proposition 13.4.1 Assume that for some number S > 0, we have

∑

J∈J

(δ card J

S

)S ≤ 1 . (13.16)

Then δ(J ) ≤ LS.

Proof We first observe that by (13.16), each term in the summation is ≤ 1, so that
δ cardJ ≤ S whenever J ∈ J , and thus u ≥ 6δ card J whenever u ≥ 6S. We then
simply use Lemma 11.12.3 to obtain that for u ≥ 6S, we have, using (11.70) in the
second inequality,

P
(

sup
J∈J

∑

i∈J
δi ≥ u

)
≤
∑

J∈J
P
(∑

i∈J
δi ≥ u

)
≤
∑

J∈J

(2δ card J

u

)u/2
.

To finish the proof, it is enough to integrate in u the previous inequality and to
use (13.16) and simple estimates. �

For a class J of sets, let us define Sδ(J ) as the infimum of the numbers S for
which (13.16) holds. Thus, the inequality δ(J ) ≤ LS implies

δ(J ) ≤ LSδ(J ) . (13.17)

Exercise 13.4.2 Prove that the inequality (13.17) cannot be reversed. That is, given
A > 0, construct a class J of sets for which Aδ(J ) ≤ Sδ(J ). Hint: Consider many
disjoint sets of the same cardinality.

Given a class J of sets and two integers n and m, let us define the class J (n,m)

as follows:

∀ J ∈ J (n,m) , ∃J1, . . . , Jn ∈ J ; card
(
J \

⋃

�≤n
J�

)
≤ m . (13.18)

Then for each realization of the r.v.s (δi), one has

∑

i∈J
δi ≤ m+

∑

�≤n

∑

i∈J�
δi
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and consequently

δ(J (n,m)) ≤ nδ(J )+m . (13.19)

Combining (13.19) and (13.17), one obtains

δ(J (n,m)) ≤ LnSδ(J )+m . (13.20)

In particular, taking n = 1, for two classes I and J of sets, one has

I ⊂ J (1,m)⇒ δ(I) ≤ LSδ(J )+m ,

and thus

δ(I) ≤ L inf{Sδ(J )+m ; I ⊂ J (1,m)} , (13.21)

where the infimum is over all classes of sets J and all m for which I ⊂ J (1,m).
The following (very) challenging exercise disproves a most unfortunate conjecture
stated in [130] and [131], which overlooked the possibility of taking n ≥ 2
in (13.20):

Exercise 13.4.3 Using the case n = 2, m = 0 of (13.20), prove that the
inequality (13.21) cannot be reversed. That is, given A > 0 (however large),
construct a class of sets I such that Aδ(I) ≤ Sδ(J ) + m for each class of sets
J and each m for which I ⊂ J (1,m).

In words, we can prove that (13.21) cannot be reversed because we have found a
genuinely different way to bound δ(I), namely, (13.20) for n = 2.

In the same line as Exercise 13.4.3, it would seem worth investigating whether
given a number A we can construct a class of sets I such that Aδ(I) ≤ nSδ(J )+m

whenever I ⊂ J (n,m). This seems plausible, because we have a (seemingly) more
general way to bound δ(I) than (13.19), namely, the “solid convex hull” method of
Sect. 13.1.

In the remainder of this section, we prove the following:

Theorem 13.4.4 ([130]) For any class J of subsets of M∗, the event (13.10)

{
sup
J∈J

∑

i∈J
δi ≥ Lδ(J )

}

is δ-small.

That is, Problem 13.2.3 has a positive solution when T consists of indicators of
sets. This result is a simple consequence of the following:
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Proposition 13.4.5 Consider a class J of subsets of M∗ and an integer n. If the
event

{
sup
J∈J

∑

i∈J
δi ≥ n

}
(13.22)

is not δ-small, then

δ(J ) ≥ n/L0 . (13.23)

Proof of Theorem 13.4.4 Considering a class J of subsets of M∗, we will prove
that the event

{
sup
J∈J

∑

i∈J
δi ≥ 3L0δ(J )

}
(13.24)

is δ-small. Assume for contradiction that this is not the case. Then for n ≤ 3L0δ(J ),
the larger event (13.22) is not δ-small, and (13.23) shows that n ≤ L0δ(J ). Thus,
whenever n ≤ 3L0δ(J ), we also have n ≤ L0δ(J ). This means that there is no
integer in the interval ]L0δ(J ), 3L0δ(J )], so that this interval is of length≤ 1, i.e.,
2L0δ(J ) ≤ 1. Thus, (13.23) fails for n = 1, so that by Proposition 13.4.5 again the
event {supJ∈J

∑
i∈J δi ≥ 1} = {supJ∈J

∑
i∈J δi > 0} is δ-small, and the smaller

event (13.24) is δ-small. This contradiction finishes the proof. �
We start the proof of Proposition 13.4.5. We fix n once and for all, and we define

J ′ = {J ′ ∈M ; cardJ ′ = n , ∃J ∈ J , J ′ ⊂ J } . (13.25)

We observe that
{

sup
J∈J

∑

i∈J
δi ≥ n

}
=
{

sup
J∈J ′

∑

i∈J
δi ≥ n

}
. (13.26)

For an integer 1 ≤ k ≤ n, we set

d(k) = 2
(4enδ

k

)k
. (13.27)

Lemma 13.4.6 Assume that the event (13.26) is not δ-small. Then there exists a
probability measure ν on J ′ with the following property: For each set A ⊂ M∗
with 1 ≤ cardA ≤ n, we have

ν({J ∈ J ′ ; A ⊂ J }) ≤ d(cardA) . (13.28)
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Proof For such a set A, consider the function fA on J ′ given by

fA(J ) = 1

d(cardA)
1{A⊂J } .

The main argument is to prove that any convex combination of functions of the type
fA takes at least one value < 1 (we will then appeal to the Hahn-Banach theorem).
Suppose, for contradiction, that this is not the case, so that there exist coefficients
αA ≥ 0 of sum 1 for which

∀ J ∈ J ′ ,
∑

A

αAfA(J ) =
∑

A⊂J

αA

d(cardA)
≥ 1 . (13.29)

For 1 ≤ k ≤ n, let Gk be the collection of all the sets A for which cardA = k and
αA ≥ 2k+1δk . Since

∑
A αA = 1, we have cardGk ≤ δ−k2−k−1, and thus

∑

k≥1

δk cardGk ≤ 1

2
. (13.30)

We claim that

∀ J ∈ J ′ ; ∃k ≤ n , ∃A ∈ Gk ; A ⊂ J . (13.31)

Indeed, otherwise, we can find J ∈ J ′ for which

A ⊂ J , cardA = k , k ≤ n⇒ αA < 2k+1δk

and thus, using the definition of d(k) and (13.13),

∑

A⊂J

αA

d(cardA)
<
∑

1≤k≤n

(
n

k

)
2k+1δk

d(k)
≤ 1 .

This contradicts (13.29) and proves (13.31).
To conclude the argument, we consider G = ⋃

1≤k≤n Gk . Consider (δi)i≤M
such that

∑
i∈J δi ≥ n for some J ∈ J ′. Then (13.31) proves that J contains

a set A ∈ G, so that (δi)i≤M ∈ HA, and we have shown that the event
{supJ∈J ′

∑
i∈J δi ≥ n} in the right of (13.26) is contained in ∪A∈GHA. Now

∑
A∈G δcardA ≤ 1/2 from (13.30). Thus, this event is δ-small. Using (13.26), we

obtain that the event (13.22) is δ-small, a contradiction which proves that (13.29) is
impossible.

We have proved that the convex hull C of the functions of the type fA is disjoint
from the set U of functions which are everywhere> 1. The set U is open and convex.
The Hahn-Banach theorem asserts that we can separate the convex sets C and U by
a linear functional. That is, there exist such a functional ϕ on R

J ′
and a number a
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such that ϕ(f ) ≤ a ≤ ϕ(g) for f ∈ C and g ∈ U . For g ∈ U and h ≥ 0, we have
g + λh ∈ U for each λ > 0. Thus, ϕ(g + λh) ≥ a, and hence, ϕ(h) ≥ 0. Thus, ϕ
is positive. We can then assume that ϕ is given by a probability measure ν on J ′,
ϕ(f ) = ∫ f (J )dν(J ). Since a ≤ ϕ(g) whenever g is a constant > 1, we get a ≤ 1.
Thus,

∫
f (J )dν(J ) ≤ 1 for each f ∈ C and in particular for f of the type fA. We

have proved (13.28). �
Lemma 13.4.7 Assume that the event (13.26) is not δ-small. Then this event has a
probability ≥ exp(−Ln).
Proof Consider the probability ν on the set J ′ of (13.25) as in (13.28) and the r.v.
(depending on the random input (δi)i≤M )

Y = ν({J ∈ J ′ ; ∀ i ∈ J , δi = 1}) = ν({J ; (δi) ∈ HJ })
=
∫

1{(δi )∈HJ }dν(J ) .

Obviously, the event (13.26) contains the event Y > 0. The plan is to use the Paley-
Zygmund inequality in the weak form

P(Y > 0) ≥ (EY )2

EY 2
, (13.32)

which is a simple consequence of the Cauchy-Schwarz inequality. First,

EY = E
∫

1{(δi )∈HJ }dν(J ) =
∫

P(HJ )dν(J ) = δn , (13.33)

since ν is supported by J ′ and card J = n for J ∈ J ′. Next,

Y 2 = ν⊗2({(J, J ′) ; (δi) ∈ HJ , (δi) ∈ HJ ′})
= ν⊗2({(J, J ′) ; (δi) ∈ HJ ∩HJ ′ }) ,

so that, proceeding as in (13.33), and since P((δi) ∈ HJ ∩HJ ′) = δcard(J∪J ′),

EY 2 =
∫

δcard(J∪J ′)dν(J )dν(J ′) . (13.34)

Now, the choice A = J ∩ J ′ shows that

δcard(J∪J ′) ≤
∑

A⊂J
δ2n−cardA1{A⊂J ′}
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and therefore, using (13.28) in the second line and again (13.13) in the last line,

∫

δcard(J∪J ′)dν(J ′) ≤
∑

A⊂J
δ2n−cardAν({J ′ ; A ⊂ J ′})

≤
∑

0≤k≤n

(
n

k

)

δ2n−kd(k)

≤ 2δ2n
∑

0≤k≤n

(2en

k

)2k
. (13.35)

An elementary computation shows that the last term dominates in the sum, so that
the right-hand side of (13.35) is less than ≤ δ2n expLn, and recalling (13.34), this
proves that EY 2 ≤ exp(Ln)(EY )2 and completes the proof using (13.32). �
Proof of Proposition 13.4.5 Consider the r.v. X = supJ∈J

∑
i∈J δi . We assume

that the event {X ≥ n} is not δ-small. Lemma 13.4.7 implies that

P(X ≥ n) ≥ exp(−L1n) . (13.36)

From this fact alone, we shall bound from below δ(J ) = EX. Using Markov’s
inequality, we know that P(D) ≥ 1/2, where D = {X ≤ 2δ(J )}. Recalling the
set D(q) of Definition 13.3.1, given two integers q and k ≥ 0, we define similarly
D(q,k) as the set of subsets J of M∗ which have the property that whenever one
considers J 1, . . . , J q ∈ D, then

card
(
J \ ∪�≤qJ �

) ≥ k + 1 .

Thus, D(q,0) = D(q), and as in (13.15), one proves that

{X ≥ 2qδ(J )+ k} ⊂ D(q,k) . (13.37)

The heart of the matter is Theorem 3.1.1 of [121] which asserts that

P(D(q,k)) ≤ 2q

qk
.

Comparing with (13.36) and (13.37) then yields

2qδ(J )+ k ≤ n⇒ exp(−L1n) ≤ 2q

qk
.

Let us fix q with q ≥ exp(2L1), so that q is now a universal constant. If 2qδ(J ) ≥
n, we have proved that δ(J ) ≥ n/L so we may assume that 2qδ(J ) < n. Let
us consider k ≥ 0 with 2qδ(J ) + k ≤ n. Then exp(−L1n) ≤ 2q/qk so that
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exp(−L1n) ≤ 2q exp(−2L1k), and thus 2k − n ≤ L, so that k ≤ n/2 + L. So,
we have proved that k ≤ n/2 + L whenever k ≤ n − 2qδ(J ). Consequently n −
2qδ(J ) ≤ n/2 + L + 1, and thus δ(J ) ≥ (n − L0)/L0. We have proved that
δ(J ) ≥ n/L when n ≥ 2L0. This finishes the proof in that case.

Finally, we finish the proof when n ≤ 2L0. Since our assumption is that the event
X ≥ n is not δ-small, the larger event {X ≥ 1} is not δ-small. Consider the union
I of all the elements of J , and let m = card I . Then {X ≥ 1} ⊂ ∪i∈IH{i} so that
since this event is not small, we have δ card I ≥ 1/2. So if Ξ = {∃i ∈ I, δi = 1},
then P(Ξ) = 1− (1− δ)m ≥ 1/L. Now X ≥ 1Ξ so that taking expectation, we get
δ(J ) ≥ P(Ξ) ≥ 1/L. �



Part III
Practicing



Chapter 14
Empirical Processes, II

The reader should review Sect. 6.8 where we started the study of empirical
processes. Empirical processes are a vast topic, but here our goal is pretty limited.
In Sect. 14.1, we prove a “bracketing theorem” to illustrate again the power of the
methods of Sect. 9.4. In Sects. 14.2 and 14.3, we prove two specific results, which
illustrate in particular that Proposition 6.8.2 performs no miracle: it is the part
“without cancellation” which requires work and for which one must use a specific
method in each case.

We denote by (Xi) an i.i.d. sequence of r.v.s valued in a measure space (Ω,μ),
μ being the common law of the (Xi).

14.1 Bracketing

Theorem 14.1.1 Consider a countable class F of functions in L2(μ) with 0 ∈ F .
Consider an admissible sequence (An) of partitions of F . For A ∈ An, define the
function hA by

hA(ω) = sup
f,f ′∈A

|f (ω)− f ′(ω)| . (14.1)

Consider an integer N ≥ 1. Assume that for a certain j0 = j0(F) ∈ Z, we have

‖hF‖2 ≤ 2−j0

√
N

. (14.2)
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Assume that for each n ≥ 1 and each A ∈ An, we are given a number jn(A) ∈ Z

with
∫

(22jn(A)h2
A) ∧ 1dμ ≤ 2n

N
(14.3)

and let

S = sup
f∈F

∑

n≥0

2n−jn(An(f )) , (14.4)

where An(f ) denotes the unique element of An which contains f . Then

SN (F) := E sup
f∈F

∣
∣
∑

i≤N
(f (Xi)− μ(f ))

∣
∣ ≤ LS . (14.5)

It is instructive to rewrite (14.2) as
∫

22j0(F)h2
Fdμ ≤ 1/N in order to compare

it with (14.3). The normalization used in this theorem is not intuitive, but should be
clearer after you study the proof of the next corollary.

Corollary 14.1.2 With the notation of Theorem 14.1.1, define now

S∗ = sup
f∈F

∑

n≥0

2n/2‖hAn(f )‖2 . (14.6)

Then

SN(F) ≤ L
√
NS∗ . (14.7)

Since Δ(A) ≤ ‖hA‖2, we have γ2(F , d2) ≤ S∗; but it is not true in general that
SN(F) ≤ L

√
Nγ2(F , d2).

Proof This is routine. Define jn(A) as the largest integer j for which ‖hA‖2 ≤
2n/2−j/

√
N , so that 2n/2−jn(A) ≤ 2

√
N‖hA‖2, and consequently,

∑

n≥0

2n−jn(An(f )) ≤ 2
√
N
∑

n≥0

2n/2‖hAn(f )‖2 .

Since ‖hA‖2 ≤ 2n/2−jn(A)/
√
N , (14.3) holds, and the result follows from Theo-

rem 14.1.1. �
Exercise 14.1.3 Given two (measurable) functions f1 ≤ f2, define the bracket
[f1, f2] as the set of functions {f ; f1 ≤ f ≤ f2}. Given a class F of functions
and ε > 0, define N[ ](F , ε) as the smallest number of brackets [f1, f2] with
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‖f2 − f1‖2 ≤ ε which can cover F . Use Corollary 14.1.2 to prove that

SN(F) ≤ L
√
N

∫ ∞

0

√
logN[ ](F , ε)dε . (14.8)

Inequality (14.8) is known as Ossiander’s bracketing theorem [77], and (14.7) is
simply the “generic chaining version” of it. The proof of Ossiander’s bracketing
theorem requires a tricky idea beyond the ideas of Dudley’s bound. In our
approach, Ossiander’s bracketing theorem is a straightforward consequence of
Theorem 14.1.1, itself a straightforward consequence of Theorem 9.4.1. None of
the simple arguments there involves chaining. All the work involving chaining
has already been performed in Theorem 9.4.1. As suggested in Sect. 6.9, in some
sense, Theorem 9.4.1 succeeds in extending Ossiander’s bracketing theorem to a
considerably more general setting.

Proof of Theorem 14.1.1 Let us fix A ∈ An, and consider the r.v.s Wi =
(22jn(A)hA(Xi)

2) ∧ 1, so that by (14.3), we have
∑

i≤N EWi ≤ 2n. Consider a
parameter u ≥ 1. Then Lemma 7.7.2 (b) yields

P
(∑

i≤N
Wi ≥ u2n+2

)
≤ exp(−u2n+1) . (14.9)

Consider the event Ω(u) defined by

∀ n ≥ 0 , ∀A ∈ An ,
∑

i≤N
22jn(A)hA(Xi)

2 ∧ 1 ≤ u2n+2 , (14.10)

so that (14.9) and the union bound yield P(Ω(u)) ≥ 1−L exp(−u). Let us consider
independent Bernoulli r.v.s εi , which are independent of the Xi , and let us recall that
Eε denotes expectation in the r.v.s εi only. Given the r.v.s Xi , we consider the set
T of all sequences of the type (xi)1≤i≤N = (f (Xi))1≤i≤N for f ∈ F . To bound
E supx∈T |

∑
i≤N εixi |, we appeal to Theorem 9.4.1. Also, since |f (Xi)−f ′(Xi)| ≤

hA(Xi) for f, f ′ ∈ A, (9.42) (with 4u rather than u) follows from (14.10). Finally,
for f ∈ F , we have |f (Xi)| ≤ hF (Xi), so that

|f (Xi)|1{2|f (Xi)|≥2−j0(F)} ≤ hF (Xi)1{2hF (Xi)≥2−j0(F)} .

We then use (9.44) with p = 1 to obtain

Eε sup
f∈F

∣
∣
∑

i≤N
εif (Xi)

∣
∣ ≤ Lu sup

f∈F

∑

n≥0

2n−jn(An(f ))

+ L
∑

i≤N
hF (Xi)1{2hF (Xi)≥2−j0(F)} . (14.11)



436 14 Empirical Processes, II

The expectation of the last term is LN
∫
hF1{2hF≥2−j0(F)}dμ. Now, since h1{h≥v} ≤

h2/v, and using (14.2) in the last inequality,

N

∫

hF1{2hF≥2−j0(F)}dμ ≤ N2j0(F)+1
∫

h2
Fdμ ≤ 2−j0(F)+1 .

Consequently, taking expectation in (14.11) and using that P(Ω(u)) ≥ 1 −
L exp(−u), we obtain

E sup
f∈F

∣
∣
∑

i≤N
εif (Xi)

∣
∣ ≤ L sup

f∈F

∑

n≥0

2n−jn(An(f )) = LS ,

and we conclude the proof using Lemma 11.8.4. �

14.2 The Class of Squares of a Given Class

It is beyond the scope of this book to cover the theory of empirical processes (even
restricted to its applications to Analysis and Banach Space theory). In the rest of
this chapter, we give two sample results, which are facets of the following problem.
Consider independent r.v.s Xi valued in R

m. Denoting by 〈·, ·〉 the canonical duality
of Rm with itself, and T a subset of Rm, we are interested in bounding the quantity

sup
t∈T
∣
∣
∑

i≤N
(〈Xi, t〉2 − E〈Xi, t〉2)

∣
∣ . (14.12)

As a warm-up, we recommend that the reader studies the following exercise. The
results there are often needed.

Exercise 14.2.1 Given a probability μ, for a measurable function f , we define the
following two norms (Orlicz norms)

‖f ‖ψ1 = inf
{
A > 0 ;

∫

exp
( |f |
A

)
dμ ≤ 2

}
(14.13)

and

‖f ‖ψ2 = inf
{
A > 0 ;

∫

exp
(f 2

A2

)
dμ ≤ 2

}
. (14.14)

(a) Prove that if k ≥ 1

∫

exp |f |dμ ≤ 2k ⇒ ‖f ‖ψ1 ≤ k . (14.15)

Hint: Use Hölder’s inequality.
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(b) Prove that

∀ u > 0 , P(|f | ≥ u) ≤ 2 exp(−u)⇒ ‖f ‖ψ1 ≤ L

and

∀ u > 0 , P(|f | ≥ u) ≤ 2 exp(−u2)⇒ ‖f ‖ψ2 ≤ L .

(c) Prove that

‖f ‖ψ1 ≤ L‖f ‖ψ2 (14.16)

and

‖f1f2‖ψ1 ≤ ‖f1‖ψ2‖f2‖ψ2 . (14.17)

(d) On a rainy day, obtain a completely uninteresting and useless result by
computing the exact value of ‖g‖ψ2 where g is a standard Gaussian r.v.

(e) If (εi) denote independent Bernoulli r.v.s and (ai) denote real numbers, prove
that

∥
∥
∑

i

aiεi
∥
∥
ψ2
≤ L

(∑

i

a2
i

)1/2
. (14.18)

Hint: Use the sub-Gaussian inequality (6.1.1).
(f) Prove that if the r.v.s Yi are independent and centered, then for v > 0, it holds

that

P
(∑

i≥1

Yi ≥ v

)

≤ exp
(
− 1

L
min

( v2

∑
i≤N ‖Yi‖2

ψ1

,
v

maxi≤N ‖Yi‖ψ1

))
.

(14.19)

Hint: Prove that for |λ|‖Y‖ψ1 ≤ 1/2, we have E expλY ≤ exp(λ2‖Y‖2
ψ1
/L),

and copy the proof of Bernstein’s inequality.
(g) Prove that if the r.v.s Yi are independent and centered, then for v > 0, it holds

P
(∑

i≥1

Yi ≥ v

)

≤ exp
(
− v2

L
∑

i≤N ‖Yi‖2
ψ2

)
. (14.20)

The tail inequalities (14.19) and (14.20) motivate the use of the distances dψ1 and
dψ2 associated with the norms ‖ · ‖ψ1 and ‖ · ‖ψ2 .

As in the previous section, we consider a probability space (Ω,μ), and we denote
by (Xi)i≤N r.v.s valued in Ω of law μ. We recall the norm ‖ · ‖ψ1 of (14.13) and the
associated distance dψ1 . Before we come to our main result, we prove a simpler but
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connected fact. We consider independent Bernoulli r.v.s εi independent of the r.v.s
Xi .

Theorem 14.2.2 Consider a (countable) class of functions F with 0 ∈ F . Then for
any integer N ,

E sup
f∈F

∣
∣
∑

i≤N
εif (Xi)

∣
∣ ≤ L

√
Nγ2(F , dψ1)+ Lγ1(F , dψ1) . (14.21)

To understand this statement, we observe that γ2(F , dψ1) ≤ γ1(F , dψ1), but that
the factor

√
N is in front of the smaller term γ2(F , dψ1).

Exercise 14.2.3 After studying the proof of Theorem 14.2.2, produce a decompo-
sition of F as in Theorem 6.8.3, where SN(F) is replaced by L

√
Nγ2(F , dψ1) +

Lγ1(F , dψ1).

We start the proof of Theorem 14.2.2 with a simple fact.

Lemma 14.2.4 If u ≥ 1, then

P
(∑

i≤N
|f (Xi)| ≥ 2uN‖f ‖ψ1

)
≤ exp(−uN) . (14.22)

Proof Replacing f by f/‖f ‖ψ1 , we may assume ‖f ‖ψ1 = 1. Then

E exp
∑

i≤N
|f (Xi)| ≤ 2N ≤ eN .

Using the inequality P(X ≥ v) ≤ exp(−v)E expX yields P(
∑

i≤N |f (Xi)| ≥
N(u+ 1)) ≤ exp(−uN). �

We consider an admissible sequence (An) of partitions of F such that

∀ f ∈ F ,
∑

n≥0

2n/2Δ(An(f ), dψ1) ≤ Lγ2(F , dψ1) (14.23)

∀ f ∈ F ,
∑

n≥0

2nΔ(An(f ), dψ1) ≤ Lγ1(F , dψ1) . (14.24)

For each A ∈ An, we choose a point fn,A ∈ A. We will lighten notation by writing
fA rather than fn,A. For A ∈ An with n ≥ 1, we denote by A′ the unique element of
An−1 that contains A. This defines as usual a chaining in F , by choosing πn(f ) =
fA where A = An(f ).

We denote by n1 the largest integer with 2n1 ≤ N , so that N ≤ 2n1+1.
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Lemma 14.2.5 Consider a parameter u ≥ 1 and the event Ω(u) defined by the
following conditions:

∀ n , 1 ≤ n ≤ n1 , ∀A ∈ An ,

∣
∣
∑

i≤N
εi(fA(Xi)− fA′(Xi))

∣
∣ ≤ Lu2n/2

√
NΔ(A′, dψ1) . (14.25)

∀ n > n1 , ∀A ∈ An ,
∑

i≤N
|fA(Xi)− fA′ (Xi)| ≤ Lu2nΔ(A′, dψ1) . (14.26)

Then

P(Ω(u)) ≥ 1− L exp(−u) . (14.27)

Proof The r.v. Yi = εi(fA(Xi)−fA′(Xi)) is centered, and since fA and fA′ belong
to A′, we have ‖Yi‖ψ1 ≤ Δ(A′, dψ1). We use (14.19) to obtain that for any v > 0,

P
(
∣
∣
∑

i≤N
Yi
∣
∣ ≥ vΔ(A′, dψ1)

)

≤ 2 exp

(

− 1

L
min

(v2

N
, v
))

. (14.28)

Since n ≤ n1, we have
√
N ≥ 2n/2. For u ≥ 1, setting v = Lu2n/2

√
N , then

v2/N ≥ Lu2n and v ≥ Lu2n. Thus, (14.28) implies that the inequality in (14.25)
occurs with probability≥ 1− L exp(−2u2n).

Next, since ‖fA − fA′ ‖ψ1 ≤ Δ(A′, dψ1) and u2n/N ≥ 1 for n > n1, using
Lemma 14.2.4 for 2u2n/N rather than u implies as desired that the right-hand side
of (14.26) occurs with probability ≥ 1− L exp(−2u2n).

Since cardAn ≤ Nn = 22n and since
∑

n≥0 22n exp(−2u2n) ≤ L exp(−u),
(14.27) follows from the union bound. �
Proof of Theorem 14.2.2 We prove that on the event Ω(u) of Lemma 14.2.5, we
have

sup
f∈F

∣
∣
∑

i≤N
εif (Xi)

∣
∣ ≤ Lu(

√
Nγ2(F , dψ1)+ γ1(F , dψ1)) , (14.29)

which by taking expectation and using (14.27) implies the result. To prove (14.29),
since 0 ∈ F , we may assume that π0(f ) = 0. We deduce from (14.25) that for each
n with 1 ≤ n ≤ n1, one has

∣
∣
∑

i≤N
εi(πn(f )(Xi)−πn−1(f )(Xi))

∣
∣ ≤ Lu2n/2

√
NΔ(An−1(f ), dψ1) . (14.30)
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For n > n1, we use that from (14.26), we have

∣
∣
∑

i≤N
εi(πn(f )(Xi)− πn−1(f )(Xi))

∣
∣ ≤

∑

i≤N

∣
∣πn(f )(Xi)− πn−1(f )(Xi)

∣
∣

≤ u2nΔ(An−1(f ), dψ1) . (14.31)

Summation of these inequalities together with (14.23) and (14.24) concludes the
proof. �

We now come to the main result of this section. We recall the norm ‖ · ‖ψ2

of (14.14). We denote by dψ2 the associated distance.

Theorem 14.2.6 ([41, 73]) Consider a (countable) class of functionsF with 0 ∈ F .
Assume that

∀ f ∈ F , ‖f ‖ψ2 ≤ Δ∗ . (14.32)

Then for any integer N ,

E sup
f∈F

∣
∣
∑

i≤N
(f (Xi)

2 − Ef 2)
∣
∣ ≤ L

√
NΔ∗γ2(F , dψ2)+Lγ2(F , dψ2)

2 . (14.33)

The point of the theorem is that we use information on the class F to bound the
empirical process on the class F2 = {f 2; f ∈ F}. This theorem does not follow
from Theorem 14.2.2 applied to the class F2 = {f 2; f ∈ F}. As we will show, it is
true that γ2(F2, dψ1) ≤ Δ∗γ2(F , dψ2), so that the first term in the right-hand side
of (14.33) is really the same as in the right-hand side of (14.21) but the functional
γ1 no longer occurs in (14.33).

As an example of relevant situation, let us consider the case where Ω = R
m and

where μ is the canonical Gaussian measure on R
m, i.e., the law of an independent

sequence (gi)i≤m of standard Gaussian r.v.s. Recalling that 〈·, ·〉 denotes the
canonical duality between R

m and itself, for any t ∈ R
m, we have

∫

〈t, x〉2dμ(x) = ‖t‖2
2, (14.34)

where ‖t‖2 denotes the Euclidean norm of t . In words, μ is “isotropic”. Thus, if
Xi has law μ, then E〈t, Xi〉2 = ‖t‖2

2. Consider a subset T of Rm, which is seen
as a set F of functions on Ω through the canonical duality 〈·, ·〉. The left-hand side
of (14.33) is then simply

E sup
t∈T
∣
∣
∑

i≤N
(〈t, Xi〉2 − ‖t‖2

2)
∣
∣ . (14.35)
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A bound for this quantity is relevant in particular to the problem of signal
reconstruction, i.e., of (approximately) finding the transmitted signal t ∈ T when
observing only the data (〈t, Xi〉)i≤N ; see [73] for details.1 In these applications,
one does not like to have 0 ∈ F , but one assumes instead that F is symmetric (i.e.,
−f ∈ F if f ∈ F ). It is simple to show that (14.33) still holds in this case. (Let
us also observe that (14.33) does not hold when F is reduced to a single non-zero
function.)

Now, what is a possible strategy to prove Theorem 14.2.6? First, rather than the
left-hand side of (14.33), we shall bound E supf∈F |

∑
i≤N εif (Xi)

2|, where (εi)

are independent Bernoulli r.v.s, independent of the r.v.s (Xi) and use Lemma 11.8.4.
We have to bound the empirical process on the class F2 = {f 2; f ∈ F}. There is
a natural chaining (πn(f )) on F , witnessing the value of γ2(F , dψ2). There simply
seems to be no other way than to use the chaining (πn(f )

2) on F2 and to control
the “increments along the chain”:

∑

i≤N
εi(πn(f )(Xi)

2 − πn−1(f )(Xi)
2) .

It seems unavoidable that we will have to control some of the quantities
|πn(f )(Xi)

2 − πn−1(f )(Xi)
2|. Our hypotheses on F do not yield naturally a

control of these quantities, but rather of the quantities |πn(f )(Xi)− πn−1(f )(Xi)|.
Since

πn(f )(Xi)
2 − πn−1(f )(Xi)

2

= (πn(f )(Xi)− πn−1(f )(Xi))(πn(f )(Xi)+ πn−1(f )(Xi)) ,

it seems impossible to achieve anything unless we have some additional control of
the sequence (πn(f )(Xi) + πn−1(f )(Xi))i≤N , which most likely means that we
must gain some control of the sequence (f (Xi))i≤N for all f ∈ F . Indeed, a key
step of the proof will be to show that

E sup
f∈F

(∑

i≤N
f (Xi)

2
)1/2 ≤ L(

√
NΔ∗ + γ2(F , dψ2)) . (14.36)

We now prepare the proof of Theorem 14.2.6. We consider an admissible
sequence (An) of partitions of F such that

∀ f ∈ F ,
∑

n≥0

2n/2Δ(An(f ), dψ2) ≤ 2γ2(F , dψ2) . (14.37)

1 A few words about this general direction may be found in Sect. D.6.
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For each A ∈ An, we choose a point fn,A ∈ A. We will lighten notation by writing
fA rather than fn,A. For A ∈ An with n ≥ 1, we denote by A′ the unique element of
An−1 that contains A. This defines as usual a chaining in F , by choosing πn(f ) =
fA where A = An(f ).

We consider Bernoulli r.v.s (εi) independent of the r.v.s (Xi). We denote by n1
the largest integer with 2n1 ≤ N , so that N ≤ 2n1+1.

Lemma 14.2.7 Consider a parameter u ≥ 1 and the event Ω(u) defined by the
following conditions:

∀ n , 1 ≤ n ≤ n1 , ∀A ∈ An ,

∣
∣
∑

i≤N
εi(fA(Xi)

2 − fA′ (Xi)
2)
∣
∣ ≤ Lu2n/2

√
NΔ∗Δ(A′, dψ2) . (14.38)

∀ n > n1 , ∀A ∈ An ,
∑

i≤N
(fA(Xi)−fA′(Xi))

2 ≤ Lu2nΔ(A′, dψ2)
2 . (14.39)

∀A ∈ An1 ,
∑

i≤N
fA(Xi)

2 ≤ LuNΔ∗2 . (14.40)

Then

P(Ω(u)) ≥ 1− L exp(−u) . (14.41)

Proof Let us first study (14.38). By (14.17), we have

‖f 2
A − f 2

A′ ‖ψ1 ≤ ‖fA − fA′ ‖ψ2‖fA + fA′ ‖ψ2 ≤ Δ(A′, dψ2)× 2Δ∗ .

Consequently, the r.v. Yi = εi(fA(Xi)
2 − fA′ (Xi)

2) is centered and ‖Yi‖ψ1 ≤
2Δ∗Δ(A′, dψ2). We prove that the inequality in (14.38) occurs with probability ≥
1− L exp(−2u2n) just as in the case of (14.25).

Let us turn to the study of (14.39). It is obvious from the definition (or
from (14.17)) that ‖f 2‖ψ1 ≤ ‖f ‖2

ψ2
, so the function f = (fA − fA′)2 satisfies

‖f ‖ψ1 ≤ ‖fA − fA′ ‖2
ψ2

≤ Δ(A′, dψ2)
2. Also u2n/N ≥ 1 for n > n1. Using

Lemma 14.2.4 for 2u2n/N rather than u implies as desired that the right-hand side
of (14.39) occurs with probability ≥ 1− L exp(−2u2n).

Using again Lemma 14.2.4, and since ‖f 2
A‖ψ1 ≤ ‖fA‖2

ψ2
≤ Δ∗2 by (14.32),

we obtain that for any A ∈ An1 , inequality (14.40) holds with probability ≥ 1 −
L exp(−2Nu).

Finally, we use the union bound. Since cardAn ≤ Nn = 22n and in particular
cardAn1 ≤ Nn1 ≤ 2N , and since

∑
n≥0 22n exp(−2u2n) ≤ L exp(−u), the result

follows. �
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We consider the random norm W(f ) given by

W(f ) =
(∑

i≤N
f (Xi)

2
)1/2

. (14.42)

Lemma 14.2.8 On the event Ω(u), we have

∀ f ∈ F , W(f ) ≤ L
√
u(
√
NΔ∗ + γ2(F , dψ2)) . (14.43)

Proof Given f ∈ F , we denote by πn(f ) the element fA where A = An(f ). We
also observe that An−1(f ) is the unique element A′ in An−1 which contains A.
Writing f = πn1(f )+

∑
n>n1

(πn(f )− πn−1(f )), using the triangle inequality for
W implies

W(f ) ≤ W(πn1(f ))+
∑

n>n1

W
(
πn(f )− πn−1(f )

)
.

Next, (14.40) implies W(πn1(f )) ≤ L
√
NuΔ∗, and (14.39) implies that for n >

n1, one has

W
(
πn(f )− πn−1(f )

) ≤ L2n/2√uΔ(An−1(f ), dψ2) . (14.44)

We conclude the proof with (14.37). �
Proof of Theorem 14.2.6 Let us recall the event Ω(u) of Lemma 14.2.7. Our goal
is to prove that when this event occurs, then

sup
f∈F

∣
∣
∑

i≤N
εif (Xi)

2
∣
∣ ≤ Luγ2(F , dψ2)(

√
NΔ∗ + γ2(F , dψ2)) , (14.45)

which by taking expectation and using (14.41) implies

E sup
f∈F

∣
∣
∑

i≤N
εif (Xi)

2
∣
∣ ≤ L

(√
NΔ∗γ2(F , dψ2)+ γ2(F , dψ2)

2) .

Using (11.34) and (11.35), this proves (14.33) and finishes the proof.
To prove (14.45), since 0 ∈ F , we may assume that π0(f ) = 0. For each n with

1 ≤ n ≤ n1, (14.38) means that one has

∣
∣
∑

i≤N
εi(πn(f )(Xi)

2 − πn−1(f )(Xi)
2)
∣
∣ ≤ Lu2n/2

√
NΔ∗Δ(An−1(f ), dψ2) .

(14.46)
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For n > n1, we write

∣
∣
∑

i≤N
εi(πn(f )(Xi)

2 − πn−1(f )(Xi)
2)
∣
∣ ≤

∑

i≤N

∣
∣πn(f )(Xi)

2 − πn−1(f )(Xi)
2
∣
∣ .

(14.47)

Recalling the random norm W(f ) of (14.42), and since a2 − b2 = (a − b)(a + b),
using the Cauchy-Schwarz inequality, the right-hand side of (14.47) is at most

W
(
πn(f )− πn−1(f )

)
W
(
πn(f )+ πn−1(f )

)

≤ W
(
πn(f )− πn−1(f )

)(
W(πn(f ))+W(πn−1(f ))

)
, (14.48)

where we have used the triangle inequality for W , and from (14.44) and (14.43),
this is at most

Lu2n/2Δ(An−1(f ), dψ2)(γ2(F , dψ2)+
√
NΔ∗) .

Combining with (14.46) and summation over n using (14.37) proves (14.45) and
concludes the proof of Theorem 14.2.6. �

A statement similar to Theorem 14.2.6, but with considerably weaker hypothesis,
was proved by S. Mendelson and G. Paouris [72]. We present here a key step of the
proof of this result (the full proof is too technical to belong here), corresponding
to (14.36): the control of the quantities

∑
i≤N f (Xi)

2. We follow the recent
observation of W. Bednorz [15] that Fernique’s argument of Theorem 7.13.1 works
well here.

Theorem 14.2.9 ([72]) Consider a (countable) class of functions F with 0 ∈ F .
Consider two distances d1 and d2 on F . Assume that given f, f ′ ∈ F , then2

∀ u > 0 , μ({|f − f ′| ≥ u}) ≤ 2 exp
(
−min

( u2

d2(f, f ′)2 ,
u

d1(f, f ′)

))
.

(14.49)

Let S = γ2(F , d2)+ γ1(F , d1). Then

E sup
f∈F

(∑

i≤N
f (Xi)

2
)1/2 ≤ L

(
S +√NΔ(F , d2)+

√
NΔ(F , d1)

)
. (14.50)

2 In the paper [72], the assumption that one controls the diameter of F for d1 and d2 is relaxed
into the much weaker condition that for a certain number q > 4 and a number C, we have ∀ f ∈
F , ∀ u > 0 , μ({|f | ≥ u}) ≤ (C/u)q .
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The control on the size of F here is considerably weaker than the control of
γ2(F , ψ2) assumed in Theorem 14.2.6 since (14.49) holds for d1 = 0 and d2 the
distance dψ2 associated with the norm ‖ · ‖ψ2 .

Before we start the proof, we must understand the tail behavior of sums∑
i≥1 aiYi where ai are numbers and where the independent r.v.s Yi satisfy the tail

condition (14.49). We proved much more general results in Sect. 8.2, but the reader
wanting a direct proof should try the following exercise:

Exercise 14.2.10 Consider a centered r.v. Y , and assume that for two numbers 0 ≤
B ≤ A, we have

∀ u > 0 , P(|Y | ≥ u) ≤ 2 exp
(
−min

( u2

A2 ,
u

B

))
. (14.51)

Then

0 ≤ λ ≤ 1/(2B)⇒ E expλY ≤ exp(Lλ2A2) . (14.52)

As in the proof of Bernstein’s inequality (4.44), we deduce the following:

Lemma 14.2.11 Consider i.i.d. copies (Yi)i≤k of a centered r.v. Y which satisfies
the condition (14.51). Then for numbers (ai)i≤k and any u > 0, we have

P
(∣
∣
∑

i≤k
aiYi

∣
∣ ≥ u

)
≤ L exp

(
− 1

L
min

( u2

A2
∑

i≤k a2
i

,
u

B maxi≤k |ai |
))

.

(14.53)

A convenient way to use (14.53) is the following, which is now obvious:

Lemma 14.2.12 Consider i.i.d. copies (Yi)i≤k of a centered r.v. Y which satisfies
the condition (14.51). If w > 0 and

v = LA

√

w
∑

i≤k
a2
i + LBw max

i≤k |ai | , (14.54)

then

P
(∣
∣
∑

i≤k
aiYi

∣
∣ ≥ v

)
≤ L exp(−w) . (14.55)

We will use this result for the r.v.s Yi = εi(f (Xi) − f ′(Xi)) for f, f ′ ∈ F .
According to (14.49) in (14.54), we may then take A = d2(f, f

′) and B =
d1(f, f

′).
We denote by BN,2 the unit ball of �2(N). We write Δ1 := Δ(F , d1) and Δ2 :=

Δ(F , d2). Consider an independent sequence of Bernoulli r.v.s. Theorem 14.2.9 is
an immediate consequence of the following:
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Theorem 14.2.13 Given a number u > 0, we have

sup
α∈BN,2

sup
f∈F

∣
∣
∑

i≤N
εiαif (Xi)

∣
∣ ≤ L

(√
uγ2(F , d2)+ uγ1(F , d1)

+ u
√
NΔ1 +√u

√
NΔ2

)
(14.56)

with probability ≥ 1− L exp(−Lu).
Indeed, taking the supremum over α in the left-hand side of (14.56) shows that

this left-hand side3 is supf∈F (
∑

i≤N f (Xi)
2)1/2, and the conclusion follows by the

general method described at the end of Sect. 2.4.
Before we prove Theorem 14.2.13, we need a simple lemma. We think of N as

fixed, and we denote by en,2 and en,∞ the entropy numbers of BN,2 for the �2 and
�∞ distances (see Sect. 2.5).

Lemma 14.2.14 We have

∑

n≥0

2n/2en,2 ≤ L
√
N ;

∑

n≥0

2nen,∞ ≤ L
√
N . (14.57)

Proof of Theorem 14.2.13 We can find an increasing sequence of partitions
(An)n≥0 of F with cardA0 = 1 and cardAn ≤ Nn+1 such that for each f ∈ F ,

∑

n≥0

(2nΔ(An(f ), d1)+ 2n/2Δ(An(f ), d2)) ≤ L(γ1(F , d1)+ γ2(F , d2)) .

(14.58)

We can find an increasing sequence of partitions Bn of BN,2 such that cardB0 = 1
and cardBn ≤ Nn+1 such that

B ∈ Bn ⇒ Δ(B, d2) ≤ en,2 ; Δ(B, d∞) ≤ en,∞ . (14.59)

We will perform chaining on BN,2 × F using the increasing sequence of partitions
Cn consisting of the sets B × A for B ∈ Bn and A ∈ An. The chaining is routine
once we prove the following inequality: If f, f ′ ∈ A ∈ An and α, α′ ∈ B ∈ Bn,
then with probability≥ 1− L exp(−u2n)

∣
∣
∑

i≤N
εiαif (Xi)−

∑

i≤N
εiα

′
if
′(Xi)

∣
∣

≤ L
(
u2nΔ(A, d1)+

√
u2nΔ(A, d2)+ u2nen,∞Δ1 +

√
u2nen,2Δ2

)
.

3 So, this left-hand side actually does not depend on the values of the εi , but nonetheless these are
required to be permitted to use (14.55).
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To prove this, we start with the triangle inequality

∣
∣
∑

i≤N
εiαif (Xi)−

∑

i≤N
εiα

′
if
′(Xi)

∣
∣

≤ ∣∣
∑

i≤N
εi(αi − α′i )f (Xi)

∣
∣+ ∣∣

∑

i≤N
εiα

′
i (f (Xi)− f ′(Xi))

∣
∣ .

We use (14.55) with Yi = εif (Xi), ai = αi − α′i , A = Δ2, and B = Δ1 to obtain
that the event

∣
∣
∑

i≤N
εi(αi − α′i )f (Xi)

∣
∣ ≥ L

(√
u2nen,2Δ2 + u2nen,∞Δ1

)

occurs with probability ≤ L exp(−Lu2n) by (14.55). We use again (14.55), with
now Yi = εi(f (Xi)− f ′(Xi)) and ai = α′i , to obtain that the event

∣
∣
∑

i≤N
εiα

′
i (f (Xi)− f ′(Xi))

∣
∣ ≥ L

(√
u2nΔ(A, d2)+ u2nΔ(A, d1)

)

also has probability≤ L exp(−Lu22n) (using now that
∑

i≤N(α′i )2 ≤ 1). �
Let us recall the formula

(
N

k

)

≤
(eN

k

)k = exp(k log(eN/k)) . (14.60)

Proof of Lemma 14.2.14 We prove only the statement related to en,∞ since the
other statement is much easier. Let us denote by (ei)i≤N the canonical basis of
�2(N). Consider the largest integer k1 such that 22k1 ≤ N . For 1 ≤ k ≤ k1, let us
denote by Dk the set of vectors of the type 2−k

∑
i∈I ηiei where card I = 22k and

ηj ∈ {−1, 0, 1}. It should be clear that a point of BN,2 is within supremum distance
2−k of a point of D1 + . . .+Dk . Consequently,

logN(BN,2, d∞, 2−k) ≤
∑

j≤k
log cardDj . (14.61)

A vector in Dj is determined by the choice of the set I of cardinality 22j (for which
there are at most

(
N

22j

)
possibilities), and once this set is chosen, we have another

322j
possibilities for the choice of the ηi for i ∈ I . Thus, cardDj ≤ 322j ( N

22j

)
so

we have log cardDj ≤ 22j log(3eN/22j ) by (14.60). There is now plenty of room
in the estimates, although the computations are messy. Fixing β = 1/4 and since
log x ≤ xβ for x ≥ 1, we then have log cardDj ≤ L22j (1−β)Nβ , and (14.61)
implies that for k ≤ k1, we have logN(BN,2, d∞, 2−k) ≤ L22k(1−β)Nβ . Thus,
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for n ≤ 2k1, we have en,∞ ≤ 2−k when L22k(1−β)Nβ ≤ 2n which occurs for
2−k � LN1/(2(1−β))2−n/(2(1−β)). Since

∑

n≤2k1

2nN1/(2(1−β))2−n/(2(1−β)) ≤ L
√
N ,

this proves that
∑

n≤2k1
2nen,∞ ≤ L

√
N . We leave to the reader the much easier

proof that
∑

n>2k1
2nen,∞ ≤ L

√
N , using the fact that the quantity en,∞ decreases

very fast as n > 2k1 increases. �

14.3 When Not to Use Chaining

In this section, we work in the space R
n provided with the Euclidean norm ‖ · ‖.

We denote by 〈·, ·〉 the canonical duality of Rn with itself. We consider a sequence
(Xi)i≤N of independent Rn-valued random vectors, and we assume that

‖x‖ ≤ 1 ⇒ E exp |〈x,Xi〉| ≤ 2 (14.62)

and

max
i≤N ‖Xi‖ ≤ (Nn)1/4 . (14.63)

Theorem 14.3.1 ([1, 2]) We have

sup
‖x‖≤1

∣
∣
∑

i≤N
(〈x,Xi〉2 − E〈x,Xi〉2)

∣
∣ ≤ L

√
nN , (14.64)

with probability ≥ 1− L exp(−(Nn)1/4)− L exp(−n).
A particularly striking application of this theorem is to the case where the Xi are

i.i.d. with law μ where μ is isotropic (see (14.34)) and log-concave4 It is known
in that case (see [1] for the details) that for each x ∈ R

n, we have ‖〈x,Xi 〉‖ψ1 ≤
L‖x‖ and the hypothesis (14.62) appears now completely natural. We may then
write (14.64) as

sup
‖x‖≤1

∣
∣ 1

N

∑

i≤N
〈x,Xi〉2 − ‖x‖2

∣
∣ ≤ L

√
n

N
.

4 For example, when μ is the uniform measure on a convex set, it is log-concave, as follows from
the Brunn-Minkowski inequality.
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Many of the ideas of the proof go back to a seminal paper of J. Bourgain [23].5 In
the present case, rather than chaining, it is simpler to use the following elementary
fact:

Lemma 14.3.2 In R
k , there is a set U with cardU ≤ 5k consisting of vectors of

norm ≤ 1, with the property that x ∈ 2 convU = conv 2U whenever ‖x‖ ≤ 1.
Consequently,

∀ x ∈ R
k , ∃a ∈ U ,

∑

i≤k
aixi ≥ 1

2

(∑

i≤k
x2
i

)1/2
. (14.65)

Proof It follows from (2.47) that there exists a subset U of the unit ball of Rk with
cardU ≤ 5k such that every point of this ball is within distance ≤ 1/2 of a point of
U . Given a point x of the unit ball, we can inductively pick points u� in U such that
‖x−∑1≤�≤n 2�−1u�‖ ≤ 2−n, and this proves that x ∈ 2 convU . Given x ∈ R

k and
using that x/‖x‖ ∈ 2 convU , we obtain that ‖x‖2 = 〈x, x〉 = ‖x‖〈x, x/‖x‖〉 ≤
2‖x‖ supa∈U 〈x, a〉 which proves (14.65). �

For k ≤ 2N , we use the notation

ϕ(k) = k log(eN/k) ,

so that (14.60) becomes

(
N

k

)

≤
(eN

k

)k = expϕ(k) . (14.66)

Thus, ϕ(k) ≥ k, the sequence (ϕ(k)) increases, and ϕ(k) ≥ ϕ(1) = 1+ logN.

The difficult part of the proof of Theorem 14.3.1 is the control of the random
quantities

Ak := sup
‖x‖≤1

sup
card I≤k

(∑

i∈I
〈x,Xi〉2

)1/2
. (14.67)

It will be achieved through the following:

Proposition 14.3.3 For u > 0, with probability ≥ 1− L exp(−u), we have

∀ k ≥ 1 , Ak ≤ L
(
u+ ϕ(k)/

√
k +max

i≤N ‖Xi‖
)
. (14.68)

5 It would be nice if one could deduce Theorem 14.3.1 from a general principle such as
Theorem 14.2.9, but unfortunately we do not know how to do this, even when the sequence (Xi)

is i.i.d.
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Corollary 14.3.4 If N ≤ n, then with probability≥ 1−L exp(−(nN)1/4), we have

sup
‖x‖≤1

∑

i≤N
〈x,Xi〉2 ≤ L

√
Nn .

Proof Since ϕ(N) = N , we may use (14.68) for k = N and u = (nN)1/4

and (14.63) to obtain AN ≤ L(Nn)1/4 + L
√
N ≤ L(Nn)1/4. �

We start the proof of Proposition 14.3.3 with the identity

Ak = sup
‖x‖≤1

sup
card I≤k

sup
∑

i∈I a2
i ≤1

∑

i∈I
ai〈x,Xi〉 = sup

card I≤k
sup

∑
i∈I a2

i ≤1

∥
∥
∥
∑

i∈I
aiXi

∥
∥
∥ .

(14.69)

The proof will require several steps to progressively gain control.

Lemma 14.3.5 Consider x ∈ R
n with ‖x‖ ≤ 1 and an integer 1 ≤ k ≤ N . Then

for u > 0, with probability ≥ 1 − L exp(−u − 3ϕ(k)), the following occurs: For
each set I ⊂ {1, . . . , N} with card I = m ≥ k, we have

∑

i∈I
|〈x,Xi〉| ≤ 6ϕ(m)+ u . (14.70)

Proof Given a set I with card I = m, (14.62) implies E exp
∑

i∈I |〈x,Xi〉| ≤ 2m ≤
expm ≤ expϕ(m), and thus by Markov’s inequality,

P
(∑

i∈I
|〈x,Xi〉| ≥ 6ϕ(m)+ u

)
≤ exp(−5ϕ(m)) exp(−u) .

Since there are at most expϕ(m) choices for I by (14.66), the union bound implies

∑

card I≥k
P
(∑

i∈I
|〈x,Xi〉| ≥ 6ϕ(m)+ u

)
≤
∑

m≥k
exp(−4ϕ(m)) exp(−u) .

Now we observe that ϕ(m) ≥ ϕ(k) for m ≥ k and that ϕ(m) ≥ m, so that

∑

m≥k
exp(−4ϕ(m)) ≤ exp(−3ϕ(k))

∑

m≥1

exp(−ϕ(m)) ≤ L exp(−3ϕ(k)) . �

Using Lemma 14.3.2, for each 1 ≤ k ≤ N , and each subset I of {1, . . . , N} of
cardinality k, we construct a subset Sk,I of the unit ball of RI with cardSk,I ≤ 5k ,
such that conv 2Sk,I contains this unit ball. Consequently,

x ∈ R
I ⇒ sup

a∈Sk,I

∑

i∈I
aixi ≥ 1

2

(∑

i∈I
x2
i

)1/2
. (14.71)
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Lemma 14.3.6 With probability ≥ 1− L exp(−u), the following occurs. Consider
disjoint subsets I, J of {1, . . . , N} with card I = m ≥ cardJ = k, and consider
any a ∈ Sk,J . Then

∑

i∈I

∣
∣
〈
Xi,
∑

j∈J
ajXj

〉∣
∣ ≤ (6ϕ(m)+ u)

∥
∥
∑

j∈J
ajXj

∥
∥ . (14.72)

Proof First, we prove that given J and a ∈ Sk,J , the probability that (14.72)
occurs for each choice of I of cardinality m and disjoint of J is at least 1 −
L(k/eN)3k exp(−u). To prove this, we show that this is the case given the r.v.s
Xj for j ∈ J by using Lemma 14.3.5 for x = y/‖y‖, y =∑j∈J ajXj . Next, there
are at most expϕ(k) choices of J of cardinality k, and for each such J , there are at
most 5k choices for a. Moreover, since ϕ(k) ≥ k,

∑

k≤N
exp(−3ϕ(k))5k expϕ(k) =

∑

k≤N
exp(−2ϕ(k))5k ≤

∑

k≥1

e−2k5k ≤ L .

The result then follows from the union bound. �
Corollary 14.3.7 For u > 0, with probability ≥ 1 − L exp(−u), the following
occurs. Consider disjoint subsets I, J of {1, . . . , N} with card I = m ≥ cardJ = k,
and consider any sequence (bi)i∈J with

∑
i∈J b2

i ≤ 1. Then

∑

i∈I

∣
∣
〈
Xi,

∑

j∈J
bjXj

〉∣
∣ ≤ L(ϕ(m)+ u)Ak . (14.73)

Proof With probability ≥ 1 − L exp(−u), (14.72) occurs for every choice of a ∈
Sk,J . We prove that then (14.73) holds. Since

∑
j∈J a2

j ≤ 1 for a ∈ Sk,J , for each
such sequence, we then have ‖∑j∈J ajXj‖ ≤ Ak, and then (14.72) implies

∑

i∈I

∣
∣
〈
Xi,

∑

j∈J
ajXj

〉∣
∣ ≤ (6ϕ(m)+ u)Ak .

Now, each sequence (bj )j∈J with
∑

j∈J b2
j ≤ 1 is in the convex hull of 2Sk,J , and

this proves (14.73). �
We will need the following elementary property of the function ϕ:

Lemma 14.3.8 For 1 ≤ x ≤ y ≤ N , we have

ϕ(x) ≤ L(x/y)3/4ϕ(y) , (14.74)

Proof The function x �→ x1/4 log(eN/x) increases for 1 ≤ x ≤ Ne−3, so
that (14.74) holds with L = 1 for y ≤ Ne−3, and ϕ(y) is about ϕ(N) for
Ne−3 ≤ y ≤ N . �
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We are now ready for the main step of the proof of Proposition 14.3.3.

Proposition 14.3.9 When the event of Corollary 14.3.7 occurs, for any two disjoint
sets I, J of cardinality ≤ k and any sequence (ai)i≤N with

∑
i≤N a2

i ≤ 1, we have

∣
∣
〈∑

i∈I
aiXi,

∑

j∈J
ajXj

〉∣
∣ ≤ L(u+ ϕ(k)/

√
k)Ak . (14.75)

Proof The idea is to suitably group the terms depending on the values of the
coefficients (ai). Let κ = card I , and let us enumerate I = {i1, . . . , iκ } in such
a way that the sequence (|ais |)1≤s≤κ is non-increasing. Let us define a partition
(I ′�)0≤�≤�1 of I as follows. Consider the largest integer �1 with 2�1 ≤ 2 card I = 2κ .
For 0 ≤ � < �1, let I� = {i1, . . . , i2�}, and let I�1 = I. We set I ′0 = I0, and for
1 ≤ � ≤ �1, we set I ′� = I� \ I�−1, so that the sets I ′� for 0 ≤ � ≤ �1 form a partition
of I . For 0 ≤ � ≤ �1, we set y� =∑i∈I ′� aiXi , so that

∑

i∈I
aiXi =

∑

0≤�≤�1

y� .

Let us then define similarly for 0 ≤ � ≤ �2 sets J� ⊂ J with card J� = 2� for
� < �2, sets J ′� and elements z� =∑j∈J ′� ajXj so that

∑
j∈J ajXj =∑0≤�≤�2

z�.
Without loss of generality, we assume card I ≥ card J , so that �1 ≥ �2. We write

〈∑

i∈I
aiXi,

∑

j∈J
ajXj

〉 = 〈
∑

0≤�≤�1

y�,
∑

0≤�′≤�2

z�′
〉 = I+ II , (14.76)

where

I =
∑

0≤�≤�1

〈
y�,

∑

0≤�′≤min(�,�2)

z�′
〉 ; II =

∑

0≤�′≤�2

〈 ∑

0<�<�′,�≤�1

y�, z�′
〉
.

This identity is obvious if we observe that I is the sum of the quantities 〈y�, z�′ 〉 over
the set {0 ≤ � ≤ �1, 0 ≤ �′ ≤ �2, �

′ ≤ �}, whereas II is the sum of these quantities
over the set {0 ≤ � ≤ �1, 0 ≤ �′ ≤ �2, �

′ > �}.
We bound I. Since the sequence (|ai |) is non-increasing, we have s|ais |2 ≤∑
i≤κ |ai |2 ≤ 1 so that |ais | ≤ 1/

√
s and in particular |ai| ≤ 2−�/2+1 for i ∈ I ′�.

Next, for each vector x and each 0 ≤ � ≤ �1, we have

|〈y�, x〉| =
∣
∣
〈∑

i∈I ′�
aiXi, x

〉∣
∣ ≤

∑

i∈I ′�
|ai||〈Xi, x〉| ≤ 2−�/2+1

∑

i∈I ′�
|〈Xi, x〉| .

(14.77)
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Using this inequality for x =∑0≤�′≤� z�′ =
∑

j∈J� ajXj and since I ′� ⊂ I�, we get

∣
∣
〈
y�,

∑

0≤�′≤�
z�′
〉∣
∣ ≤ 2−�/2+1

∑

i∈I ′�

∣
∣
〈
Xi,

∑

j∈J�
ajXj

〉∣
∣

≤ 2−�/2+1
∑

i∈I�

∣
∣
〈
Xi,

∑

j∈J�
ajXj

〉∣
∣ .

Thus, we may use (14.73) for I = I� and J = J�, and

card I� = min(2�, card I) ≥ min(2�, card J ) = cardJ�

to obtain, since AcardJ ≤ Ak,

∑

i∈I�

∣
∣
〈
Xi,

∑

0≤�′≤�
z�′
〉∣
∣ ≤ L(u+ ϕ(card I�))Ak

≤ L(u+ (card I�)
3/4k−3/4ϕ(k))Ak ,

using (14.74) in the second inequality. Thus, we have shown that

I ≤
∑

0≤�≤�1

L2−�/2(u+ (card I�)3/4k−3/4ϕ(k)
)
Ak .

Since card I� ≤ 2�, we have
∑

0≤�≤�1
2−�/2(card I�)3/4 ≤ Lk1/4 so that I ≤ L(u+

ϕ(k)/
√
k)Ak. The same argument proves that this bound also holds for II (using

now that card I�′−1 ≤ 2�
′−1 ≤ card J�′ if �′ ≤ �2). �

Proposition 14.3.10 When the event of Corollary 14.3.7 occurs, we have

∀ k ≥ 1 , A2
k ≤ max

i≤N ‖Xi‖2 + L(u+ ϕ(k)/
√
k)Ak . (14.78)

Proof We fix once and for all an integer k. Consider a subset W of {1, . . . , N} with
cardW = k. Consider (ai)i∈W with

∑
i∈W a2

i ≤ 1. Then

∥
∥
∑

i∈W
aiXi

∥
∥2 =

∑

i∈W
a2
i ‖Xi‖2 +

∑

i,j∈W,i �=j
〈aiXi, ajXj 〉 . (14.79)

We use the obvious bound for the first term:

∑

i∈W
a2
i ‖Xi‖2 ≤ max

i≤N ‖Xi‖2 . (14.80)

For the second term, we use a standard “decoupling device”. Consider independent
Bernoulli r.v.s εi , and observe that for i �= j , we have E(1 − εi)(1 + εj ) = 1, so



454 14 Empirical Processes, II

that by linearity of expectation, and denoting by Eε expectation in the r.v.s εi only,

∑

i,j∈W,i �=j
〈aiXi, ajXj 〉 = Eε

∑

i,j∈W,i �=j
(1+ εi)(1− εj )〈aiXi, ajXj 〉 .

Given (εi), observe that if I = {i ∈ W ; εi = 1} and J = W \ I ,

1

4

∑

i,j∈W,i �=j
(1+ εi)(1− εj )〈aiXi, ajXj 〉 =

∑

i∈I,j∈J
〈aiXi, ajXj 〉

= 〈
∑

i∈I
aiXi,

∑

j∈J
ajXj

〉
. (14.81)

The bound (14.75) completes the proof. �
Proof of Proposition 14.3.3 We use that BAk ≤ (B2 + A2

k)/2 with B = L(u +
ϕ(k)/

√
k) to deduce from (14.78) that A2

k ≤ L(maxi≤N ‖Xi‖2 + (u+ ϕ(k)/
√
k)2).

This implies (14.68). �
Proof of Theorem 14.3.1. According to Corollary 14.3.4, we may assume N ≥ n.
According to Lemma 14.3.2, there exist a subset U of R

n with cardU ≤ 5n,
consisting of elements of norm ≤ 2 and such that its convex hull contains the unit
ball of Rn. Thus (considering that one may take y = x to obtain the first inequality),

sup
‖x‖≤1

∣
∣
∑

i≤N
(〈x,Xi〉2 − E〈x,Xi〉2)

∣
∣

≤ sup
‖x‖,‖y‖≤1

∣
∣
∑

i≤N
(〈x,Xi〉〈y,Xi 〉 − E〈x,Xi〉〈y,Xi〉)

∣
∣

≤ sup
x,y∈U

∣
∣
∑

i≤N
(〈x,Xi〉〈y,Xi〉 − E〈x,Xi〉〈y,Xi 〉)

∣
∣ . (14.82)

The plan is to assume that

∀ k ≥ 1 , Ak ≤ L(
√
k log(eN/k)+ (Nn)1/4) , (14.83)

and to prove that then with probability ≥ 1 − exp(−n), the right-hand side
of (14.82) is ≤ L

√
Nn. This completes the proof of Theorem 14.3.1 because

Proposition 14.3.3 and (14.63) show that (14.83) occurs with probability ≥ 1 −
L exp(−(Nn)1/4).

Consider a truncation level B ≥ 0 which we will determine later (depending only
on N), and define

Zi(x, y) = 〈x,Xi〉〈y,Xi〉1{|〈x,Xi〉〈y,Xi〉|≤B}
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and

Yi(x, y) = 〈x,Xi〉〈y,Xi〉1{|〈x,Xi〉〈y,Xi〉|>B} ,

so that 〈x,Xi〉〈y,Xi〉 = Zi(x, y) + Yi(x, y) and Yi(x, y) �= 0 ⇒ |Yi(x, y)| ≥ B.
This argument is yet another instance of a decomposition in a “spread out part”
and a “peaky part”. The peaky part

∑
i Yi (x, y) will be controlled as usual without

using cancellations, i.e., we will control
∑

i |Yi(x, y)|.6 We bound the right-hand
side of (14.82) by I+ II+ III, where

I = sup
x,y∈U

∣
∣
∑

i≤N
(Zi(x, y)− EZi(x, y))

∣
∣ , (14.84)

II = sup
x,y∈U

∑

i≤N
|Yi(x, y)| , (14.85)

III = sup
x,y∈U

∑

i≤N
|EYi(x, y)| . (14.86)

The fun is to bound II. We prove that when (14.83) occur, then II ≤ L
√
Nn. For

this, let us fix x, y ∈ U and set

I = {i ≤ N ; |Yi(x, y)| > B} = {i ≤ N ; |Yi(x, y)| �= 0
}
.

Defining m = card I we have, using the Cauchy-Schwarz inequality in the second
inequality, and recalling the definition (14.67) of Am,

mB ≤
∑

i∈I
|Yi(x, y)| ≤

(∑

i∈I
〈x,Xi〉2

)1/2(∑

i∈I
〈y,Xi〉2

)1/2 ≤ 4A2
m , (14.87)

and thus from (14.83),

mB ≤ L1(m(log(eN/m))2 +√Nn) . (14.88)

Without loss of generality, we assume from Corollary 14.3.4 that N > n and
then N >

√
Nn. Thus, we may consider the smallest integer k0 ≤ N such that

k0(log(eN/k0))
2 >

√
Nn.

6 And as usual this control is far harder than the control of the cancellations.
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Let us now choose B = 2L1(log(eN/k0))
2. Assuming if possible that m ≥ k0,

then (14.88) implies

2L1m(log(eN/k0))
2 = mB ≤ L1(m(log(eN/m))2 +√Nn)

≤ L1(m(log(eN/k0))
2 +√Nn) ,

so that m(log(eN/k0))
2 ≤ √Nn and thus

k0(log(eN/k0))
2 ≤ m(log(eN/k0))

2 ≤ √Nn .

This is impossible by the definition of k0, so that we have proved that m < k0. By
definition of k0, we then have m(log(eN/m))2 ≤ √

Nn, i.e.,
√
m log(eN/m) ≤

(Nn)1/4. Thus, by (14.83), we have Am ≤ L(Nn)1/4, and finally by (14.87) and
since

∑
i≤N |Yi(x, y)| =

∑
i∈I |Yi(x, y)| that II ≤ L

√
Nn.

Next, let us control III. Recalling (14.63), we have II ≤∑i≤N ‖Xi‖2 ≤ N
√
Nn.

Moreover, we have just shown that when (14.83) occurs, i.e., with probability ≥
1 − L exp(−(Nn)1/4), we have in fact II ≤ L

√
Nn. Thus, III ≤ E II ≤ L

√
Nn +

L exp(−(Nn)1/4)N
√
Nn ≤ L

√
Nn.

It remains to bound I. Since (log x)2 ≤ L
√
x for x ≥ e,

√
Nn < k0(log(eN/k0))

2 ≤ Lk0
√
N/k0 ,

and thus k0 ≥ n/L. Therefore, with huge room to spare,

B = 2L1(log(eN/k0))
2 ≤ L

√
N/n .

Since |Zi(x, y)| ≤ B and EZi(x, y)
2 ≤ L (using the Cauchy-Schwarz inequality

and (14.62)), it follows from Bernstein’s inequality (4.44) that

P
(∣
∣
∑

i≤N
(Zi(x, y)− EZi(x, y))

∣
∣ ≥ t

)
≤ 2 exp

(

−min
( t2

LN
,

t

L
√
N/n

))

.

The right-hand side is ≤ 5−3n for t = L
√
Nn. There are at most 52n choices for

the pair (x, y) ∈ U2, so that by the union bound I ≤ L
√
Nn with probability

1− 5−n ≥ 1− exp(−n). This completes the proof of Theorem 14.3.1. �



Chapter 15
Gaussian Chaos

Gaussian chaos are simply polynomials in Gaussian r.v.s. In this chapter, we
investigate two questions related to chaos. Since we understand the boundedness
of Gaussian processes well, we might hope that this could be the case of “chaos
processes”. Unfortunately, even in the simplest case of order 2 chaos, this is far
from being the case, as we will explain in Sect. 15.1. It is striking that there exist
apparently rather different methods to bound a chaos process, and it remains unclear
how (if at all possible) we may describe the supremum of a chaos process in terms
of geometric characteristics of the index set. Section 15.2 investigates a different
topic, the size of the tails of a single chaos, a deep result of R. Latała.

15.1 Order 2 Gaussian Chaos

15.1.1 Basic Facts

Consider independent standard Gaussian sequences (gi), (g
′
j ), i, j ≥ 1. Given a

double sequence t = (ti,j )i,j≥1, we consider the r.v.

Xt =
∑

i,j≥1

ti,j gig
′
j . (15.1)

The series converges in L2 as soon as
∑

i,j≥1 t
2
i,j <∞, but for the present purpose

of proving inequalities, we may as well assume that only finitely many coefficients
ti,j are not 0. This random variable is called a (decoupled) order 2 Gaussian chaos.
There is also a theory of non-decoupled chaos,

∑
i>j≥1 ti,j gigj . For the present

purposes of finding upper bounds, this theory reduces to the decoupled case using
well-understood arguments such as the following:

© Springer Nature Switzerland AG 2021
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Lemma 15.1.1 We have

E sup
t∈T
∣
∣
∑

i �=j
ti,j gigj +

∑

i≥1

ti,i (g
2
i − 1)

∣
∣ ≤ 2E sup

t∈T
∣
∣
∑

i,j≥1

ti,j gig
′
j

∣
∣ . (15.2)

Proof It is obvious by Jensen’s inequality (taking the expectation in the r.v.s g′i
inside rather than outside the supremum and the absolute values) that

E sup
t∈T
∣
∣
∑

i �=j
ti,j gigj +

∑

i≥1

ti,i (g
2
i − 1)

∣
∣ ≤ E sup

t∈T
∣
∣
∑

i,j

ti,j (gi + g′i )(gj − g′j )
∣
∣ ,

and the right-hand side is just the right-hand side of (15.2) because the families
(gi + g′i )/

√
2 and (gi − g′i )/

√
2 are independent sequences of standard Gaussian

r.v.s independent of each other. �
Given a finite family T of double sequences t = (ti,j ), we would like to find

upper and lower bounds for the quantity

S(T ) = E sup
t∈T

Xt . (15.3)

We would like in fact to understand the value of S(T ) as a function of “the geometry
of T ” as we did in the case of Gaussian processes. Surprisingly, the difficulty of this
problem is of an entirely different magnitude from the Gaussian case, and we have
only limited results to offer at this point.

Let us start with the basics. We denote by B the unit ball of �2(N∗), B =
{α = (αj )j≥1;∑j≥1 α

2
j ≤ 1}, and we note the following fundamental fact: For

real numbers (xj )j≥1, we have

(∑

j≥1

x2
j

)1/2 = sup
α∈B

∑

j≥1

αj xj . (15.4)

Given an array t = (ti,j ), we define

‖t‖ = sup
α

(∑

i≥1

(∑

j≥1

αj ti,j

)2)1/2

= sup

{ ∑

i,j≥1

αjβiti,j ;
∑

j≥1

α2
j ≤ 1 ,

∑

i≥1

β2
i ≤ 1

}

.
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If we think of t as a matrix, ‖t‖ is the operator norm of t from �2 to �2. We will also
need the Hilbert-Schmidt norm of this matrix, given by

‖t‖HS =
( ∑

i,j≥1

t2
i,j

)1/2
.

Thus, ‖t‖ ≤ ‖t‖HS by the Cauchy-Schwarz inequality.
We find it convenient to assume that the underlying probability space is a product

(Ω ×Ω ′ , P = P0 ⊗ P′), so that

Xt(ω,ω
′) =

∑

i,j

ti,j gi(ω)g
′
j (ω

′) .

Conditionally on ω , Xt is a Gaussian r.v. Denoting by E′ integration in ω′ only (i.e.,
conditional expectation given ω), we have

E′X2
t =

∑

j≥1

(∑

i≥1

ti,j gi(ω)
)2

. (15.5)

Consider the r.v.

σt = σt (ω) = (E′X2
t )

1/2 ,

and note that Eσ 2
t = EX2

t . The importance of this r.v. is made clear by the fact that
the random distance dω associated with the Gaussian process Xt (at given ω) is

dω(s, t) = σs−t (ω) . (15.6)

Thus, dω(s, t)2 = ∑j≥1(
∑

i≥1(si,j − ti,j )gi(ω))
2. A fundamental difference with

the situation of Chap. 11 is that there is no reason why the probability that dω(s, t)
is small should be small. A particularly striking case of this is when there is only
one non-zero term in the sum

∑
j . (The condition (11.8) plays a fundamental role

in Chap. 11.)

Lemma 15.1.2 We have

P(|σt − ‖t‖HS | ≥ v + L‖t‖) ≤ 2 exp
(
− v2

2‖t‖2

)
. (15.7)

Proof Given α ∈ B, we consider the r.v.

gα,t :=
∑

i≥1

gi(ω)
(∑

j≥1

αj ti,j

)
=
∑

j≥1

αj

(∑

i≥1

ti,j gi(ω)
)
, (15.8)
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so that from (15.4)

sup
α∈B

gα,t = σt , (15.9)

and also

(Eg2
α,t )

1/2 =
(∑

i≥1

(∑

j≥1

αj ti,j

)2)1/2 ≤ ‖t‖ .

Following (15.9), (2.118) implies that for v > 0,

P(|σt − Eσt | ≥ v) ≤ 2 exp
(
− v2

2‖t‖2

)
. (15.10)

In particular, we have ‖σt −Eσt‖2 ≤ L‖t‖ where ‖ · ‖2 denotes the norm in L2(Ω).
Using the general inequality |‖X‖−‖Y‖| ≤ ‖X−Y‖ yields |‖σt‖2−|Eσt || ≤ L‖t‖,
and since Eσt ≥ 0, we obtain |‖σt‖2 − Eσt | ≤ L‖t‖. Now

‖σt‖2 = (Eσ 2
t )

1/2 = (EX2
t )

1/2 = ‖t‖HS , (15.11)

so that |Eσt − ‖t‖HS | ≤ L‖t‖ and (15.10) implies (15.7). �
We are now ready to prove a simple classical fact (first obtained in [38]).

Lemma 15.1.3 For v ≥ 0, we have

P(|Xt | ≥ v) ≤ L exp

(

− 1

L
min

( v2

‖t‖2
HS

,
v

‖t‖
))

. (15.12)

Proof Given ω, the r.v. Xt is Gaussian so that

P′(|Xt | ≥ v) ≤ 2 exp
(
− v2

2σ 2
t

)
,

and, given a > 0,

P(|Xt | ≥ v) = EP′(|Xt | ≥ v) ≤ 2E exp
(
− v2

2σ 2
t

)

≤ 2 exp
(
− v2

2a2

)
+ 2P(σt ≥ a) .
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We now estimate from above the last term of the previous inequality. It follows
from (15.7) that P(σt ≥ v + ‖t‖HS + L‖t‖) ≤ L exp(−v2/2‖t‖2). Since ‖t‖ ≤
‖t‖HS , we have in particular that P(σt ≥ v + L0‖t‖HS) ≤ L exp(−v2/2‖t‖2), and
thus, when a ≥ 2L0‖t‖HS ,

P(σt ≥ a) ≤ P
(
σt ≥ a

2
+ L0‖t‖HS

)
≤ L exp

(
− a2

L‖t‖2

)
.

Consequently, when a ≥ 2L0‖t‖HS ,

P(|Xt | ≥ v) ≤ 2 exp
(
− v2

2a2

)
+ L exp

(
− a2

L‖t‖2

)
. (15.13)

To finish the proof, we take a = max
(
L‖t‖HS,

√
v‖t‖). The last term in (15.13)

is always at most L exp(−v/(L‖t‖)), and the first term is always at most
L exp(−v/(L‖t‖)) + L exp(−v2/L‖t‖HS) . �

Consider the two distances on T defined by

d∞(s, t) = ‖t − s‖ , d2(s, t) = ‖t − s‖HS . (15.14)

As a consequence of (15.12), we have

P(|Xs −Xt | ≥ v) ≤ L exp
(
− 1

L
min

( v2

d2
2 (s, t)

,
v

d∞(s, t)

))
(15.15)

and Theorem 4.5.13 implies the following:

Theorem 15.1.4 For a set T of sequences (ti,j ), we have

S(T ) = E sup
t∈T

Xt ≤ L
(
γ1(T , d∞)+ γ2(T , d2)

)
. (15.16)

We analyze now a very interesting example of set T , which will show in
particular that (15.16) cannot be reversed. Given an integer n, we consider

T = {t ; ‖t‖ ≤ 1 , ti,j �= 0 ⇒ i , j ≤ n} . (15.17)

Since

∑

i,j

tij gig
′
j ≤

(∑

i≤n
g2
i

)1/2(∑

j≤n
g′2j
)1/2‖t‖ ,



462 15 Gaussian Chaos

taking supremum over t ∈ T and expectation (and using the Cauchy-
Schwarz inequality) implies that S(T ) ≤ n. Volume arguments show that
logN(T , d∞, 1/4) ≥ n2/L, so that γ1(T , d∞) ≥ n2/L. It is also simple to prove
that (see [53])

logN(T , d2,
√
n/L) ≥ n2/L

and that S(T ) is about n, γ1(T , d∞) is about n2, and γ2(T , d2) is about n3/2. In
this case, (15.16) is not sharp, which means that there is no hope of reversing this
inequality in general. This is so despite the fact that we have used a competent
chaining method and that the bounds (15.15) are essentially optimal (as follows,
e.g., from the left-hand side of (15.69)). It can also be shown that in the case where
the elements t of T satisfy ti,j = 0 for i �= j , the bound (15.16) can be reversed.
This is essentially proved in Theorem 8.3.3.

15.1.2 When T Is Small for the Distance d∞

We continue the study of general chaos processes. When T is “small for the distance
d∞”, it follows from (15.15) that the process (Xt )t∈T resembles a Gaussian process,
so that there should be a close relationship between S(T ) = E supt∈T Xt and
γ2(T , d2). The next result is a step in this direction. It should be compared with
Theorem 6.6.1.

Theorem 15.1.5 We have

γ2(T , d2) ≤ L
(
S(T )+√S(T )γ1(T , d∞)

)
. (15.18)

The example (15.17) provides a situation where this inequality is sharp, since
then both the left-hand and the right-hand sides are of order n3/2. Combining with
Theorem 15.1.4, this implies the following:

Corollary 15.1.6 Defining

R = γ1(T , d∞)

γ2(T , d2)
,

we have

1

L(1+ R)
γ2(T , d2) ≤ S(T ) ≤ L(1+ R)γ2(T , d2) . (15.19)

In particular, S(T ) is of order γ2(T , d2) when R is of order 1 or smaller.
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Proof The right-hand side is obvious from (15.16). To obtain the left-hand side, we
simply write in (15.18) that, since

√
ab ≤ (a + b)/2,

√
S(T )γ1(T , d∞) = √S(T )Rγ2(T , d2)

≤ 1

2

( 1

L
γ2(T , d2)+ LS(T )R

)

where L is as in (15.18), and together with (15.18), this yields

γ2(T , d2) ≤ LS(T )+ 1

2
γ2(T , d2)+ LS(T )R . �

In the examples of interest, γ1(T , d∞) has a tendency to be large, and the
previous results are not sharp. Nonetheless, we will prove Theorem 15.1.5 as an
exercise in using functionals in a slightly new way, and the reader who is not
interested in this aspect is invited to jump to Proposition 15.1.13. We recall the
random distance dω of (15.6).

Lemma 15.1.7 We have

P
(
dω(s, t) ≤ 1

2
d2(s, t)

)
≤ L exp

(
− d2

2 (s, t)

Ld2∞(s, t)

)
. (15.20)

Proof Taking v = ‖t‖HS/4 in (15.7), we obtain

P
(
|σt − ‖t‖HS | ≥ ‖t‖HS

4
+ L1‖t‖

)
≤ 2 exp

(
− ‖t‖2

HS

L‖t‖2

)
.

When L1‖t‖ ≤ ‖t‖HS/4, this gives

P
(
σt ≤ ‖t‖HS

2

)
≤ L exp

(
− ‖t‖2

HS

L‖t‖2

)
, (15.21)

whereas when L1‖t‖ ≥ ‖t‖HS/4, (15.21) holds automatically if the constant in
front of the exponential is large enough. �

We will deduce Theorem 15.1.5 from the following general abstract result:

Theorem 15.1.8 Consider a finite set T , provided with two distances d and d1.
Consider a random distance dω on T and a number 0 < α ≤ 1/2. Assume that

∀s, t ∈ T , P
(
dω(s, t) ≥ αd(s, t)

) ≥ α (15.22)

∀s, t ∈ T , P
(
dω(s, t) ≤ αd(s, t)

) ≤ 1

α
exp

(
− α

d2(s, t)

d2
1 (s, t)

)
. (15.23)



464 15 Gaussian Chaos

Consider a number M such that

P(γ2(T , dω) ≤ M) ≥ 1− α/2 . (15.24)

Then

γ2(T , d) ≤ K(α)
(
M +√Mγ1(T , d1)

)
, (15.25)

where K(α) depends on α only.

Proof of Theorem 15.1.5 We first prove that the pair of distances d1 = d∞
and d = d2 of (15.14) and the random distance dω(s, t) = σs−t (ω) of (15.6)
satisfy (15.22) and (15.23) whenever α is small enough. For (15.23), this is a
consequence of (15.20). Next, the formula (15.9) makes σt , and hence σs−t ,
appear as the supremum of a Gaussian process. Applying the Paley-Zygmund
inequality (6.15) to this process yields P(σs−t ≥ (Eσ 2

s−t )1/2/L) ≥ 1/L. Since
Eσ 2

s−t = ‖s − t‖2
HS = d2(s, t)

2, (15.22) holds whenever α is small enough.
Next, we prove that (15.24) holds for M = LS(T )/α. Since EE′ supt∈T Xt =

S(T ), and since E′ supt∈T Xt ≥ 0, Markov inequality implies

P
(
E′ sup

t∈T
Xt ≤ 2S(T )/α

)
≥ 1− α/2 .

Since LE′ supt∈T Xt ≥ γ2(T , dω) by Theorem 2.10.1, this proves that (15.24) holds
for M = LS(T )/α. Thus, (15.25) holds by Theorem 15.1.8, and it implies (15.18).

�
It would be nice to have a proof of Theorem 15.1.8 which falls into our general

scheme of proof. We do not know how to do that. The next exercise shows how to
obtain a weaker result in the same direction following this scheme of proof.

Exercise 15.1.9

(a) Consider an admissible sequence (Dn) of partitions of T and a probability
measure μ on T . For each t ∈ T , we define η0,ω(t) = Δ(T , dω), and for n ≥ 1,
we define ηn,ω(t) = Δ(T , dω) if μ(Dn(t)) ≤ 2N−1

n+2, and otherwise, we define

ηn,ω(t) = inf
{
ε > 0 ; μ(Dn+1(t) ∩ Bdω(t, ε)) ≥ 2N−1

n+2

}
. (15.26)

Prove that
∫

T

∑

n≥0

2n/2ηn,ω(t)dμ(t) ≤ Lγ2(T , dω) . (15.27)
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(b) Set εn(t) = inf{ε > 0;μ(B(t, ε)) ≥ N−1
n+2} ≤ θn(t). Prove that

εn(t) ≤ K2n/2Δ(Dn(t), d1)+KEηn,ω(t) . (15.28)

and conclude. Hint: Review Proposition 3.3.1 for (a) and Theorem 5.4.1 for (b).

As a warm-up for the proof of Theorem 15.1.8, we recommend that the reader
masters Exercise 3.4.2. Our proof of Theorem 15.1.8 will use the following
functional, related to that exercise:

Definition 15.1.10 Consider a number M as in (15.24). For any set H ⊂ T and any
probability measure μ on T with μ(H) = 1, we define

F(μ,H) = E1U inf
(An)

∫ ∑

n≥0

2n/2 min
(
Δ(An(t), dω),Δ(An(t), d)

)
dμ(t) ,

(15.29)

where U is the set {γ2(T , dω) ≤ M} and where the infimum is computed over all
sequences of admissible partitions of H . For any set H ⊂ T , we then define

F(H) = sup{F(μ,H) ; μ(H) = 1} .

Lemma 15.1.11 We have

Δ(T , d) ≤ KF(T ) . (15.30)

Proof Considering just the term for n = 0 in (15.29), and since A0 = {T }, we get
that for any measure μ,

F(μ, T ) ≥ E1U min(Δ(T , dω),Δ(T , d)) .

Using (15.22) for s, t with d(s, t) ≥ Δ(T , d)/2, we obtain that P(Δ(T , dω) ≥
αΔ(T , d)/2) ≥ α. Since P(U) ≥ 1 − α/2 by (15.24), it follows that P(U ∩
{Δ(T , dω) ≥ αΔ(T , d)/2}) ≥ α/2 so that F(μ, T ) ≥ Δ(T , d)/K by (2.7). �

The following lemma provides the appropriate growth condition for the func-
tional F :

Lemma 15.1.12 Assume the conditions of Theorem 15.1.8. There exists a constant
K0 = K0(α) with the following property. Consider an integer m ≥ 2. Consider
a set D ⊂ T with Δ(D, d1) ≤ 2a/(K0

√
logm), and for � ≤ m, consider points

t� ∈ D that satisfy d(t�, t�′) ≥ a for � �= �′. Consider moreover for � ≤ m sets
H� ⊂ B(t�, a/K0). Then

F
( ⋃

�≤m
H�

)
≥ a

K

√
logm+min

�≤mF(H�) . (15.31)



466 15 Gaussian Chaos

Proof of Theorem 15.1.8 We repeat the proof of Theorem 6.6.1, using the func-
tional F(H) rather than the functional b(H) and the distance K0d1 rather than the
distance d∞. The only two properties of the functional b(H) which were used in
the proof of Theorem 6.6.1 are those proved in Lemmas 15.1.11 and 15.1.12. Thus,
we obtain that γ2(T , d) ≤ K(α)(F (T ) + √F(T )γ1(T , d1)). But it is obvious that
F(T ) ≤ E1Uγ2(T , dω) ≤ M . �
Proof of Lemma 15.1.12 Let us fix for each � ≤ m a probability measure μ� with
μ�(H�) = 1, and let μ = m−1∑

�≤m μ�. For t ∈ H := ⋃
�≤m H�, let us define

�(t) ≤ m by t ∈ H�(t). Let us assume first that m ≥ 32. Let us then consider the
largest integer n0 with Nn0 ≤

√
m/32, so that 2n0/2 ≥ √

logm/K . Considering a
given ω and a given admissible sequence (An) of partitions of H , for t ∈ H , let us
define

f (t, ω, (An)) = min
(
Δ(An0(t), dω),Δ(An0(t), d)

)

−min
(
Δ(An0(t) ∩H�(t), dω),Δ(An0(t) ∩H�(t), d)

)
. (15.32)

Thus, given the admissible sequence (An), we have

∑

n≥0

2n/2 min
(
Δ(An(t), dω),Δ(An(t), d)

) ≥ 2n0/2f (t, ω, (An))

+
∑

n≥0

2n/2 min
(
Δ(An(t) ∩H�(t), dω),Δ(An(t) ∩H�(t), d)

)
. (15.33)

Now, for each �, the sets A ∩ H� for A ∈ An form a partition An,� of H�, and the
sequence (An,�)n≥0 is an admissible sequence of partitions of H�, so that

∫ ∑

n≥0

2n/2 min
(
Δ(An(t) ∩H�(t), dω),Δ(An(t) ∩H�(t), d)

)
dμ(t)

= 1

m

∑

�≤m

∫ ∑

n≥0

2n/2 min
(
Δ(An(t) ∩H�, dω),Δ(An(t) ∩H�, d)

)
dμ�(t)

≥ 1

m

∑

�≤m
inf
Bn

∫ ∑

n≥0

2n/2 min
(
Δ(Bn(t), dω),Δ(Bn(t), d)

)
dμ�(t) , (15.34)

where the last infimum is taken over all admissible sequences of partitions (Bn(t))

of H�. Integrating (15.33) with respect to dμ, combining with (15.34), taking the
infimum over the choice of the sequence (An), multiplying by 1U , and taking
expectation, we obtain

F(μ,H) ≥ 2n0/2E1U inf
(An)

∫

f (t, ω, (An))dμ(t)+ 1

m

∑

�≤m
F(μ�,H�) . (15.35)
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The goal now is to bound from below the first term on the right-hand side of (15.35).
Consider the set

B = {(s, t) ∈ H ×H ; d(s, t) ≥ a/2} = H ×H \
( ⋃

�≤m
H� ×H�

)
.

Since the sets H� × H� are disjoint and satisfy μ ⊗ μ(H� × H�) = 1/m2, we
have μ ⊗ μ(B) = 1 − 1/m. Given (s, t) ∈ B, it follows from (15.23) (and since
d1(s, t) ≤ 2a/(K0

√
logm)) that

P(dω(s, t) ≥ αa/2) ≤ 1

α
exp

(
− K2

0 logm

K

)
.

If K0 is large enough, the right-hand side is ≤ 1/4m, so that then

Eμ⊗ μ({(s, t) ∈ B ; dω(s, t) ≥ αa

2
}) ≤ 1

4m
.

It then follows from Markov’s inequality that the event U0 defined by

μ⊗ μ({(s, t) ∈ B ; dω(s, t) ≤ αa

2
}) ≤ 1

m
,

has probability≥ 3/4. Since

{(s, t) ∈ H ×H ; dω(s, t) ≤ αa

2
} ⊂ {(s, t) ∈ B ; dω(s, t) ≤ αa

2
}∪ (H ×H \B) ,

and since μ⊗ μ(H ×H \ B) ≤ 1/m, when U0 occurs, we have

μ⊗ μ({(s, t) ∈ H ×H ; dω(s, t) ≤ αa

2
}) ≤ 2

m
. (15.36)

Assuming that (15.36) holds and that K0 is large enough, we prove that

inf
(An)

∫

f (t, ω, (An))dμ(t) ≥ a

K
. (15.37)

Combining with (15.35), using that P(U ∩ U0) ≥ 1/2, and taking the supremum
over the choice of the measures, μ� completes the proof of (15.31).

We start the proof of (15.37). Let

B1 =
⋃
{A ∈ An0 ;Δ(A, dω) ≤ αa/2} ; B2 =

⋃
{A ∈ An0 ;Δ(A, d) ≤ a/2} .

(15.38)
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If A ∈ An0 satisfies A ⊂ B1 then Δ(A, dω) ≤ αa/2 and A × A ⊂
{(s, t) ; dω(s, t) ≤ αa/2}. Thus, by (15.36), it holds that μ ⊗ μ(A × A) ≤ 2/m,
so that μ(A) ≤ √

2/m. Since B1 is the union of at most Nn0 ≤
√
m/32 such sets,

we have μ(B1) ≤ Nn0

√
2/m ≤ 1/4. Next, if A ∈ An0 satisfies A ⊂ B2, then

Δ(A, d) ≤ a/2. Since d(t�, t�′) ≥ a for � �= �′, A is entirely contained in a set
H�, so that μ(A) ≤ 1/m. Since B2 is the union of at most Nn0 such sets, we have
μ(B2) ≤ Nn0/m ≤ 1/4.

Denoting by C the complement of B1 ∪ B2, we have shown that μ(C) ≥ 1/2.
Now, by definition of B1 and B2, if t ∈ C, then

Δ(An0(t), dω) ≥ αa/2 ; Δ(An0(t), d) ≥ a/2

so that since Δ(H�, d) ≤ 2a/K0, we obtain for such t that

f (t, ω, (An)) ≥ a(min(α/2, 1/2)− 2/K0) ≥ a/K , (15.39)

if K0 has been taken large enough. Thus, f (t, ω, (An)) ≥ a/K on a set of measure
≥ 1/2, and this completes the proof of (15.37) and concludes the argument when
m ≥ 32.

Let us now consider the case where m ≤ 32. Then we set n0 = 0, and we proceed
in a similar but much simpler manner. We define f (t, ω, (An)) as in (15.32) so that

f (t, ω, (An)) ≥ min(Δ(H, dω),Δ(H, d))−Δ(H�(t), d) .

and it suffices to use (15.23) to prove that with high probability, we have
Δ(H, dω) ≥ a/K to conclude as previously. �

15.1.3 Covering Numbers

Let us give a simple consequence of Theorem 15.1.5. We recall the covering
numbers N(T , d, ε) of Sect. 1.4. We recall that S(T ) = E supt∈T Xt .

Proposition 15.1.13 There exists a constant L with the following property:

ε ≥ L
√
Δ(T , d∞)S(T )⇒ ε

√
logN(T , d2, ε) ≤ LS(T ) . (15.40)

A remarkable feature of (15.40) is that, as we shall now prove, the right-hand
side need not hold if ε ≤ √

Δ(T , d∞)S(T )/L (see however (15.43)). To see this,
let us consider the example (15.17). For ε = √

n/L, we have ε
√

log(N(T , d2, ε)) ≥
n3/2/L, while S(T ) ≤ Ln, so that the right-hand side of (15.40) does not hold.
Moreover, since Δ(T , d∞) = 2, ε ≥ √

Δ(T , d∞)S(T )/L. This shows that the
condition ε ≥ L

√
Δ(T , d∞)S(T ) in (15.40) is rather precise.



15.1 Order 2 Gaussian Chaos 469

Proof of Proposition 15.1.13 To lighten notation, we set Δ = Δ(T , d∞). Consider
ε > 0 and a finite set T ′ ⊂ T such that

∀s, t ∈ T ′ , s �= t , d2(s, t) = ‖t − s‖HS ≥ ε . (15.41)

Let m = card T ′. Thus, N(T ′, d, ε/2) ≥ m so that by Exercise 2.7.8(b), we have
γ2(T

′, d2) ≥ ε
√

logm/L. Next, we have γ1(T
′, d∞) ≤ LΔ logm. This is witnessed

by an admissible sequence (An) such that for Nn ≥ m, then each set A ∈ An

contains exactly one point (see Exercise 2.7.5). Now (15.18) implies

ε

L

√
logm ≤ γ2(T

′, d2) ≤ L
(
S(T ′)+√S(T ′)γ1(T ′, d∞)

)

≤ L
(
S(T )+√S(T )Δ logm

)
. (15.42)

Let us denote by L2 the constant in the previous inequality. Now, if ε ≥ L3
√
ΔS(T )

where L3 = 2(L2)
2, we have

√
S(T )Δ logm ≤ ε

√
logm/L3, so that (15.42)

implies

ε

L2

√
logm ≤ L2S(T )+ 1

2L2
ε
√

logm

and therefore ε
√

logm ≤ LS(T ). Assuming m = card T ′ as large as possible, the
balls centered at the points of T ′ of radius ε cover T and N(T , d2, ε) ≤ m. �

The proof of Proposition 15.1.13 does not use the full strength of Theo-
rem 15.1.8, and we propose the following as a very challenging exercise:

Exercise 15.1.14 Find a direct proof that under the conditions of Theorem 15.1.8,
one has

ε ≥ L
√
MΔ(T, d1)⇒ ε

√
logN(T , d, ε) ≤ LM ,

and use this result to find a more direct proof of Proposition 15.1.13.

For completeness, let us mention the following, which should be compared
with (15.40):

Proposition 15.1.15 For each ε > 0, we have

ε(logN(T , d2, ε))
1/4 ≤ LS(T ) . (15.43)

In the previous example (15.17), both sides are of order n for ε = √
n/L.
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Research Problem 15.1.16 Is it true that

ε
√

logN(T , d∞, ε) ≤ LS(T ) ? (15.44)

For a partial result, and a proof of Proposition 15.1.15, see [109].

Exercise 15.1.17 Prove that (15.43) is true if (15.44) always hold.

15.1.4 Another Way to Bound S(T )

Next, we describe a way to control S(T ) from above, which is really different from
the method of Theorem 15.1.4. Given a convex balanced subset U of �2 (i.e., λU ⊂
U for |λ| ≤ 1, or, equivalently, U = −U ), we define

g(U) = E sup
(ui)∈U

∑

i≥1

uigi

σ (U) = sup
(ui)∈U

(∑

i≥1

u2
i

)1/2
.

Given convex balanced subsets U and V of �2, we define

TU,V =
{
t = (ti,j ) ; ∀(xi)i≥1 , ∀(yj )j≥1 ,

∑
ti,j xiyj ≤ sup

(ui)∈U

∑

i≥1

xiui sup
(vj )∈V

∑

j≥1

yjvj

}
.

This is a generalization of the example (15.17) to other norms than the Euclidean
norm. It follows from (2.118) that, if w > 0,

P
(

sup
(ui)∈U

∑

i≥1

giui ≥ g(U)+ wσ(U)
)
≤ 2 exp

(
− w2

2

)
,

so that (using that for positive numbers, when ab > cd , we have either a > c or
b > d)

P
(

sup
(ui)∈U

∑

i≥1

giui sup
(vj )∈V

∑

j≥1

g′j vj ≥ (g(U)+wσ(U))(g(V )+ wσ(V ))

)

≤ 4 exp
(
− w2

2

)
.
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Now,

sup
t∈TU,V

Xt ≤ sup
(ui)∈U

∑

i≥1

uigi sup
(vj )∈V

∑

j≥1

vj g
′
j ,

so that, whenever g(U), g(V ) ≤ 1 and σ(U), σ (V ) ≤ 2−n/2, we obtain

P
(

sup
t∈TU,V

Xt ≥ (1+ 2−n/2w)2
)
≤ 4 exp

(
− w2

2

)
.

Changing w into 2n/2w, this yields

P
(

sup
t∈TU,V

Xt ≥ (1+w)2
)
≤ 4 exp(−2n−1w2) . (15.45)

Proposition 15.1.18 Consider for n ≥ 0 a family Cn of pairs (U, V ) of convex
balanced subsets of �2. Assume that card Cn ≤ Nn and that

∀(U, V ) ∈ Cn , g(U) , g(V ) ≤ 1 ; σ(U) , σ (V ) ≤ 2−n/2 .

Then, the set

T = conv
{⋃

n

⋃

(U,V )∈Cn
TU,V

}

satisfies S(T ) ≤ L.

Proof It follows from (15.45) that for w ≥ 2,

P
(

sup
T

Xt ≥ (1+w)2
)
≤
∑

n≥0

∑

(U,V )∈Cn
P
(

sup
t∈TU,V

Xt ≥ (1+w)2
)

≤
∑

n≥0

Nn exp(−2n−1w2) ≤ L exp(−w2/4) ,

and the conclusion by (2.6) as usual. �

15.1.5 Yet Another Way to Bound S(T )

We end this section by a result involving a very special class of chaos, which we
will bound by a method which is apparently different both from the method of
Theorem 15.1.4 and from the method used for the set (15.17). To lighten notation,
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we denote by tg the sequence (
∑

j≥1 ti,j gj )i≥1, by 〈·, ·〉 the dot product in �2, and
by ‖ · ‖2 the corresponding norm. For t = (ti,j ), let us write

Y ∗t :=
∑

i≥1

(∑

j≥1

ti,j gj

)2 = ‖tg‖2
2 = 〈tg, tg〉 =

∑

i≥1

∑

j,k≥1

ti,j ti,kgj gk (15.46)

and

Yt := Y ∗t − EY ∗t =
∑

i≥1

∑

j �=k
ti,j ti,kgj gk +

∑

i≥1

∑

j≥1

t2
i,j (g

2
j − 1) , (15.47)

which is a chaos of order 2.

Theorem 15.1.19 ([44]) For any set T with 0 ∈ T , we have

E sup
t∈T

|Yt | ≤ Lγ2(T , d∞)
(
γ2(T , d∞)+ sup

t∈T
‖t‖HS

)
. (15.48)

Let us define, with obvious notation,

Zt =
∑

i,j,k≥1

ti,j ti,kgjg
′
k = 〈tg, tg′〉 .

The main step of the proof of Theorem 15.1.19 is as follows.

Proposition 15.1.20 Let U2 := E supt∈T ‖tg‖2
2. Then

E sup
t∈T

|Zt | ≤ LUγ2(T , d∞) . (15.49)

Proposition 15.1.21 We set V = supt∈T ‖t‖HS . Then

U ≤ L(V + γ2(T , d∞)) . (15.50)

Proof We have V 2 = supt∈T ‖t‖2
HS = supt∈T

∑
i,j≥1 t

2
i,j = supt∈T EY ∗t . For t ∈

T , we have ‖tg‖2
2 = Y ∗t = Yt + EY ∗t ≤ Yt + V 2, and thus,

U2 ≤ V 2 + E sup
t∈T

|Yt | . (15.51)

Now, combining (15.2) and (15.47), we have

E sup
t∈T

|Yt | ≤ 2E sup
t∈T

|Zt | . (15.52)

Combining with (15.51) and (15.49), we obtain U2 ≤ V 2+LUγ2(T , d∞), and this
proves (15.50). �
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Research Problem 15.1.22 The statement (15.50) is basically a bound on
E supt∈T ,‖x‖≤1〈x, tg〉, the supremum of a Gaussian process. Provide a direct
construction of an admissible sequence on the index set which witnesses this
bound. Recalling that t is viewed as an operator on �2, denote by t∗ its adjoint,
so that〈x, tg〉 = 〈t∗x, g〉. Prove that γ2(H, d2) ≤ L(V + γ2(T , d∞)) where
H = {t∗x; t ∈ T , ‖x‖ ≤ 1}.
Proof of Theorem 15.1.19 Plug (15.50) in (15.49). �
Proof of Proposition 15.1.20 Without loss of generality, we assume that T is finite.
Consider an admissible sequence (An) with

sup
t∈T

∑

n≥0

2n/2Δ(An(t)) ≤ 2γ2(T , d∞) ,

where the diameter Δ is for the distance d∞. For A ∈ An, consider an element
tA,n ∈ A, and define as usual a chaining by πn(t) = tAn(t),n. Since 0 ∈ T , without
loss of generality, we may assume that π0(t) = 0. We observe that

Zπn(t) − Zπn−1(t) = 〈(πn(t)− πn−1(t))g, πn(t)g
′〉

+ 〈πn−1(t)g, (πn(t)− πn−1(t))g
′〉 . (15.53)

Recalling that we think of each t as an operator on �2, let us denote by t∗ its adjoint.
Thus,

〈(πn(t)− πn−1(t))g, πn(t)g
′〉 = 〈g, (πn(t)− πn−1(t))

∗πn(t)g
′〉 . (15.54)

Here, (πn(t) − πn−1(t))
∗πn(t)g

′ is the element of �2 obtained by applying the
operator (πn(t) − πn−1(t))

∗ to the vector πn(t)g
′. Let us now consider the r.v.s

W = supt∈T ‖tg‖2 and W ′ = supt∈T ‖tg′‖2. Then

‖(πn(t)− πn−1(t))
∗πn(t)g

′‖2 ≤ ‖(πn(t)− πn−1(t))
∗‖‖πn(t)g

′‖2

≤ Δ(An−1(t))W
′.

It then follows from (15.54) that, conditionally on g′, the quantity 〈(πn(t) −
πn−1(t))g, πn(t)g

′〉 is a Gaussian r.v. G with (EG2)1/2 ≤ Δ(An−1(t))W
′. Thus,

we obtain that for u ≥ 1

P
(
|〈(πn(t)− πn−1(t))g, πn(t)g

′〉| ≥ 2n/2uΔ(An−1(t))W
′) ≤ exp(−u22n/2) .

Proceeding in a similar fashion for the second term in (15.53), we get

P
(|Zπn(t) − Zπn−1(t)| ≥ 2n/2uΔ(An−1(t))(W +W ′)

) ≤ 2 exp(−u22n/2) .
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Using that Zπ0(t) = 0, and proceeding just as in the proof of the generic chaining
bound (2.33), we obtain that for u ≥ L,

P
(

sup
t∈T

|Zt | ≥ Luγ2(T , d∞)(W +W ′)
)
≤ L exp(−u2) .

In particular, the functionR = supt∈T |Zt |/(W+W ′) satisfies ER2 ≤ Lγ2(T , d∞)2.
Since supt∈T |Zt | = R(W + W ′) and EW 2 = EW ′2 = U2, the Cauchy-Schwarz
inequality yields (15.49). �

Having found three distinct ways, (15.16), Proposition 15.1.18, and (15.48) of
controlling S(T ), one should certainly ask whether there are more. It simply seems
difficult to even make a sensible conjecture about what might be the “most general
way to bound a chaos process”.

15.2 Tails of Multiple-Order Gaussian Chaos

In this section, we consider a single-order d (decoupled) Gaussian chaos, that is, a
r.v. X of the type

X =
∑

i1,...,id

ai1,...,id g
1
i1
· · ·gdid , (15.55)

where ai1,...,id are numbers and g
j
i are independent standard Gaussian r.v.s. The

sum is finite; each index i� runs from 1 to m. Our purpose is to estimate the higher
moments of the r.v. X as a function of certain characteristics of

A := (ai1,...,id )i1,...,id≤m . (15.56)

Estimating the higher moments of the r.v. X amounts to estimate its tails, and it
is self-evident that this is a natural question. This topic runs into genuine notational
difficulties. One may choose to avoid considering tensors, in which case one faces
heavy multi-index notation. Or one may entirely avoid multi-index notation using
tensors, but one gets dizzy from the height of the abstraction. We shall not try for
elegance in the presentation, but rather to minimize the amount of notation the
reader has to assimilate. Our approach will use a dash of tensor vocabulary, but
does not require any knowledge of what these are. In any case for the really difficult
arguments, we shall focus on the case d = 3.

Let us start with the case d = 2 that we considered at length in the previous
section. In that case, one may think of A as a linear functional on R

m2
by the formula

A(x) =
∑

i,j

ai,j xi,j , (15.57)
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where x = (xi,j )i,j≤m is the generic element of Rm2
. It is understood that in (15.57),

the sum runs over i, j ≤ m. When we provide R
m2

with the canonical Euclidean
structure, the norm of A viewed as a linear functional on R

m2
is simply

‖A‖{1,2} :=
(∑

i,j

a2
i,j

)1/2
. (15.58)

This quantity was denoted ‖A‖HS in the previous section, but here we need new
notation. We may also think of A as a bilinear functional on R

m×R
m by the formula

A(x, y) =
∑

i,j

ai,j xiyj , (15.59)

where x = (xi)i≤m and y = (yi)i≤m. In that case, if we provide both copies of Rm

with the canonical Euclidean structure, the corresponding norm of A is

‖A‖{1}{2} := sup
{∣
∣
∑

i,j

ai,j xiyj
∣
∣ ;
∑

x2
i ≤ 1,

∑
y2
j ≤ 1

}
, (15.60)

which is also the operator norm when one sees A as a matrix, i.e., an operator from
R
m to R

m. One observes the inequality ‖A‖{1}{2} ≤ ‖A‖{1,2}.
Let us now turn to the case d = 3. One may think of A as a linear functional on

R
m3

, obtaining the norm

‖A‖{1,2,3} :=
(∑

i,j,k

a2
i,j,k

)1/2
, (15.61)

or think of A as a trilinear functional on (Rm)3, obtaining the norm

‖A‖{1}{2}{3} := sup

{
∣
∣
∑

i,j,k

ai,j,kxiyjzk
∣
∣ ;
∑

x2
i ≤ 1,

∑
y2
j ≤ 1,

∑
z2
k ≤ 1

}

.

(15.62)

One may also view A as a bilinear function on R
m2 ×R

m by the formula

A(x, y) =
∑

i,j,k

ai,j,kxi,j yk , (15.63)

for x = (xi,j )i,j ∈ R
m2

and (yk) ∈ R
m. One then obtains the norm

‖A‖{1,2}{3} := sup
{∣
∣
∑

i,j,k

ai,j,kxi,j yk
∣
∣ ;
∑

x2
i,j ≤ 1,

∑
y2
k ≤ 1

}
. (15.64)
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We observe the inequality

‖A‖{1}{2}{3} ≤ ‖A‖{1,2}{3} ≤ ‖A‖{1,2,3} . (15.65)

More generally, given a partition P = {I1, . . . , Ik} of {1, . . . , d}, we may define the
norm

‖A‖P = ‖A‖I1,...,Ik (15.66)

by viewing A as a k-linear form C on F1 × · · · × Fk where F� = R
mcard I� and

defining

‖A‖I1,...,Ik = ‖C‖{1}{2}···{k} , (15.67)

where the right-hand side is defined as in (15.62). When the partition P ′ is finer than
the partition P , then

‖A‖P ′ ≤ ‖A‖P . (15.68)

The moments of the r.v. X of (15.55) are then evaluated by the following formula:

Theorem 15.2.1 (R. Latała [48]) For p ≥ 1, we have

1

K(d)

∑

P
pcardP/2‖A‖P ≤ ‖X‖p ≤ K(d)

∑

P
pcardP/2‖A‖P , (15.69)

where P runs over all partitions of {1, . . . , d}.
A multidimensional array as in (15.56) will be called a tensor of order d (the

value of m may depend on the context).

Exercise 15.2.2 Generalize Theorem 15.1.4 to a set T of tensors of order d

using the upper bound of (15.69). Hint: This assumes that you know how to
transform (15.69) into a tail estimate.

The proof of the lower bound in (15.69) is significantly easier than the proof of
the upper bound, and we start with it.

Proof of the Lower Bound in Theorem 15.2.1 We shall prove this lower bound
only for p ≥ 2. First, we observe that for d = 1, this simply reflects the fact that
for a standard Gaussian r.v. g, one has (E|g|p)1/p ≥ √

p/L. (No, this has not been
proved anywhere in this book, but see Exercise 2.3.9.) Next, we prove by induction
on d that for each d , one has

(E|X|p)1/p ≥
√
p

K
‖A‖{1,2,...,d} =

√
p

K

( ∑

i1,...,id

a2
i1,...,id

)1/2
. (15.70)
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For this, we consider the random tensor B of order d − 1 given by

bi1,...,id−1 =
∑

i≤m
ai1,...,id−1,ig

d
i .

Applying the induction hypothesis to B given the r.v.s gdi , and denoting by E′
expectation given these variables, we obtain

(E′|X|p)1/p ≥
√
p

K

( ∑

i1,...,id−1

b2
i1,...,id−1

)1/2
.

We compute the norm in Lp of both sides, using that for p ≥ 2 one has
(E|Y |p)1/p ≥ (EY 2)1/2 to obtain

(E|X|p)1/p ≥
√
p

K

(
E

∑

i1,...,id−1

b2
i1,...,id−1

)1/2
,

which yields (15.70) for d . (It is only at this place that a tiny extra effort is required
if p ≤ 2.)

Let us now prove by induction over k that

(E|X|p)1/p ≥ pk/2

K
‖A‖I1,...,Ik . (15.71)

The case k = 1 is (15.70). For the induction from k − 1 to k, let us assume without
loss of generality that Ik = {r + 1, . . . , d}, and let us define an order d − r random
tensor C by

cir+1,...,id =
∑

i1,...,ir

ai1,...,id g
1
i1
· · ·grir ,

so that

X =
∑

ir+1,...,id

cir+1,...,id g
r+1
ir+1

· · · gdid .

Denoting now by E∼ expectation only in the r.v.s g�i� for r + 1 ≤ � ≤ d , we
use (15.70) to obtain

(E∼|X|p)1/p ≥
√
p

K

( ∑

ir+1,...,id

c2
ir+1,...,id

)1/2
.
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Consequently, if xir+1,...,id are numbers with
∑

ir+1,...,id
x2
ir+1,...,id

≤ 1, one gets

(E∼|X|p)1/p ≥
√
p

K

∣
∣
∑

ir+1,...,id

cir+1,...,id xir+1,...,id

∣
∣

=
√
p

K

∣
∣
∑

i1,...,ir

di1,...,ir g
1
i1
· · · grir

∣
∣ , (15.72)

where

di1,...,ir =
∑

ir+1,...,id

ai1,...,id xir+1,...,id .

We now compute the Lp norm of both sides of (15.72), using the induction
hypothesis to obtain

(E|X|p)1/p ≥ pk/2

K
‖D‖I1,...,Ik−1 ,

where D is the tensor (di1,...,ir ). The supremum of the norms on the right-hand
side over the choices of (xir+1,...,id ) with

∑
ir+1,...,id

x2
ir+1,...,id

≤ 1 is ‖A‖I1,...,Ik . (A
formal definition of these norms by induction over k would be based exactly on this
property.) �

Let us denote by E1, . . . , Ed copies of Rm. The idea is that Ek is the copy that
corresponds to the k-th index of A. Given a vector x ∈ Ed , we may then define the
contraction 〈A, x〉 as the tensor (bi1,...,id−1) of order d − 1 given by

bi1,...,id−1 =
∑

i≤m
ai1,...,id−1,ixi .

The summation here is on the d-th index, consistent with the fact that x ∈ Ed .
If G is a standard Gaussian random vector valued in Ed , i.e., G = (gi)i≤m, where

gi are independent standard r.v.s, then 〈A,G〉 is a random tensor of order d − 1. We
shall deduce Theorem 15.2.1 from the following fact, of independent interest:

Theorem 15.2.3 Consider d ≥ 2. Then for all τ ≥ 1, we have

E‖〈A,G〉‖{1}···{d−1} ≤ K
∑

P
τ cardP−d+1‖A‖P , (15.73)

where P runs over all the partitions of {1, . . . , d}.
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Here, as well as in the rest of this section, K denotes a number that depends only
on the order of the tensor considered and certainly not on τ .

The bound (15.73) has the mind-boggling feature that the powers of τ in the
right-hand side may have different signs. This feature will actually appear very
naturally in the course of the proof. It will be used only through Corollary 15.2.4.

If we think of A as a d-linear form on E1 × · · · × Ed , then

Y := ‖〈A,G〉‖{1}···{d−1} = supA(x1, . . . , xd−1,G) , (15.74)

where the supremum is over all choices of x� with ‖x�‖ ≤ 1. Therefore, the issue to
prove (15.73) is to bound the supremum of a certain complicated Gaussian process.

Corollary 15.2.4 For all p ≥ 1, one has

(
E‖〈A,G〉‖p{1}···{d−1}

)1/p ≤ K
∑

P
p(cardP−d+1)/2‖A‖P . (15.75)

Proof As witnessed by (15.74), the r.v. Y = ‖〈A,G〉‖{1}···{d−1} is the supremum of
Gaussian r.v.s of the type Z = A(x1, . . . , xd−1,G), where in this formula we view
A as a d-linear map on E1 × · · · × Ed and where x� is a vector of norm ≤ 1. Now,
the Gaussian r.v. Z is of the type Z =∑i aigi , and the formula

(

E
(∑

i

aigi

)2
)1/2

=
(∑

i

a2
i

)1/2 = sup
{∑

i

aixi ;
∑

i

x2
i ≤ 1

}

implies

(EZ2)1/2 = sup
‖x‖≤1

|A(x1, . . . , xd−1, x)| ≤ σ := ‖A‖{1}···{d−1}{d} .

It then follows from (2.118) that for u > 0, the r.v. Y satisfies

P(|Y − EY | ≥ u) ≤ 2 exp
(
− u2

2σ 2

)
.

Then (2.24) implies

(E|Y − EY |p)1/p ≤ L
√
pσ ,

and since (E|Y |p)1/p ≤ E|Y | + (E|Y − EY |p)1/p ≤ E|Y | + L
√
pσ , using (15.73)

for τ = p1/2 to bound E|Y |, the result follows. �
Proof of the Upper Bound in Theorem 15.2.1 We proceed by induction over d ,
using also (15.75). For d = 1, (15.69) reflects the growth of the moments of a
single Gaussian r.v. as captured by (2.24). Assuming that the result has been proved



480 15 Gaussian Chaos

for d − 1, we prove it for d . We consider the Gaussian random vector G = (gdi ) and
the order d − 1 random tensor

B = 〈A,G〉 = (bi1,...,id−1) ,

where

bi1,...,id−1 =
∑

i≤m
ai1,...,id−1,ig

d
i .

Thus,

X =
∑

i1,...,id

ai1,...,id g
1
i1
· · · gdid =

∑

i1,...,id−1

bi1,...,id−1g
1
i1
· · · gd−1

id−1
.

Let us denote by E′ expectation given G. Then the induction hypothesis applied to
B implies

(E′|X|p)1/p ≤ K
∑

Q
pcardQ/2‖B‖Q , (15.76)

where the sum runs over all partitions Q of {1, . . . , d−1}. We now compute the Lp

norm of both sides, using the triangle inequality in Lp to obtain

(E|X|p)1/p ≤ K
∑

Q
pcardQ/2(E‖B‖pQ)1/p . (15.77)

Our next goal is to prove that

(
E‖B‖pQ

)1/p ≤ Kp− cardQ/2
∑

P
pcardP/2‖A‖P , (15.78)

providing the same bound K
∑

P pcardP/2‖A‖P for each term in the summation
of (15.77) and finishing the proof of (15.69).

To prove (15.78), we denote by I1, . . . , Ik the elements of Q, so that

(
E‖B‖pQ

)1/p = (E‖〈A,G〉‖pI1 ,...,Ik

)1/p
. (15.79)

For � ≤ k, we define F� = R
mcard I� , and we define Fk+1 = R

m. Let us view A as a
(k + 1)-linear form C on the space F1 × · · · × Fk+1. Thus, from (15.67), we have
‖〈A,G〉‖I1,...,Ik = ‖〈C,G〉‖{1},...,{k}. Applying (15.75) to C (with d = k + 1), we
get

(
E‖〈C,G〉‖p{1},...,{k}

)1/p ≤ Kp−k/2
∑

R
pcardR/2‖C‖R ,
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where R ranges over all partitions of {1, . . . , k + 1}. Combining with (15.79),
we have obtained a stronger form of (15.78), where the summation in the right-
hand side is restricted to the partitions P which are coarser than the partition
I1, . . . , Ik, {d} of {1, . . . , d}. �

The rest of this section in devoted to the proof of Theorem 15.2.3. The proof is
by induction over d . The case d = 2 is very simple. We simply write

‖〈A,G〉‖{1} = sup
‖x‖≤1

A(x,G) =
(∑

i

(∑

j

ai,j gj

)2)1/2
,

and use of the Cauchy-Schwarz inequality proves that

E‖〈A,G〉‖{1} ≤
(∑

i,j

a2
i,j

)1/2 = ‖A‖{1,2} , (15.80)

while for cardP = 1, one has cardP − d + 1 = 0 and τ cardP−d+1 = 1.
In order to help the reader penetrate the very deep ideas involved in the proof

of Theorem 15.2.3, we will now assume that d = 3. The proof of Theorem 15.2.3
for the general value of d does not require any essentially new idea, but it is more
complicated to write. We refer to Latała’s paper for this. We start with some tools
(of fundamental importance).

Lemma 15.2.5 Denoting by μ the canonical Gaussian measure on R
m, then for

each closed symmetric set V of Rm, one has

μ(V + x) ≥ μ(V ) exp
(
− ‖x‖2

2

)
. (15.81)

Proof Let us denote λ Lebesgue’s measure on R
m. Then, using symmetry in the

third line, the parallelogram identity and convexity of the exponential in the fourth
line, and setting c = (2π)−m/2,

μ(x + V ) = c

∫

x+V
exp

(
− ‖y‖2

2

)
dλ(y)

= c

∫

V

exp
(
− ‖x + y‖2

2

)
dλ(y)

= c

∫

V

1

2

(
exp

(
− ‖x + y‖2

2

)
+ exp

(
− ‖x − y‖2

2

))
dλ(y)

≥ c

∫

V

exp
(
− ‖x‖2 + ‖y‖2

2

)
dλ(y)

= exp
(
− ‖x‖2

2

)
μ(V ) . �
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Lemma 15.2.6 Consider a standard Gaussian vector G valued in R
m and x in R

m.
Consider a semi-norm α on R

m. Then

P
(
α(G− x) ≤ 4Eα(G)

) ≥ 1

2
exp

(
− ‖x‖2

2

)
. (15.82)

Proof We consider the set V = {y ∈ R
m ; α(y) ≤ 4Eα(G)}, so that by Markov’s

inequality, μ(V c) ≤ 1/4 and consequently μ(V ) ≥ 3/4. Then (15.81) implies

P(α(G− x) ≤ 4Eα(G)) = μ(V + x) ≥ 3

4
exp

(
− ‖x‖2

2

)
,

where we have used in the equality that μ is the law of G and (15.81) in the last
inequality. �

We recall the entropy numbers en(T , d) of (2.36). The next consequence of
Lemma 15.2.6 is called “the dual Sudakov inequality” and is extremely useful to
estimate these entropy numbers.

Lemma 15.2.7 Consider a semi-norm α on R
m and a standard Gaussian r.v. G

valued in R
m. Then if dα is the (quasi)-distance associated with α, the Euclidean

unit ball B of Rm satisfies

en(B, dα) ≤ L2−n/2Eα(G) . (15.83)

Proof From (15.82), we get

P(α(G− x) ≤ 4Eα(G)) ≥ 1

2
exp

(
− ‖x‖2

2

)
,

and, by homogeneity, for x ∈ B and τ > 0,

P(α(τG − x) ≤ 4τEα(G)) ≥ 1

2
exp

(
− 1

2τ 2

)
. (15.84)

The proof is really similar to the argument of Exercise 2.5.9. We repeat this
argument for the convenience of the reader. Consider ε = 4τEα(G) and a subset U
of B such that any two points of U are at mutual distances ≥ 3ε. Then the closed1

balls for dα of radius ε centered at the points of U are disjoint. Now, (15.84) asserts
that the probability that G belongs to any such ball is ≥ exp(−1/(2τ 2)/2, so that
cardU ≤ 2 exp(1/2τ 2). Taking U as large as possible, the balls centered at U of
radius 3ε = 12τEα(G) cover B. Taking τ such that 2 exp(1/2τ 2) = 22n (so that
τ ≤ L2−n/2), we have covered B by at most 22n ball of radius L2−n/2Eα(G). �

1 We take the centers of the balls at mutual distance ≥ 3ε to ensure that the closed balls centered
at these points are disjoint.
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In the next page or so, we make a detour from our main story to provide a proof
of the Sudakov minoration.

To understand the difference between the Sudakov minoration and the dual
Sudakov minoration, consider the set T which is the polar set of the unit ball for
α. That is, denoting by 〈x, y〉 the duality of Rm with itself,

T = {x ∈ R
m ; ∀y ∈ R

m, α(y) ≤ 1 ⇒ 〈x, y〉 ≤ 1} .

Then α(G) = supx∈T 〈x,G〉. According to (2.117), the Sudakov minoration states
that en(T , d) ≤ L2−n/2Eα(G), where d is the Euclidean distance.

Exercise 15.2.8 Consider a symmetric subset A of RM (i.e., x ∈ A ⇒ −x ∈ A)
and the semi-norm α on R

m given by α(y) = sup{|〈x, y〉|; x ∈ A}. Prove that
Eα(G) = g(A).

The following is a simple yet fundamental fact about entropy numbers:

Lemma 15.2.9 Consider two distances d1 and d2 on R
m that arise from semi-

norms, of unit balls U1 and U2, respectively. Then for any set T ⊂ R
m, one has

en+1(T , d2) ≤ 2en(T , d1)en(U1, d2) . (15.85)

Proof Consider a > en(T , d1) so that we can find points (t�)�≤Nn of T such T ⊂
∪�≤Nn(t� + aU1). Consider b > en(U1, d2), so that we can find points (u�)�≤Nn for
which U1 ⊂ ∪�≤Nn(u� + bU2). Then

T ⊂
⋃

�,�′≤Nn

(t� + au�′ + abU2) .

Let

I = {(�, �′) ; �, �′ ≤ Nn , (t� + au�′ + abU2) ∩ T �= ∅} ,

so that card I ≤ N2
n = Nn+1. For (�, �′) ∈ I , let v�,�′ ∈ (t� + au�′ + abU2) ∩ T .

Then

T ⊂
⋃

(�,�′)∈I
(v�,�′ + 2abU2) ,

so that en+1(T , d2) ≤ 2ab. �
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The following very nice result is due to N. Tomczak-Jaegermann:

Lemma 15.2.10 Consider on R
m a distance dV induced by a norm of unit ball V ,

and let V ◦ be the polar set of V as in (8.55). Denote by B the Euclidean ball of Rm

and by d2 the Euclidean distance. Assume that for some numbers α ≥ 1, A and n∗,
we have

0 ≤ n ≤ n∗ ⇒ en(B, dV ) ≤ 2−n/αA . (15.86)

Then

0 ≤ n ≤ n∗ ⇒ en(V
◦, d2) ≤ 16 · 2−n/αA . (15.87)

Proof Consider n ≤ n∗. Using (15.85) in the first inequality and (15.86) in the
second one, we obtain

en+1(V
◦, dV ) ≤ 2en(V ◦, d2)en(B, dV ) ≤ 2−n/α+1Aen(V

◦, d2) . (15.88)

Let us now denote by 〈·, ·〉 the canonical duality of Rm with itself, so that if y ∈ V

and z ∈ V ◦, we have 〈y, z〉 ≤ 1. Consider x, t ∈ V ◦, and a = dV (x, t). Then
x − t ∈ 2V ◦ and x − t ∈ aV , so that

‖x − t‖2
2 = 〈x − t, x − t〉 ≤ 2a ,

and thus d2(x, t)
2 ≤ 2dV (x, t). Consequently, en+1(V

◦, d2)
2 ≤ 2en+1(V

◦, dV ).
Combining with (15.88),

en+1(V
◦, d2)

2 ≤ 2−n/α+2Aen(V
◦, d2) ,

from which (15.87) follows by induction over n. �
Proof of Sudakov Minoration (Lemma 2.10.2) We keep the previous notations.
Consider a finite subset T of Rm, and define the semi-norm α on R

m by α(x) =
supt∈T |〈x, t〉|, so that Eα(G) = E supt∈T |Xt | where Xt = 〈G, t〉, and by (15.83),
we have en(B, dα) ≤ L2−n/2E|α(G)|, where dα is the distance associated with
the semi-norm α. Denoting by V the unit ball of the semi-norm dα, the set T

is a subset of V ◦, and Lemma 15.2.10 implies en(T , d2) ≤ L2−n/2E|α(G)| =
L2−n/2E supt∈T |Xt |. To evaluate en(T , d2), we may by translation assume that
0 ∈ T , and by (2.3), we obtain en(T , d2) ≤ L2−n/2E supt∈T Xt , which is the desired
result by (2.117). �

We go back to our main story. Our next goal is to prove special extensions of
Lemmas 15.2.6 and 15.2.7 “to the two-dimensional case”. We consider two copies
E1 and E2 of Rm, and for vectors y� ∈ E�, y� = (y�i )i≤m, we define their tensor

product y1⊗y2 as the vector (zi1,i2) in R
m2

given by zi1,i2 = y1
i1
y2
i2

. Let us consider
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for � ≤ 2 independent standard Gaussian vectors G� valued in E�, and let us fix
vectors x� ∈ E�. We define

U∅ = x1 ⊗ x2 ; U{1} = G1 ⊗ x2 ; U{2} = x1 ⊗G2 ; U{1,2} = G1 ⊗G2 .

We denote by ‖x‖ the Euclidean norm of a vector x of E�.

Lemma 15.2.11 Set I = {{1}, {2}, {1, 2}}, and consider a semi-norm α on R
m2

.
Then

P
(

α(U{1,2} − U∅) ≤
∑

I∈I
4card IEα(UI )

)

≥ 1

4
exp

(
− 1

2
(‖x1‖2 + ‖x2‖2)

)
.

(15.89)

Proof We will deduce the result from (15.82). We consider the quantities

S = 4α(G1 ⊗G2) = 4α(U{1,2}) ; T = 4α(G1 ⊗ x2) = 4α(U{1} .

We denote by E2 conditional expectation given G2, and we consider the events

Ω1 = {α(U{2} − U∅) ≤ 4Eα(U{2})} ,

Ω2 = {α(U{1,2} − U{2}) ≤ E2S} ,

and

Ω3 = {E2S ≤ 4ES + ET } .

When these three events occur simultaneously, we have

α(U{1,2} − U∅) ≤ α(U{1,2} − U{2})+ α(U{2} − U∅)

≤ E2S + 4Eα(U{2})

≤ 4ES + ET + 4Eα(U{2})

≤
∑

I∈I
4card IEα(UI ) , (15.90)

where we have used that ET = 4Eα(U{1}) and ES = 4Eα(U{1,2}). Next, we prove
that

P(Ω1 ∩Ω3) ≥ 1

2
exp

(
− ‖x2‖2

2

)
. (15.91)



486 15 Gaussian Chaos

For this, we consider on E2 the semi-norms

α1(y) := α(x1 ⊗ y) ; α2(y) := 4Eα(G1 ⊗ y) .

Thus, E2S = α2(G
2) and ET = α2(x

2). Since U{2} − U∅ = x1 ⊗ (G2 − x2), we
have

Ω1 = {α1(G
2 − x2) ≤ 4Eα1(G

2)} ,

Ω3 = {α2(G
2) ≤ 4Eα2(G

2)+ α2(x
2)} .

Consider the convex symmetric set

V = {y ∈ E2 ; α1(y) ≤ 4Eα1(G
2) , α2(y) ≤ 4Eα2(G

2)
}
.

Then Markov’s inequality implies that P(G2 ∈ V ) ≥ 1/2, so that (15.81) yields

P(G2 ∈ V + x2) ≥ 1

2
exp

(
− ‖x2‖2

2

)
. (15.92)

The definition of V and the inequality α2(G
2) ≤ α2(G

2 − x2)+ α2(x
2) imply that

{G2 ∈ V + x2} ⊂ Ω1 ∩Ω3 ,

so (15.92) implies (15.91).
Finally, we prove that if P2 denotes probability given G2, then

P2(Ω2) ≥ 1

2
exp

(
− ‖x1‖2

2

)
. (15.93)

For this, we may think of G2 as a given deterministic vector of E2. We then consider
on R

m the semi-norm α′ given by α′(y) = α(y ⊗ G2). Since U{1},{2} − U{2} =
(G1 − x1)⊗G2, we have

Ω2 =
{
α′(G1 − x1) ≤ E2S = 4E2α′(G1)

}
,

so that (15.93) follows from (15.82).
Now the events Ω1 and Ω3 depend on G2 so that (15.93) implies that P(Ω1 ∩

Ω3 ∩Ω2) ≥ exp(−‖x1‖2/2)P(Ω1 ∩Ω3)/2 and (15.91) proves that the probability
that Ω1,Ω2 and Ω3 occur simultaneously is at least 2−2 exp(−(‖x1‖2+‖x2‖2)/2).
Combining with (15.90) completes the proof. �
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Through the remainder of the section, we write

B = {x = (x1, x2) ∈ E1 × E2 ; ‖x1‖ ≤ 1, ‖x2‖ ≤ 1
}
, (15.94)

and we first draw some consequences of Lemma 15.2.11.

Lemma 15.2.12 Consider a subset T of 2B and a semi-norm α on R
m2

. Consider
the distance dα on T defined for x = (x1, x2) and y = (y1, y2) by

dα(x, y) = α(x1 ⊗ x2 − y1 ⊗ y2) . (15.95)

Let us define

ᾱ(T ) = sup
x∈T

(
Eα(x1 ⊗G2)+ Eα(G1 ⊗ x2)

)
. (15.96)

Then

en(T , dα) ≤ L(2−n/2ᾱ(T )+ 2−nEα(G1 ⊗G2)) . (15.97)

Proof For any τ > 0, using (15.89) for x̄� := x�/τ rather than x�, we obtain

P
(
α(τ 2G1 ⊗G2 − x1 ⊗ x2) ≤ W

)
≥ 1

4
exp

(
− 1

2τ 2

∑

�≤2

‖x�‖2
)
,

where

W = 4τ (Eα(x1 ⊗G2)+ Eα(G1 ⊗ x2))+ 16τ 2Eα(G1 ⊗G2) .

When x = (x1, x2) ∈ T ⊂ 2B, one has ‖x1‖2 + ‖x2‖2 ≤ 8 and (recalling (15.96))
W ≤ 4τ ᾱ(T )+ 16τ 2Eα(G1 ⊗G2), so that

P
(
α(τ 2G1 ⊗G2 − x1 ⊗ x2) ≤ 4τ ᾱ(T )+ 16τ 2Eα(G1 ⊗G2)

)
≥ 1

4
exp

(
− 4

τ 2

)
.

(15.98)

Let

ε = 4τ ᾱ(T )+ 16τ 2Eα(G1 ⊗G2) ,

and consider a subset U of T such that any two points of U are at mutual distances
≥ 3ε for dα . Then the sets {z ∈ R

m2; α(z − x1 ⊗ x2) ≤ ε} for x ∈ U are disjoint,
so that (15.98) implies

cardU ≤ 4 exp(4τ−2) . (15.99)
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Taking U maximal for the inclusion proves that N(T , dα, 3ε) ≤ 4 exp(4τ−2).
Choosing τ so that this quantity is 22n finishes the proof. �

We are now ready to start the proof of Theorem 15.2.3 for d = 3. For a subset T
of E1 ×E2, we define

F(T ) := E sup
x∈T

A(x1, x2,G) . (15.100)

Since all our spaces are finite dimensional, this quantity is finite whenever T is
bounded. The goal is to bound

F(B) = E‖〈A,G〉‖{1}{2} . (15.101)

We consider the semi-norm α on R
m2

given for z = (zi,j )i,j≤m by

α(z) =
(∑

k

(∑

i,j

ai,j,kzi,j

)2)1/2
. (15.102)

Then the corresponding distance dα on E1 × E2 given by (15.95) is the canonical
distance associated with the Gaussian process Xx = A(x1, x2,G).2 In particular,
we have

EA(x1, x2,G)2 = dα(0, x)2 . (15.103)

Lemma 15.2.13 We have

Eα(G1 ⊗ x2) ≤ ‖〈A, x2〉‖{1,3} (15.104)

Eα(x1 ⊗G2) ≤ ‖〈A, x1〉‖{2,3} (15.105)

Eα(G1 ⊗G2) ≤ ‖A‖{1,2,3} . (15.106)

Proof Here, if A = (ai,j,k) and x2 = (x2
j ), then 〈A, x2〉 is the matrix (bi,k) where

bi,k = ∑
j ai,j,kx

2
j , and ‖〈A, x2〉‖{1,3} = (

∑
i,k b

2
i,k)

1/2. To prove (15.104), we

simply observe that α(G1 ⊗ x2) = (
∑

k(
∑

i bi,kg
1
i )

2)1/2, so that Eα(G1 ⊗ x2) ≤
(
∑

i,k b
2
i,k)

1/2 = ‖〈A, x2〉‖{1,3}. The rest is similar. �
Lemma 15.2.14 For u = (u1, u2) ∈ E1 ×E2 and T ⊂ 2B, one has

F(u+ T ) ≤ F(T )+ 2‖〈A, u1〉‖{2,3} + 2‖〈A, u2〉‖{1,3} . (15.107)

2 This semi-norm will be used until the end of the proof.
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Proof The proof starts with the identity

A(x1 + u1, x2 + u2,G) = A(x1, x2,G)+ A(u1, x2,G)

+ A(x1, u2,G)+ A(u1, u2,G) . (15.108)

We take the supremum over x ∈ T and then expectation to obtain (using that
EA(u1, u2,G) = 0)

F(T + u) ≤ F(T )+ C1 + C2 ,

where

C1 = E sup
‖x2‖≤2

A(u1, x2,G) ; C2 = E sup
‖x1‖≤2

A(x1, u2,G) .

We then apply (15.80) to the tensor 〈A, u1〉 to obtain C1 ≤ 2‖〈A, u1〉‖{2,3} and
similarly for C2. �

This result motivates the introduction on E1 × E2 of the semi-norm

α∗(x) = ‖〈A, x1〉‖{2,3} + ‖〈A, x2〉‖{1,3} . (15.109)

We may then rewrite (15.107) as

F(u+ T ) ≤ F(T )+ 2α∗(u) . (15.110)

We denote by dα∗ the distance on E1 ×E2 associated with the semi-norm α∗.
The semi-norm α∗ has another use: the quantity ᾱ(T ) defined in (15.96) satisfies

ᾱ(T ) ≤ sup{α∗(x) ; x ∈ T } , (15.111)

as follows from (15.104) and (15.105).

Lemma 15.2.15 We have

en(2B, dα∗) ≤ L2−n/2‖A‖{1,2,3} . (15.112)

Proof A standard Gaussian random vector valued in the space E1 × E2 is of the
type (G1,G2) whereG1 and G2 are independent standard Gaussian random vectors.
Proceeding as in (15.80), we get

E‖〈A,G1〉‖{2,3} ≤ ‖A‖{1,2,3} , (15.113)
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and similarly E‖〈A,G2〉‖{1,3} ≤ ‖A‖{1,2,3}, so that

Eα∗(G1,G2) ≤ 2‖A‖{1,2,3} .

Lemma 15.2.7 then implies the result. �
Exercise 15.2.16 Write the proof of (15.113) in detail.

Given a point y ∈ B and a, b > 0, we define

C(y, a, b) = {x ∈ B − y ; dα(0, x) ≤ a , dα∗(0, x) ≤ b
}
. (15.114)

We further define

W(a, b) = sup{F(C(y, a, b)) ; y ∈ B} . (15.115)

Since C(y, a, b) ⊂ C(y, a′, b′) for a ≤ a′, b ≤ b′, it follows that W(a, b) is
monotone increasing in both a and b. This will be used many times without further
mention. The center of the argument is as follows, where we lighten notation by
setting

S1 = ‖A‖{1,2,3} . (15.116)

Lemma 15.2.17 For all values of a, b > 0 and n ≥ 0, we have

W(a, b) ≤ L2n/2a + Lb +W(L2−n/2b + L2−nS1, L2−n/2S1) . (15.117)

Proof Consider y ∈ B so that B − y ⊂ 2B and T := C(y, a, b) ⊂ 2B.
Since dα∗(0, x) = α∗(x), it follows from (15.111) and (15.114) that ᾱ(T ) ≤ b.
Combining (15.97) and (15.106), we obtain that en(T , dα) ≤ δ := L(2−n/2b +
2−nS1). Using also (15.112), we find a partition of T = C(y, a, b) into Nn+1 =
22n+1

sets which are of diameter ≤ δ for dα and of diameter ≤ δ∗ := L2−n/2S1 for
dα∗ . Thus, we can find points yi ∈ C(y, a, b) for i ≤ Nn+1 such that

C(y, a, b) =
⋃

i≤Nn+1

Ti , (15.118)

where

Ti =
{
x ∈ E1 ×E2 ; x ∈ C(y, a, b) , dα(yi, x) ≤ δ , dα∗(yi, x) ≤ δ∗

}
.

For x ∈ B − y, we have x − yi ∈ B − (y + yi), so that

Ti − yi ⊂ C(y + yi, δ, δ
∗) (15.119)
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and thus

Ti ⊂ yi + C(y + yi, δ, δ
∗) . (15.120)

Also, since yi ∈ B − y, we have y + yi ∈ B, so that

F(C(y + yi, δ, δ
∗)) ≤ W(δ, δ∗) ,

and combining with (15.120) and (15.110), and since α∗(yi) = dα∗(yi, 0) ≤ b

because yi ∈ C(y, a, b), we obtain

F(Ti) ≤ W(δ, δ∗)+ 2b . (15.121)

Furthermore, since Ti ⊂ C(y, a, b), for x ∈ Ti , we have dα(0, x) ≤ a.
Recalling (15.100) and (15.103), it follows from (2.124) that

F
( ⋃

i≤Nn+1

Ti

)
≤ La

√
logNn+1 + max

i≤Nn+1
F(Ti) .

Combining with (15.121) and (15.118) implies

F(C(y, a, b)) ≤ La2n/2 + 2b +W(δ, δ∗) ,

which is the desired conclusion. �
Proposition 15.2.18 For n ≥ 0, we have

W(a, b) ≤ L(2n/2a + b + 2−n/2S1) . (15.122)

Proof of Theorem 15.2.3 for d = 3 We set

S3 = ‖A‖{1}{2}{3}
S2 = ‖A‖{1}{2,3} + ‖A‖{2}{1,3} + ‖A‖{3}{1,2} .

Since α(x1 ⊗ x2) = sup{A(x1, x2, x3); ‖x3‖ ≤ 1}, we have dα(x, 0) ≤ S3 for
x ∈ B. Also by (15.109), we have dα∗(0, x) = α∗(x) ≤ S2 for x ∈ B. Therefore,
B ⊂ C(0, S3, S2) so that using (15.122),

F(B) ≤ W(S3, S2) ≤ L(2n/2S3 + S2 + 2−n/2S1) .

Recalling (15.101) and choosing n so that 2n/2 is about τ proves (15.73). �
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Proof of Proposition 15.2.18 Using the monotonicity of W in a and b, one may
assume that all the constants in (15.117) are the same. Denoting by L0 this
constant, (15.117) implies in particular that for n, n0 ≥ 0, one has

W(a, b)

≤ L02(n+n0)/2a + L0b +W(L02−(n+n0)/2b + L02−n−n0S1, L02−(n+n0)/2S1) .

Fixing n0 a universal constant such that L02−n0/2 ≤ 2−2 implies that for n ≥ 0, one
has

W(a, b) ≤ L2n/2a + Lb +W(2−n/2−2b + 2−n−2S1, 2−(n+1)/2S1) . (15.123)

Using this for a = 2−nS1 and b = 2−n/2S1, we obtain

W(2−nS1, 2−n/2S1) ≤ L2−n/2S1 +W(2−n−1S1, 2−(n+1)/2S1) .

Given r ≥ 0, summation of these relations for n ≥ r implies

W(2−rS1, 2−r/2S1) ≤ L2−r/2S1 . (15.124)

Using this relation, we then deduce from (15.123) that

W(a, 2−n/2S1) ≤ L2n/2a + L2−n/2S1 ,

and bounding the last term of (15.123) using this inequality yields (15.122). �
We strongly encourage the reader to carry out the proof in the case d = 4,

using (15.122) and the induction hypothesis.

15.3 Notes and Comments

Our exposition of Latała’s result in Sect. 15.2 brings no new idea whatsoever
compared to his original paper [48]. (Improving the mathematics of Rafał Latała
seems extremely challenging.) Whatever part of the exposition might be better than
in the original paper draws heavily on J. Lehec’s paper [54]. This author found [48]
very difficult to read and included Sect. 15.2 in an effort to make these beautiful
ideas more accessible. It seems most probable that Latała started his work with the
case d = 3, but one has to do significant reverse engineering to get this less technical
case out of his paper.



Chapter 16
Convergence of Orthogonal Series:
Majorizing Measures

16.1 A Kind of Prologue: Chaining in a Metric Space
and Pisier’s Bound

As will become apparent soon, the questions considered in this chapter have a lot to
do with the control of stochastic processes which satisfy the condition (1.17) for the
function ϕ(x) = x2. Before we get into the sophisticated considerations of the next
few sections, it could be helpful to learn a simpler and rather robust method (even
though it is not directly connected to most of the subsequent material). The present
section is a continuation of Sect. 1.4 which the reader should review now.

Definition 16.1.1 We say that a function ϕ : R→ R is a Young function if ϕ(0) =
0, ϕ(−x) = ϕ(x), ϕ is convex, and ϕ �≡ 0.

On a metric space (T , d), we consider processes (Xt)t∈T that satisfy the
condition

∀ s, t ∈ T , Eϕ
(Xs −Xt

d(s, t)

)
≤ 1 . (16.1)

Condition (16.1) is quite natural, because given the process (Xt)t∈T , it is simple to
show that the quantity

d(s, t) = inf
{
u > 0 ; Eϕ

(Xs − Xt

u

)
≤ 1
}

(16.2)

is a quasi-distance on T , for which (16.1) is satisfied.1

1 It would also be natural to consider processes where the size of the “increments” Xs − Xt is
controlled by a distance d in a different manner, e.g., for all u > 0, P(|Xs − Xt | ≥ ud(s, t)) ≤
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We are interested in bounding processes which satisfy the condition (16.1). We
have already established the bound (1.18). In this bound occurs the term N(T , d, ε)2

rather than N(T , d, ε). This does not matter if ϕ(x) = exp(x2/4) − 1 (so that
ϕ−1(N2) = 2

√
log(N2 + 1) ≤ 2ϕ−1(N)), but it does matter if, say, ϕ(x) = |x|p.

We really do not have the right integral on the right-hand side. In this section, we
show how to correct this, illustrating again that even in a structure as general as a
metric space, not all arguments are trivial. The same topic will be addressed again
in Sect. 16.8 at a higher level of sophistication.

To improve the brutal chaining argument leading to (1.18), without loss of
generality, we assume that T is finite. For n ≥ n0, we consider a map θn : Tn+1 →
Tn such that d(θn(t), t) ≤ 2−n for each t ∈ Tn+1. Since we assume that T is
finite, we have T = Tm when m is large enough. We fix such an m, and we
define πn(t) = t for each t ∈ T and each n ≥ m. Starting with n = m, we then
define recursively πn(t) = θn(πn+1(t)) for n ≥ n0. The point of this construction
is that πn+1(t) determines πn(t) so that there are at most N(T , d, 2−n−1) pairs
(πn+1(t), θn(πn+1(t))) = (πn+1(t), πn(t)), and the bound (1.13) implies

E sup
t∈T

|Xπn+1(t) − Xπn(t)| ≤ 2−nϕ−1(N(T , d, 2−n−1)) . (16.3)

Using the chaining identity

Xt − Xπn(t) =
∑

k≥n
Xπk+1(t) − Xπk(t) ,

we have proved the following:

Lemma 16.1.2 We have

E sup
t∈T

|Xt −Xπn(t)| ≤
∑

k≥n
2−kϕ−1(N(T , d, 2−k−1)) . (16.4)

Taking n = n0, this yields the following clean result (due to G. Pisier):

Theorem 16.1.3 (G. Pisier) We have

E sup
s,t∈T

|Xs −Xt | ≤ L

∫ Δ(T )

0
ϕ−1(N(T , d, ε))dε . (16.5)

In this chapter, we will learn how to go beyond the bound (16.5) when the
function ϕ(x) has a much weaker rate of growth than exp x2 − 1, and first of all,
ϕ(x) = x2.

ψ(u), for a given function ψ , see [143]. This question has received considerably less attention than
the condition (16.1).
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In contrast with (1.19), Theorem 16.1.3 does not provide a uniform modulus of
continuity. We investigate this side story in the rest of this section. A clever twist is
required in the argument.

Theorem 16.1.4 For any δ > 0, n ≥ n0, we have

E sup
d(s,t)<δ

|Xs −Xt | ≤ δϕ−1(N(T , d, 2−n)2)+ 4
∑

k≥n
2−kϕ−1(N(T , d, 2−k−1)) .

(16.6)

To ensure that the right-hand side is small, we fix n large enough so that the sum
is small, and then we take δ small enough that the first term of the right-hand side is
small.

Proof We fix n and we set Z = supt∈T |Xt −Xπn(t)|. We define

V = {(πn(s), πn(t)) ; d(s, t) < δ} ⊂ Tn × Tn .

Given s, t ∈ T with d(s, t) < δ, we have |Xs −Xπn(s)| ≤ Z and |Xt −Xπn(t)| ≤ Z

and so that |Xs −Xt | ≤ |Xπn(s) −Xπn(t)| + 2Z and thus

sup
d(s,t)<δ

|Xs − Xt | ≤ sup
(a,b)∈V

|Xa −Xb| + 2Z . (16.7)

For (a, b) ∈ V , we choose (s(a, b), t (a, b)) ∈ T ×T such that d(s(a, b), t (a, b)) <
δ and a = πn(s(a, b)), b = πn(t (a, b)). Thus, |Xa − Xs(a,b)| ≤ Z and |Xb −
Xt(a,b)| ≤ Z, so that |Xa −Xb| ≤ |Xs(a,b)−Xt(a,b)| + 2Z. Combining with (16.7),

sup
d(s,t)<δ

|Xs − Xt | ≤ sup
(a,b)∈V

|Xs(a,b) −Xt(a,b)| + 4Z . (16.8)

Using (1.13), we have

E sup
(a,b)∈V

|Xs(a,b) −Xt(a,b)| ≤ δϕ−1(N(T , d, 2−n)2) ,

so that taking expectation in (16.8) and using (16.4) completes the proof. �

16.2 Introduction to Orthogonal Series: Paszkiewicz’s
Theorem

An orthonormal sequence (ϕm)m≥1 on a probability space (Ω,P) is a sequence such
that Eϕ2

m = 1 for each n and Eϕmϕn = 0 for m �= n. A classical question asks which
are the sequences (am) for which the series

∑

m

amϕm (16.9)
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converges a.s. whatever the choice of the orthonormal sequence (ϕm) and of the
probability space. (See Sect. 16.10 for comments on this question.) Since the series∑

m≥1 amεm must converge a.s., where εm are independent Bernoulli r.v.s, we have
∑

m≥1 a
2
m <∞ (see Exercise 6.3.4). As we shall see, the condition

∑
m≥1 a

2
m <∞

is however far from sufficient: there exist an orthonormal sequence (ϕm) and
coefficients am such that

∑
m≥1 a

2
m < ∞ and the series

∑
m≥1 amϕm diverges

everywhere.
Let us consider the set

T =
{∑

m≤n
a2
m ; n ≥ 1

}
. (16.10)

Since
∑

m≥1 a
2
m < ∞, we may assume without loss of generality that T ⊂]0, 1].

We may also assume that am �= 0 for each m. Let us denote by In the family of the
2n dyadic intervals ](i − 1)2−n, i2−n] for 1 ≤ i ≤ 2n. For a point t ∈]0, 1], we
denote by In(t) the unique interval of In that contains t .

Theorem 16.2.1 (A. Paszkiewicz [81]) Given the sequence (am), and hence the
set T , the following are equivalent:

(a) The series (16.9) converges a.s. for every choice of the orthonormal sequence
(ϕn).

(b) There exists a probability measure μ on T such that

sup
t∈T

∑

n≥0

1√
2nμ(In(t))

<∞ . (16.11)

(c) There exists a number B such that for every probability measure μ on T , one
has

∑

n≥0

∑

I∈In

√
2−nμ(I) ≤ B . (16.12)

(d) There exists a number B ′ such that for each process (Xt )t∈T which satisfies

∀ s, t ∈ T , E(Xs −Xt)
2 ≤ |s − t| , (16.13)

we have

E sup
s,t∈T

|Xs −Xt | ≤ B ′ . (16.14)

(e) For each process (Xt )t∈T which satisfies (16.13), limk→∞Xtk exists a.s. where
tk =∑m≤k a2

m.
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At this stage, this theorem should look completely mysterious. It will take the
work of several sections to clarify the underlying issues. Let us start by some
simple observations. The conditions (b) to (e) do not involve orthonormal series,
but only the set T . This set T is just the set of points of the increasing sequence
tn = ∑

m≤n a2
m. Such a set has the notable property that its closure is the set

T ∩ {t∗}, where t∗ = limn→∞ tn = ∑m≥1 a
2
m. The condition 16.13 is the special

case of Condition (16.1) where ϕ(x) = x2 and d(s, t) = √|s − t|. Thus, Pisier’s
bound (16.5) ensures that (d) holds when the integral

∫ Δ(T ,d)

0

√
N(T , d, ε)dε is

finite or, equivalently, when
∑

n≥0

√
2−nN(T , d, 2−n/2) <∞. However, the neces-

sary and sufficient conditions (b) and (c) are somewhat weaker than this condition
(although this is not obvious yet). In Sect. 16.8, we will provide considerable
generalizations of the equivalence of (b) and (c) on the one hand and (d) on the
other hand, but we will first provide specific proofs of this fact in the context of
Paszkiewicz’s theorem.

Exercise 16.2.2 Prove that the condition
∑

n≥0

√
2−nN(T , d2, 2−n) < ∞ is

equivalent to the condition

∑

n≥0

√
2−n card{I ∈ In ; I ∩ T �= ∅} <∞ . (16.15)

Prove that under this condition, (c) and (d) of Theorem 16.2.1 hold.

16.3 Recovering the Classical Results

In this section, we recover two classical results from Theorem 16.2.1. This will help
us get a feeling for the conditions of this theorem. On a less positive note, it will
also illustrate that working with these conditions is not as easy as what one would
like it to be.

Corollary 16.3.1 (Rademacher-Menchov [66, 90]) If

∑

m≥1

a2
m(logm)2 <∞ , (16.16)

then for each choice of the orthonormal sequence (ϕm), the series
∑

m amϕm
converges a.s.

Proof We shall prove that (c) is satisfied. We consider a probability measure μ on
T , and we aim to bound the left-hand side of (16.12). The plan is for each n to split
the sum

∑
I∈In

√
2−nμ(I) into several suitable pieces and to bound each of them
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using the Cauchy-Schwarz inequality in the following form: For J ⊂ In, then

∑

I∈J

√
2−nμ(I) = 2−n/2

∑

I∈J

√
μ(I) ≤ 2−n/2

√
cardJ

√
μ(∪I∈J I) , (16.17)

where we have used that for a disjoint family I of intervals,
∑

I∈I μ(I) =
μ(∪I∈II). But, first, we must reformulate (16.16). For n ≥ 1, let tn =∑1≤m≤n a2

m.
For k ≥ 0, let uk = t22k , so that

∑

k≥0

22k(uk+1 − uk) =
∑

k≥0

∑

22k<m≤22k+1

22ka2
m ≤ L

∑

m≥2

a2
m(logm)2 <∞ ,

(16.18)

using that 2k ≤ L logm for m ≥ 22k . In particular, we have uk+1 − uk ≤ C2−2k so
that if t∗ =∑m≥1 a

2
m, then t∗ − uk =∑r≥k(ur+1 − ur) ≤ C2−2k.

We now fix k and consider 2k ≤ n < 2k+1 and turn to the task of splitting the
sum

∑
I∈In

√
2−nμ(I) into suitable pieces. Consider I ∈ In with μ(I) > 0, so that

I ∩ T �= ∅. We claim that at least one of the following four cases must occur:

• I contains a point up for k − 1 ≤ p ≤ 2k or contains t∗
• I ⊂]0, uk−1]
• I ⊂]u�, u�+1] for some k − 1 ≤ � ≤ 2k
• I ⊂]u2k, t

∗].
To see this, we simply observe that if the interval I does not contain either the

point t∗ or one of the points up for k−1 ≤ p ≤ 2k, then it must be contained in one
the subintervals of [0, 1] created when removing these points from [0, 1]. However,
since T ⊂ [0, t∗], it cannot be contained in the interval ]t∗, 1], so that it is contained
in one of the other intervals left, which is exactly what the last three bullets state.

Consequently, for 2k ≤ n < 2k+1, we may write

∑

I∈In

√
2−nμ(I) = I+ II+ III+

∑

k−1≤�≤2k

V (�) , (16.19)

where

• I is the sum over I ⊂]0, uk−1]. This sum has at most 22k−1
non-zero terms,

because when T ∩ I �= ∅, I must contain at least one point tm with m ≤ 22k−1
.

Then (16.17) implies that the sum is ≤ 2−n/222k−2 ≤ 2−2k−2
.

• II is the sum over the intervals I that contain a point up for k − 1 ≤ p ≤ 2k
or that contain the point t∗. This sum has at most k + 2 terms and is bounded as
above.
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• III is the sum over the family of intervals I contained in ]u2k, t
∗]. Here we use

that, if u ≤ v, and J denotes the family of intervals I ∈ In, I ⊂]u, v], then

∑

I∈J

√
2−nμ(I) ≤ √v − u

√
μ(]u, v]) . (16.20)

This follows from (16.17) because cardJ ≤ 2n(v − u) since the intervals I of
In have length 2−n. Thus, III ≤ √t∗ − u2k ≤ C2−2k.

• V (�) is the sum over the intervals I ⊂]u�, u�+1], which, as witnessed by (16.20),
is bounded by

√
u�+1 − u�

√
μ(]u�+1, u�]).

Summation of the inequalities (16.19) over n with 2k ≤ n < 2k+1 and then over
k yields that for a certain number C′

∑

n≥0

∑

I∈In

√
2−nμ(I) ≤ C′ +

∑

k≥1

2k
∑

k−1≤�≤2k

V (�) .

We want to prove that this quantity is finite. First,

∑

k≥1

2k
∑

k−1≤�≤2k

V (�) ≤
∑

�≥0

V (�)
∑

k−1≤�
2k ≤ 4

∑

�≥0

2�V (�) ,

and then (recalling that V (�) ≤ √u�+1 − u�
√
μ(]u�+1, u�]))

∑

�≥0

2�V (�) ≤
∑

�≥0

2�
√
u�+1 − u�

√
μ(]u�+1, u�]) <∞

using the Cauchy-Schwarz inequality and (16.18). �
Corollary 16.3.2 (Tandori [135]) If for each choice of the orthonormal sequence
(ϕm) the series

∑
m amϕm converges a.s., then

∑

m≥1

a2
m(log |am|)2 <∞ . (16.21)

Before we start the preparation for the proof, let us introduce some notation that
will be used throughout the book. We will write in a standard way expressions such
as
∑

i≤n ai or
∑

i∈I ai . However, when we want in the same line to describe both the
summation and the set over which the summation occurs, we will write

∑{ai; i ∈
I }, with the expression i ∈ I replaced if necessary by the description of the set,
as is done in (16.22). We will use the convention not only for sums but also for
inf, sup,max, and min (where it is more standard). Using this convention for k ≥ 0,
we write

bk =
∑{

a2
m ; 2−2k+1

< a2
m ≤ 2−2k} , (16.22)
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which as explained means bk =∑m∈Uk
a2
m where

Uk = {m ; 2−2k+1
< a2

m ≤ 2−2k } . (16.23)

Lemma 16.3.3 For n ≥ 1, let tn = ∑
m≤n a2

m. Fix k with bk > 0. Consider the
probability measure μk on T given by μk({tn}) = a2

n/bk if n ∈ Uk and μk({tn}) = 0
if n �∈ Uk . Consider n with 2k−1 ≤ n < 2k. Then

∑

I∈In

√
2−nμk(I) ≥

√
bk

2
. (16.24)

Proof To prove (16.24), it suffices to prove that if 2k−1 ≤ n < 2k, then for each
I ∈ In

μk(I) ≤ 2−n+1

bk
, (16.25)

because then
√

2−nμk(I) ≥ μk(I)
√
bk/2, from which (16.24) follows by summa-

tion over I ∈ In. By definition of μk , it suffices the prove that
∑{a2

m;m ∈ Uk, tm ∈
I } ≤ 2−n+1. Denoting I =]a, b], consider the interval I ′ =]a − 2−2k , b], so that
the length of I ′ is 2−n + 2−2k ≤ 2−n+1. When tm ∈ I , the interval ]tm−1, tm] is
entirely contained in I ′, and its length is exactly a2

m. As these intervals are disjoint
as m varies, this shows that

∑{a2
m;m ∈ Uk, tm ∈ I } is at most the length of I ′. �

Proof of Corollary 16.3.2 Since log |am| ≤ L2k for m ∈ Uk and bk =∑m∈Uk
a2
m,

it suffices to prove that
∑

k≥0 22kbk =∑k∈J 22kbk <∞.
By Theorem 16.2.1, we know that (16.12) holds. We will apply this condition to a

suitable probability measure μ, which we construct now. Consider numbers (αk)k∈J
with αk ≥ 0 and

∑
k αk = 1. Consider the probability measure μ = ∑k∈J αkμk ,

where μk was described in Lemma 16.3.3. Consider n with 2k−1 ≤ n < 2k .
Using (16.24) in the second inequality, we obtain

∑

I∈In

√
2−nμ(I) ≥ √αk

∑

I∈In

√
2−nμk(I) ≥

√
αkbk

2
. (16.26)

We then sum (16.26) over 2k−1 ≤ n < 2k and then over k to obtain, using
also (16.12) in the first inequality,

B ≥
∑

n≥0

∑

I∈In

√
2−nμ(I) ≥ 1

2
√

2

∑

k∈J

√
αk2k

√
bk ,
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and since the sequence αk is arbitrary with
∑

αk = 1, optimization over this
sequence yields

∑
k∈J 22kbk ≤ 8B2. �

The necessary condition (16.21) is by no means sufficient for the convergence of
each series

∑
m≥1 amϕm. This is obvious from Theorem 16.7.1.

Exercise 16.3.4 Prove that the conditions (16.21) and (16.16) are equivalent when
the sequence (am) is non-increasing. Consequently, (16.21) is a necessary and
sufficient condition so that one can find a permutation π such that the series∑

m aπ(m)ϕ(m) converges a.s. for each orthonormal sequence (ϕm).

Exercise 16.3.5 For a finite subset T of ]0, 1], consider the following quantity
M(T ). If card T = 1, we set M(T ) = 0. Otherwise, let n(T ) be the largest integer
such that there exists I ∈ In(T ) for which T ⊂ I . Call this interval IT . Define then

M(T ) = inf sup
t∈T

∑

n≥n(T )

1√
2nμ(In(t))

,

where the infimum is computed over all choices of probability measures on T . Now,
IT is the union of two intervals I1 and I2 of In(T )+1. Explain how to compute M(T )

when you know M(T ∩ Ij ) for j = 1, 2. In this manner, the quantity M(T ) can be
“computed recursively”.

16.4 Approach to Paszkiewicz’s Theorem: Bednorz’s
Theorem

We now describe our approach to Theorem 16.2.1. The following is an obvious
consequence of orthonormality:

Lemma 16.4.1 For t =∑m≤n a2
m ∈ T , let us define

Xt =
∑

m≤n
amϕm . (16.27)

Then

∀ s, t ∈ T , E(Xs −Xt)
2 = |s − t| . (16.28)

This makes it obvious that (e) implies (a) in Theorem 16.2.1. It also motivates
the following:

Definition 16.4.2 If T is a subset of [0, 1], we say that the process (Xt )t∈T is
orthonormal if it satisfies (16.28) and if moreover EXt = 0 for each t .

The main ingredient in the proof of Theorem 16.2.1 is the following result:
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Theorem 16.4.3 (W. Bednorz [13]) Consider a finite subset T of [0, 1], and define

F ∗(T ) = supE sup
t∈T

Xt , (16.29)

where the first supremum is taken over all orthonormal processes indexed by T .
Then for each probability measure μ on T , we have

∑

n≥0

∑

I∈In

√
2−nμ(I) < L(1 + F ∗(T )) . (16.30)

Our first task is to make the link between Theorems 16.2.1 and 16.4.3.

Lemma 16.4.4 If the process (Xt )t∈T is orthonormal, then

t1 ≤ t2 ≤ t3 ≤ t4 ∈ T ⇒ E(Xt4 −Xt3)(Xt2 − Xt1) = 0 . (16.31)

Proof Consider t1 ≤ t2 ≤ t3 ∈ T . Then

t3 − t1 = E(Xt3 −Xt1)
2

= E(Xt3 −Xt2)
2 + E(Xt2 −Xt1)

2 + 2E(Xt3 −Xt2)(Xt2 − Xt1)

= t3 − t2 + t2 − t1 + 2E(Xt3 −Xt2)(Xt2 −Xt1) ,

so that we have proved

t1 ≤ t2 ≤ t3 ∈ T ⇒ E(Xt3 − Xt2)(Xt2 −Xt1) = 0 . (16.32)

We use (16.32) to write

0 = E(Xt4 −Xt3)(Xt3 −Xt1)

= E(Xt4 −Xt3)(Xt2 −Xt1)+ E(Xt4 −Xt3)(Xt3 − Xt2)

= E(Xt4 −Xt3)(Xt2 −Xt1) ,

using again (16.32) in the third inequality. �
We will also need a classical result of Tandori [136]. This lemma really brings

out the strength of the statement “for every orthonormal sequence. . . ”.

Lemma 16.4.5 Assume that the sequence (an) has the property that for every
orthonormal sequence (ϕn), the series

∑
m≥1 amϕm converges a.s. Then there exists

a number A such that for each orthonormal sequence (ϕn), we have

E sup
n≥1

( ∑

1≤m≤n
amϕm

)2 ≤ A . (16.33)
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Proof For 1 ≤ p ≤ q , let us define

V (p, q) = E sup
p≤n≤q,(ϕn)

( ∑

p≤m≤n
amϕm

)2
, (16.34)

where the supremum is also over all orthonormal sequences (ϕn). Let us assume
for contradiction that (16.33) fails, i.e., that limq→∞ V (1, q) = ∞. The inequality
(a + b)2 ≤ 2a2 + 2b2 shows that 2(

∑
p≤m≤n amϕm)2 ≥ (

∑
1≤m≤n amϕm)2 −

2(
∑

1≤m<p amϕm)
2. Consequently, for each p, we have limq→∞ V (p, q)2 = ∞,

and therefore, we can find an increasing sequence (pk) such that V (pk, pk+1) > 1
for each k. By definition of V (p, q), we can then find an orthonormal sequence
(ϕm,k)m≥1 for which

W(k) := max
pk≤n≤pk+1

∣
∣
∑

pk≤m≤n
amϕm,k

∣
∣

satisfies EW(k)2 ≥ 1. Let us define the function

θk = W(k)2

EW(k)2 ,

so that Eθk = 1. For pk < m ≤ pk+1, we have |amϕm,k| ≤ 2W(k) since amϕm,k =∑
pk≤s≤m asϕs,k −∑p(k)≤s≤m−1 asϕs,k. Consequently, ϕm,k = 0 when θk = 0. For

pk < m ≤ pk+1, we may then define ϕ′m = ϕm,k/
√
θk . Since

∫

ϕ′mϕ′m′θkdP =
∫

ϕm,kϕm′,kdP ,

the functions (ϕ′n)pk≤n<pk+1 still form an orthonormal sequence for the probability
measure P′ = θkP and satisfy

max
pk≤n≤pk+1

∣
∣
∣
∑

pk≤m≤n
amϕ

′
m

∣
∣
∣ = W(k)√

θk
= (EW(k)2)1/2 ≥ 1 . (16.35)

We can moreover assume that Eϕ′m = 0. To see this, we replace the sequence
(ϕ′m)pk≤m<pk+1 by the sequence (εϕ′m)pk≤m<pk+1 where ε is a Bernoulli r.v.
independent of all the r.v.s ϕ′m.

We construct a sequence (ψm)m≥1 using independent blocks: for each k ≥
1, the sequence (ψm)pk≤m<pk+1 is a copy of the sequence (ϕ′m)pk≤m<pk+1 , and
these sequences are globally independent as k varies. The sequence (ψm)m≥p(1)
is orthonormal. Indeed, if pk ≤ m,m′ ≤ pk+1 for some k, then Eψmψm′ =
Eϕ′mϕ′m′ = 0, while if this is not the case, ψm and ψm′ are independent and
of expectation 0. We complete in any way we like in an orthonormal sequence
(ψm)m≥1 (e.g., we set ψm = εm for 1 ≤ m < p(1) where (εm) is an independent
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Bernoulli sequence). According to (16.35), the series
∑

m≥1 amψm diverges a.s.
This contradiction shows that (16.33) must hold and concludes the proof. �
Corollary 16.4.6 Under the hypothesis of Lemma 16.4.5 for each orthonormal
process (Xt )t∈T , one has

E sup
s,t∈T

|Xs − Xt | ≤ 2
√
A . (16.36)

Proof We recall that T = {t1, t2, . . .} where tm = ∑
1≤k≤m a2

k . It follows from
Lemma 16.4.4 that the sequence (ϕm)m≥2 given by

ϕm = a−1
m (Xtm −Xtm−1)

is an orthonormal sequence. If p ≤ q , then Xtq −Xtp =
∑

p<m≤q amϕm, so that

sup
s,t∈Tk

|Xs −Xt | ≤ sup
p,q

∣
∣
∑

p<m≤q
amϕm

∣
∣ ≤ 2 sup

n

∣
∣
∑

2≤m≤n
amϕm

∣
∣

and (16.33) implies (16.36). �
Assuming Theorem 16.4.3, we are now ready to prove the “hard part” of

Theorem 16.2.1.

Theorem 16.4.7 If the series (16.9) converges a.s. for each choice of the orthonor-
mal sequence (ϕn) or if (d) of Theorem 16.2.1 holds, then there exists a number B
such that for each probability measure μ on T , one has

∑

n≥0

∑

I∈In

√
2−nμ(I) ≤ B . (16.37)

Proof Assuming first that the series (16.9) converges a.s. for each choice of
the orthonormal sequence (ϕn), it follows from (16.36) that the quantity F ∗(T )
of (16.29) satisfies F ∗(T ) ≤ 2

√
A.

Consequently, Theorem 16.4.3 implies that for each probability measure μ on a
finite subset of T , one has

∑

n≥0

∑

I∈In

√
2−nμ(I) ≤ B := L(1+√A) .

It then should be obvious that this implies the same inequality for each probability
measure μ on T .

Assuming now that (d) holds, one has F ∗(T ) ≤ B ′ and the proof is the same. �
We shall also use the following, which is a variation on Lemma 3.3.3:
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Lemma 16.4.8 Consider a finite set T ⊂ [0, 1], and assume that for each
probability measure μ on T , one has

∑

n≥0

∑

I∈In

√
2−nμ(I) ≤ B . (16.38)

Then there is a probability measure μ on T for which2

sup
t∈T

∑

n≥0

1√
2nμ(In(t))

≤ 2B . (16.39)

Proof The key argument is the Hahn-Banach theorem, in the form of Lemma 3.3.2.
Let us denote by M(T ) the set of probability measures on T , and for μ ∈ M(T ),
let us consider the function

fμ(t) :=
∑

n≥0

1√
2nμ(In(t))

.

Since In(t) = I for t ∈ I ∈ In, we have
∫
I
(μ(In(t)))

−1/2dμ(t) = √
μ(I) so that,

using (16.38) in the inequality,

∫

fμ(t)dμ(t) =
∑

n≥0

∑

I∈In

√
2−nμ(I) ≤ B . (16.40)

Since the function x �→ 1/
√
x is convex, the map μ �→ fμ is convex. Consequently,

the class C of functions f on T that satisfy

∃μ ∈M(T ) ; ∀ t ∈ T , fμ(t) ≤ f (t)

is convex. For each probability measure μ on T , (16.40) shows that there exists f
in C (namely, f = fμ!) with

∫
f dμ ≤ B. Consequently, by Lemma 3.3.2 (used for

ε = B), there exists f ∈ C such that f ≤ 2B. �
Proposition 16.4.9 If condition (c) of Theorem 16.2.1 holds, so does condition (b).

Proof Let tn =∑1≤m≤n a2
m, t∗ = limn→∞ tn =∑m≥1 a

2
m so that T ∗ = T ∪{t∗} is

compact. Consider Tk = {tn, n ≤ k}. Combining (c) with Lemma 16.4.8, we obtain
a probability measure μk on Tk for which

sup
t∈Tk

∑

n≥0

1√
2nμk(In(t))

≤ 2B . (16.41)

2 If one works a tad harder, one may get B rather than 2B in the next inequality.
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From here, the proof is basically a compactness argument. Taking a subsequence
if necessary, we may assume that the sequence (μk) converges weakly as k → ∞
to a probability measure μ′ on T ∗. Then for each compact subset K of T , we have
μ′(K) ≥ lim infk μk(K). This applies in particular to the sets I ∩ T ∗ for I ∈ In,
which are compact. It then follows from (16.41) that

sup
t∈T

∑

n≥0

1√
2nμ′(In(t))

≤ LB . (16.42)

The problem is that it might happen that μ′({t∗}) > 0, and then μ′ is not supported
by T . We modify μ′ to take care of this problem. We consider a probability measure
μ of the form μ = μ′/2 + μ1 where μ1 is a positive measure on T of mass 1/2
which for each n gives mass ≥ 2−n/2/L to the interval I ∈ In which contains t∗.
This is possible because this interval is of the type ]u, v] so that it meets T .

Then, for I ∈ In, we have μ(I) ≥ μ′(I)/2 if t∗ �∈ I , while if t∗ ∈ I , then
μ(I) ≥ 2−n/2/L. It is then immediate to check that μ satisfies (16.11). �

16.5 Chaining, I

We need one more ingredient to complete the proof of Theorem 16.2.1 (still
assuming Theorem 16.4.3). We need to control the supremum of a stochastic process
under condition (16.13). Theorem 16.1.3 does not suffice for this purpose. In this
section, we develop a more efficient chaining scheme. We consider a general finite
metric space (T , d), and we try to bound a process (Xt)t∈T which satisfies

∀ s, t ∈ T , E(Xs −Xt)
2 ≤ d(s, t)2 . (16.43)

When T is a subset of the unit interval and when d(s, t) = √|s − t|, this covers the
case of the processes satisfying (16.13).

Consider a sequence (Tn)n≥0 of subsets of T . We assume that cardT0 = 1, and
we denote by t0 the unique element of T0. We assume that for each n ≥ 1, we are
given a map θn : Tn → Tn−1. As in the proof of Theorem 16.1.3, this map will
help us to build a proper chaining. Since we assume that T is finite, it is not much
of a restriction to assume that Tm = T for a certain (large) integer m. We define
πm(t) = t for each t and recursively πn−1(t) = θn(πn(t)). First, as usual, we write

|Xt −Xt0 | ≤
∑

1≤n≤m
|Xπn(t) −Xπn−1(t)| . (16.44)
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Using the inequality xy ≤ x2 + y2, it is rather natural to write that, for s ∈ Tn, and
introducing a parameter cn(s),

|Xs −Xθn(s)| ≤
d(s, θn(s))

cn(s)
+ d(s, θn(s))cn(s)

(
Xs −Xθn(s)

d(s, θn(s))

)2

.

Let us assume for simplicity that for numbers εn > 0, we have

∀ s ∈ Tn , d(s, θn(s)) ≤ εn . (16.45)

Then

|Xs −Xθn(s)| ≤
εn

cn(s)
+ εncn(s)

(
Xs −Xθn(s)

d(s, θn(s))

)2

.

Using this for s = πn(t), and recalling that πn−1(t) = θn(πn(t)), we obtain (using
a crude bound on the last term to make it independent of t)

|Xπn−1(t) − Xπn(t)| ≤
εn

cn(πn(t))
+
∑

s∈Tn
εncn(s)

(
Xs −Xθn(s)

d(s, θn(s))

)2

.

We then deduce from (16.44)

|Xt −Xt0 | ≤
∑

1≤n≤m

εn

cn(πn(t))
+
∑

1≤n≤m

∑

s∈Tn
εncn(s)

(
Xs − Xθn(s)

d(s, θn(s))

)2

. (16.46)

Let us now set

S = sup
t∈T

∑

1≤n≤m

εn

cn(πn(t))
, (16.47)

S∗ =
∑

1≤n≤m

∑

s∈Tn
εncn(s) . (16.48)

Then (16.46) yields

sup
t∈T

|Xt −Xt0 | ≤ S +
∑

1≤n≤m

∑

s∈Tn
εncn(s)

(
Xs − Xθn(s)

d(s, θn(s))

)2

. (16.49)

Taking expectation and using (16.43), we obtain the following important relation:
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Lemma 16.5.1 Recalling (16.47) and (16.48), we have

E sup
t∈T

|Xt −Xt0 | ≤ S + S∗ . (16.50)

Corollary 16.5.2 We have

E sup
t∈T

|Xt − Xt0| ≤ L
∑

n≥1

εn
√

card Tn . (16.51)

Proof Choose cn(t) = 1/
√

card Tn for t ∈ Tn. �
Exercise 16.5.3 Prove that (16.51) implies Pisier’s bound (16.5) in the case ϕ(x) =
x2.

We recall the notation In(t) of Theorem 16.2.1.

Corollary 16.5.4 Consider a countable subset T of [0, 1]. Assume that for a certain
integer n0 ≥ 0 and a certain I0 ∈ In0 , we have T ⊂ I0. Consider a probability
measure μ on T such that

A := sup
t∈T

∑

n≥n0

1√
2nμ(In(t))

<∞ .

Then for each process (Xt )t∈T that satisfies (16.13), we have

E sup
s,t∈T

|Xs −Xt | ≤ LA. (16.52)

Proof Since the process satisfies (16.13), it satisfies (16.43) for d(s, t) = √|s − t|.
The plan is to use (16.50), and we construct the relevant chaining. We construct
inductively for n ≥ n0 a set Tn ⊂ T such that card Tn ∩ I = 1 whenever I ∈ In and
I ∩T �= ∅ and such that moreover Tn−1 ⊂ Tn. When s is the unique point of Tn∩ I ,
let us then set

cn(s) =
√
μ(I) .

Let us moreover define the map θn : Tn → Tn−1 in the canonical manner. That
is, if s is the unique point of Tn ∩ I where I ∈ In, there are a unique I ′ ∈ In−1
with I ⊂ I ′ and a unique point s′ in Tn−1 ∩ I ′. We then set θn(s) = s′. We have
|s − θn(s)| = |s − s′| ≤ 2−(n−1), so that d(s, θn(s)) = √|s − θn(s)| ≤ εn :=
2−(n−1)/2, i.e., (16.45) holds for this value of εn.
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Considering an arbitrary integer m, we now use the bound (16.49) for Tm rather
than T . Then, for t ∈ Tm, we have

∑

1≤n≤m

εn

cn(πn(t))
=

∑

1≤n≤m

2−(n−1)/2
√
μ(In(t))

≤ 2A ,

so that S ≤ 2A. Also, integrating the inequality

∀ t ∈ T ,
∑

n≥n0

1√
2nμ(In(t))

≤ A

with respect to μ, we obtain (using as always that I (t) = I for t ∈ I )

∑

n≥n0

∑

I∈In

2−n/2
√
μ(I) ≤ A .

This means that S∗ ≤ LA. Consequently, the bound (16.50) implies

E sup
s,t∈Tm

|Xs −Xt | ≤ LA ,

and since m is arbitrary, this proves (16.52). �
Proof of Theorem 16.2.1 We proved that (c) implies (b) in Proposition 16.4.9. We
proved that (b) implies (d) in Corollary 16.5.4. We proved that (d) implies (c) in
Theorem 16.4.7. Thus, (b), (c), and (d) are equivalent.

We proved that (e) implies (a) in Lemma 16.4.1. We proved that (a) implies (c)
in Theorem 16.4.7.

We now prove that (b) implies (e), completing the proof of Theorem 16.2.1. Let
us consider the point t∗ = ∑

m≥1 a
2
m = limk→∞ tk , the supremum of T . Let us

consider an integer n0 and the unique I0 ∈ In0 with t∗ ∈ I0. Consider the set
T ′ = T ∩ I0, so that tk ∈ T ′ for k large enough. Then

sup
t∈T ′

∑

n≥0

1√
2nμ(In(t))

≤ A∗ := sup
t∈T

∑

n≥0

1√
2nμ(In(t))

.

Consequently, the probability measure μ′ on T ′ given for B ⊂ T ′ by μ′(B) =
μ(B ∩ T ′)/μ(T ′) = μ(B ∩ I0)/μ(I0) satisfies

sup
t∈T ′

∑

n≥n0

1√
2nμ′(In(t))

≤ A∗
√
μ(I0) .
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The bound (16.52) used for T ′ and μ′ then implies that each process (Xt)t∈T which
satisfies (16.13) also satisfies

E sup
s,t∈T ′

|Xs −Xt | ≤ LA∗
√
μ(I0) .

Now for n0 large enough μ(I0) is arbitrarily small since ∩ε>0(T∩]t∗ − ε, t∗]) = ∅.
Consequently,

lim
n→∞E sup

k,�≥n
|Xtk −Xt� | = 0 .

This concludes the proof. �

16.6 Proof of Bednorz’s Theorem

The main step in the proof of Bednorz’s theorem is, given a finite subset T of ]0, 1],
to relate the “size” of T with the size of the four sets Tj = T ∩ Ij where for
1 ≤ j ≤ 4, Ij is the interval ](j − 1)/4, j/4]. It is performed in Proposition 16.6.3.
The reason why we use 4-adic partitions is that we are certain that “T1 is far apart
from T3”(etc.), whereas one cannot say the same about, say, T1 and T2 since T1
might be located to the very right of I1 and T2 might be located to the very left of
I2. (This is why dyadic partitions would not work.)

Definition 16.6.1 Consider an interval J =]c, d] ⊂ [0, 1] and J = [c, d]. We say
that the process (Xt)t∈J is normalized if EXt = 0, Xc = Xd = 0 and

∀ s, t ∈ J , s < t , E(Xs −Xt)
2 = t − s − (d − c)−1(t − s)2 . (16.53)

The reason behind the formula in the right-hand side of (16.53) will be explained
soon. We fix the finite set T ⊂]0, 1] once and for all. For an interval J =]c, d] ⊂
[0, 1], we consider the quantity

F(J ) = supE sup
t∈T∩J

Xt , (16.54)

where the first supremum is taken over all normalized processes indexed by J =
[c, d]. Although Xc = 0 is defined, in (16.54), the supremum is only over T ∩ J ,
not over T ∩ J . We define F(J ) = 0 when T ∩ J = ∅.

The quantity F(J ) will be our “measure of size of J ”. We first relate it to the
quantity F ∗(T ) of (16.29).

Lemma 16.6.2 We have F(]0, 1]) ≤ F ∗(T ).



16.6 Proof of Bednorz’s Theorem 511

Proof Consider a normalized process (Xt )t∈[0,1]. Consider a centered r.v. Z,
independent of this process, and such that EZ2 = (d − c)−1. Then the process
Yt = Xt + tZ is orthonormal. Using the definition of F ∗ in the first inequality and
using Jensen’s inequality (taking the expectation in Z inside the supremum) in the
second inequality yields

F ∗(T ) ≥ E sup
t∈T

Yt ≥ E sup
t∈T

Xt ,

and since the normalized process (Xt ) is arbitrary, this proves that F(]0, 1]) ≤
F ∗(T ). �

We state now the main step in the proof of Bednorz’s theorem.

Proposition 16.6.3 Consider I =]0, 1], and for j = 1, 2, 3, 4, consider Ij =](j −
1)/4, j/4] and numbers αj ≥ 0 such that

∑
j≤4 αj = 1. Then

F(I) ≥
∑

1≤j≤4

√
αjF (Ij ) . (16.55)

Moreover, if for each 1 ≤ j ≤ 4 we have αj ≥ 1/400 and T ∩ Ij �= ∅, then

F(I) ≥
∑

1≤j≤4

√
αjF (Ij )+ 1

80
. (16.56)

The inequality (16.56) is a kind of growth condition. The constants 80 and
400 are just convenient choices and do not carry special meaning.3 There is no
magic: to prove this result, given normalized processes on the intervals Ij , we have
to construct a normalized process witnessing (16.55), and this will require hard
work. This work will be performed at the end of the section, and we first turn to
the comparatively easier task of deducing Bednorz’s theorem from this result. We
first state a kind of rescaling of Proposition 16.6.3, where, instead of starting with
I =]0, 1], we start with any dyadic interval.

Corollary 16.6.4 Consider I ∈ Im and the four intervals Ij of Im+2 for j =
1, 2, 3, 4 which it contains. Consider numbers αj ≥ 0 such that

∑
j≤4 αj = 1.

Then

F(I) ≥
∑

1≤j≤4

√
αjF (Ij ) . (16.57)

3 The condition αj ≥ 1/400 simply ensures that αj stays away from 0.
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Moreover, if for each 1 ≤ j ≤ 4 we have αj ≥ 1/400 and T ∩ Ij �= ∅, then

F(I) ≥
∑

1≤j≤4

√
αjF (Ij )+ 2−m/2 1

80
. (16.58)

Proof Denoting by FT (J ) the quantity (16.54) to indicate the dependence in T ,
it suffices to prove that for a > 0 and b ∈ R, we have, with obvious notation,
FaT+b(aJ + b) = √

aFT (J ). This follows from the fact that if the process
(Xt)t∈aJ+b is normalized on the interval aJ+b, then the process Yt = a1/2X(t−b)/a
is normalized on the interval J . �

We recall that In denotes the family of 2n dyadic intervals of length 2−n.
Theorem 16.4.3 is a consequence of Lemma 16.6.2 and the following:

Proposition 16.6.5 Consider a finite set T ⊂ [0, 1]. Then, given a probability
measure μ on T , we have

∑

n≥0

∑

I∈In

2−n/2
√
μ(I) ≤ L(1+ F(]0, 1])) . (16.59)

As a preparation for the proof of this result, we fix a probability measure μ on
T , and for n ≥ 0, we define I∗2n as the collection of intervals I ∈ I2n that have the
following property:

I ′ ∈ I2n+2 , I ′ ⊂ I ⇒ μ(I ′) ≥ μ(I)/400 . (16.60)

We then define

Mn = 2−n
∑

I∈I∗2n

√
μ(I) . (16.61)

Lemma 16.6.6 We have

∑

n≥0

Mn ≤ 80F(]0, 1]) . (16.62)

Proof We recall that F(J ) = 0 when J ∩ T = ∅. We prove that for each n ≥ 0, we
have

∑

I∈I2n

√
μ(I)F (I) ≥ 1

80
Mn +

∑

I∈I2n+2

√
μ(I)F (I) . (16.63)
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Given I ∈ I2n, let us denote by I1, I2, I3, and I4 the intervals of I2n+2 which are
contained in I . Then, using (16.57) for αj = μ(Ij )/μ(I), we obtain

√
μ(I)F (I) ≥

∑

j≤4

√
μ(Ij )F (Ij ) =

∑

I ′⊂I,I ′∈I2n+2

√
μ(I ′)F (I ′) . (16.64)

If moreover I ∈ I∗2n, we can now use (16.58) with the same choice of αi and
m = 2n (so that 2−n = 2−m/2) to obtain the better inequality

√
μ(I)F (I) ≥

∑

I ′⊂I,I ′∈I2n+2

√
μ(I ′)F (I ′)+ 1

80
2−n
√
μ(I) . (16.65)

Summation of the inequalities (16.64) and (16.65) over I ∈ I2n completes the
proof of (16.63). Rewriting (16.63) as Mn ≤ 80(Sn − Sn+1) where Sn =∑

I∈I2n

√
μ(I)F (I) and summing over n completes the proof. �

Lemma 16.6.7 Consider numbers αj ≥ 0 for j = 1, 2, 3, 4 such that∑
1≤j≤4 αj = 1. Then

min
1≤j≤4

αj ≤ 1

400
⇒ 1

2

∑

1≤j≤4

√
αj ≤ 9

10
. (16.66)

Proof Assume, for example, that α1 ≤ 1/400. Concavity of the function x �→ √
x

shows that
√
α2 +√α3 +√α4 ≤ √3(α2 + α3 + α4) ≤

√
3, so that

1

2

∑

1≤j≤4

√
αj ≤ 1

2

( 1

20
+√3

)
≤ 9

10
. �

The following will complete the proof of Proposition 16.6.5:

Lemma 16.6.8 We have

∑

n≥0

∑

I∈In

2−n/2
√
μ(I) ≤ 2S(μ) := 2

∑

n≥0

∑

I∈I2n

2−n
√
μ(I) , (16.67)

and

S(μ) ≤ 10+ 10
∑

n≥0

Mn . (16.68)

Proof An interval I ∈ In is the union of two intervals I ′ and I ′′ of In+1 and
μ(I) = μ(I ′) + μ(I ′′). The inequality

√
a + √

b ≤ √
2
√
a + b implies that

2−(n+1)/2(
√
μ(I ′) + √μ(I ′′)) ≤ 2−n/2√μ(I). Consequently, the sequence cn :=∑

I∈In
2−n/2√μ(I) is non-increasing. Thus,

∑
n≥0 c2n ≤ ∑n≥0 cn ≤ 2

∑
n≥0 c2n

which is (16.67).
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For I ∈ I2n, let

w(I) = 2−n−1
∑

J⊂I,J∈I2n+2

√
μ(J ) .

The equality

S(μ) = 1+
∑

n≥0

∑

I∈I2n

w(I) (16.69)

holds because all the terms in the summation that defines S(μ) occur in one of the
terms w(I), except the term for n = 0, which is equal to 1 since μ is a probability.
Given n ≥ 0,

∑

I∈I2n

w(I) =
∑

I∈I∗2n
w(I)+

∑

I �∈I∗2n
w(I) . (16.70)

Consider I �∈ I∗2n, and denote by Ij , j = 1, 2, 3, 4, the four intervals of I2n+2
contained in I . Define αj = μ(Ij )/μ(I). By definition of I2n, the smallest of these
four numbers is < 1/400 so that Lemma 16.6.7 implies that

w(I) <
9

10
2−n
√
μ(I) . (16.71)

Summation of the relations (16.71) yields

∑

n≥0

∑

I �∈I∗2n
w(I) ≤ 9

10

∑

n≥0

∑

I �∈I∗2n
≤ 2−n

√
μ(I) ≤ 9

10
S(μ) .

Combining with (16.69) and (16.70) and recalling (16.61), we thus obtain

S(μ) ≤ 1+ 9

10
S(μ)+

∑

n≥0

∑

I∈I∗2n
2−n
√
μ(I) ≤ 1+ 9

10
S(μ)+

∑

n≥0

Mn .

This completes the proof. �
It remains only to prove Proposition 16.6.3. This proof occupies the rest of

the present section. To prove the proposition, starting with normalized processes4

(Y
j
t )t∈Ij for 1 ≤ j ≤ 4, we shall construct a suitable normalized process on

I = [0, 1]. Let us set

ϕ(x) = x − 4x2 , (16.72)

4 We remind the reader that in particular EY j
t = 0.
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so that saying that the process Y
j
t is normalized means exactly that for s, t ∈ Ij ,

s < t , we have

E(Y j
s − Y

j
t )

2 = ϕ(t − s) .

We start with some preparations. For t ∈ I and 1 ≤ j ≤ 4, let us define

tj = max(min(t, j/4), (j − 1)/4) ∈ I j = [(j − 1)/4, j/4] .

In words, tj = (j − 1)/ if t ≤ j/4, tj = t if (j − 1)/4 ≤ t ≤ j/4 and tj = j/4 if
t ≥ j/4.

For 0 ≤ s ≤ t ≤ 1, the interval ]s, t] is the disjoint union of the intervals ]sj , tj ]
for 1 ≤ j ≤ 4. In particular, we have

1]s,t ] =
∑

j≤4

1]sj ,t j ] . (16.73)

Consider the probability space [0, 1] provided with Lebesgue’s measure. (Thus,
E refers simply to integration with respect to this measure.) The archetypical
example of a normalized process on [0, 1] is given by the formula

Wt = 1[0,t ] − t . (16.74)

Our first goal is to play with this process to discover the useful algebraic iden-
tity (16.76). Consider the algebra S of subsets of [0, 1] generated by the intervals
Ij for 1 ≤ j ≤ 4, and denote by ES conditional expectation with respect to this
algebra. We define

Vt = ESWt = ES (1[0,t ] − t) . (16.75)

Lemma 16.6.9 We have the identity

t − s − (t − s)2 =
∑

1≤j≤4

ϕ(sj − tj )+ E(Vs − Vt)
2 . (16.76)

Proof We define V ′t = Wt − ESWt , so that Wt = V ′
t + Vt and Vt is S-measurable,

while ES (V ′t ) = 0. Given two function f, f ′ with ESf = 0 and f ′ S-measurable,
then Eff ′ = EESff ′ = Ef ′ESf = 0, so that E(f + f ′)2 = Ef 2 + Ef ′2.
Consequently, for s ≤ t ,

t − s − (t − s)2 = E(Ws −Wt)
2 = E(V ′

s − V ′t )2 + E(Vs − Vt)
2 . (16.77)
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Keeping in mind that λ(Ij ) = 1/4, we obtain from (16.73) that

ES1[s,t ] = 4
∑

j≤4

(tj − sj )1Ij . (16.78)

Since E1Ij = 1/4, we obtain

E(ES1[s,t ])2 = 4
∑

j≤4

(tj − sj )2 . (16.79)

For s ≤ t , we have

E(V ′
s − V ′

t )
2 = E(1[s,t ] − ES1[s,t ])2 = E1[s,t ] − E(ES1[s,t ])2 .

Using (16.79) and since E(1[s,t ] = t − s =∑j≤4 t
j − sj , we obtain

E(V ′
s − V ′t )2 =

∑

1≤j≤4

ϕ(tj − sj ) . (16.80)

We then conclude from (16.77). �
We go back to our main construction. It involves an auxiliary process (Zt )t∈T

and a r.v. τ ∈ {1, 2, 3, 4}. Throughout the proof, we assume the following:

The processes Y j
t are independent of each other and of the r.v.s Zt and τ ,

(16.81)

∀ j ≤ 4 ; P(τ = j) = αj , (16.82)

EZt = 0 ; E(Zs − Zt)
2 = E(Vs − Vt )

2 . (16.83)

We do not assume that Zt and τ are independent. When αj = 0, for t ∈ I , let us

define Uj
t = Y

j

tj
. Otherwise, we define

U
j
t =

1√
αj

1{τ=j}Y j

tj
, (16.84)

and we set

St =
∑

1≤j≤4

U
j
t . (16.85)

We then transform the process (St ) into a normalized process by adding (Zt ) as
follows:
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Lemma 16.6.10 The process

Xt = St + Zt (16.86)

is normalized.

Proof Assume s < t . Using the independence of τ and Y
j
t in the second equality,

and that the process Y j is normalized in the third one, we obtain

E(Uj
s −U

j
t )

2 = 1

αj
E1{τ=j}(Y j

tj
−Y

j

sj
)2 = E(Y j

tj
−Y

j

sj
)2 = ϕ(tj−sj ) . (16.87)

This formula remains true even when αj = 0, since then U
j
t = Y

j

tj
. It follows

from (16.81) and the fact that Y j and Y j ′ are independent for j �= j ′ that then

EUj
s U

j ′
t = 0, so that

E(Ss − St )
2 =

∑

1≤j≤4

E(Uj
s − U

j
t )

2 =
∑

1≤j≤4

ϕ(tj − sj ) . (16.88)

It follows from (16.81) that ESsZt = 0, so that

E(Xs −Xt)
2 = E(Ss − St )

2 + E(Zs − Zt)
2 ,

and the result follows from (16.83), (16.88), and (16.76). �
Lemma 16.6.11 Assume that T ∩ Ij �= ∅ for each j ≤ 4. Then

E sup
t∈T

Xt ≥
∑

1≤j≤4

(√
αjE sup

t∈T∩Ij
Y
j
t + inf

t∈T∩Ij
E1{τ=j}Zt

)
. (16.89)

Proof First, we observe that, using that T ∩ Ij �= ∅ in the last inequality,

E sup
t∈T

Xt =
∑

1≤j≤4

E1{τ=j} sup
t∈T

Xt

=
∑

1≤j≤4

E sup
t∈T

1{τ=j}Xt

≥
∑

1≤j≤4

E sup
t∈T∩Ij

1{τ=j}Xt . (16.90)

If αj = 0, we use that trivially E supt∈T∩Ij 1{τ=j}Xt ≥ inft∈T∩Ij E1{τ=j}Zt

because E1{τ=j}St = 0. Let us fix j ≤ 4 with αj �= 0 and denote by Ej conditional
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expectation given the r.v.s Y j
t . Then Jensen’s inequality implies

E sup
t∈T∩Ij

1{τ=j}Xt ≥ E sup
t∈T∩Ij

Ej1{τ=j}Xt . (16.91)

Let us fix t ∈ Ij , so that then tj = t . Since 1{τ=j}1{τ=j ′} = 0 for j ′ �= j , we have
by definition of Xt

1{τ=j}Xt = 1√
αj

1{τ=j}Y j
t + 1{τ=j}Zt .

Using the independence of τ and Y
j
t in the first equality, and the independence of

Y
j
t from τ and Z in the second equality, we get

Ej1{τ=j}Xt = √
αjY

j
t + Ej1{τ=j}Zt = √αjY

j
t + E1{τ=j}Zt . (16.92)

To conclude, we simply use that supt (yt + zt ) ≥ supt yt + inft zt , and thus

E sup
t∈T∩Ij

Ej1{τ=j}Xt ≥ √αjE sup
t∈T∩Ij

Y
j
t + inf

t∈T∩Ij
E1{τ=j}Zt . �

Lemma 16.6.12 Even when T ∩ Ij = ∅ for some j ≤ 4, if the process (Zt ) is
independent of τ , we have

E sup
t∈T

Xt ≥
∑

j∈J

√
αjE sup

t∈T∩Ij
Y
j
t , (16.93)

where J = {j ≤ 4; Ij �= ∅}.
Proof As in (16.90), we obtain

E sup
t∈T

Xt =
∑

1≤j≤4

E sup
t∈T

1{τ=j}Xt ≥
∑

j∈J
E sup

t∈T∩Ij
1{τ=j}Xt ,

where we use that E supt∈T 1{τ=j}Xt ≥ E supt∈T∩Ij 1{τ=j}Xt if T ∩ Ij �= ∅
and E supt∈T 1{τ=j}Xt ≥ 0 because E1{τ=j}Xt=0 for each t . Since τ and Zt are

independent, and since EZt = 0, then (16.92) implies Ej1{τ=j}Xt = √
αjY

j
t and

the conclusion from (16.91). �
We need one more ingredient, which is a consequence of the definition Vt =

ES (1[0,t ] − t).
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Lemma 16.6.13 We have

inf
t∈I1

E(Vt1I4) ≥ −
1

16
; inf

t∈I2
E(Vt1I1) ≥

1

8

inf
t∈I3

E(Vt1I2) ≥
1

16
; inf

t∈I4
E(Vt1I3) ≥ 0 . (16.94)

Proof Indeed, for t ∈ I1 and x ∈ I4, we have Vt(x) = −t ≥ −1/4; for x ∈ I1 and
t ∈ I2, we have Vt(x) = 1− t ≥ 1/2; etc. �
Proof of Proposition 16.6.3 To prove (16.55), we simply choose Zt independent of
τ (e.g., a copy of the process (Vt ) which is independent of all the other processes
considered), and we use (16.93) since by definition F(I) = 0 when I ∩ T = ∅.
It remains only to prove (16.56). We shall use (16.89) with an appropriate choice
of the process (Zt ) (which will no longer be independent of τ ). This appropriate
choice will make the quantity

∑
1≤j≤4 inft∈T∩Ij E1{τ=j}Zt large.

For a subset A of [0, 1], we denote by A/100 the set {x/100; x ∈ A}. Thus,
I/100 =]0, 1/100] is the union of the four intervals Ij /100, each of length 1/400.
For each j ≤ 4, we have P(τ = j) = αj ≥ 1/400. Without loss of generality,
we may then assume that the underlying probability space is [0, 1] provided with
Lebesgue’s measure and that for j ≤ 4,

(I/100) ∩ {τ = j } = In(j)/100 , (16.95)

where n(1) = 4, n(2) = 1, n(3) = 2, and n(4) = 3. This will greatly simplify
notation. Let us then define Zt(x) ≡ 0 for x > 1/100, and for x ≤ 1/100, let
us define Zt(x) = 10Vt(100x), where Vt is defined in (16.75). Using change of
variable, we see that (16.83) holds.

The fundamental relation is, recalling that Ij =](j − 1)/4, j/4],

E1{τ=j}Zt = 1

10
E1In(j)Vt .

The proof is straightforward by a change of variable:

E1{τ=j}Zt = 10
∫

{τ=j}∩]0,1/100]
Vt(100x)dx = 10

∫

In(j)/100
Vt(100x)dx

= 1

10

∫

In(j)

Vt (x)dx = 1

10
E1In(j)Vt . (16.96)

It then follows from Lemma 16.6.13 that

∑

1≤j≤4

inf
t∈Ij

E1{τ=j}Zt = 1

10

∑

1≤j≤4

inf
t∈Ij

E1In(j)Vt ≥ 1

10

(
− 1

16
+ 1

8
+ 1

16

)
= 1

80
,

and combining with (16.89), this completes the proof. �
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16.7 Permutations

One may also ask the following question: What are the sequences (am) such that
for any permutation π and any orthonormal sequence (ϕm), the series

∑
m aπ(m)ϕm

converges a.s.? The answer to this question was also discovered by A. Paszkiewicz
and is announced in [81]. Given the sequence (am) and the permutation π of N, we
define the set

Tπ =
{ ∑

1≤m≤n
a2
π(m) ; n ≥ 1

}
. (16.97)

We also consider the numbers

bk :=
∑{

a2
m ; 2−2k+1

< a2
m ≤ 2−2k

}
. (16.98)

Without loss of generality, we assume that
∑

m a2
m ≤ 1/2, so that

∑
k bk ≤ 1/2.

Theorem 16.7.1 For a sequence (am), the following are equivalent:

(f) For every permutation π and every orthonormal sequence (ϕm), the series∑
m aπ(m)ϕm converges a.s.

(g) We have

∑

k≥1

2k
√
bk <∞ . (16.99)

(h) There exists π such that

∑

n≥0

√
2−n card{I ∈ In ; I ∩ Tπ �= ∅} <∞ . (16.100)

(i) Condition (16.100) holds for each π .

This should be compared with Corollary 16.3.2, which asserts that when the
series

∑
m amϕm converges a.s. whatever the choice of the orthonormal sequence

ϕm, then
∑

k≥1 22kbk <∞. The stronger hypothesis of Theorem 16.7.1 implies the
stronger conclusion (16.99).

It is not very difficult to prove the equivalence of (g) to (i), and this is what we
will do first. We will then deduce the rest of Theorem 16.7.1 from Theorem 16.2.1.
Condition (16.100) is the natural “covering number condition” adapted to processes
that satisfy (16.13) (see Exercise 16.2.2). The deepest idea of the proof is that
the more sophisticated conditions of Theorem 16.2.1 are equivalent to this natural
covering condition “when the set T is homogeneous”, and to prove that (f) implies
(h), we will construct π so that Tπ is “as homogeneous as possible”.

Let us prove “the easy part” of Theorem 16.7.1.
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Proposition 16.7.2 Conditions (g) to (i) of Theorem 16.7.1 are equivalent.

Proof We first prove that conditions (16.99) and (16.100) are equivalent when π is
the identity. We first prove in that case that (16.100) implies (16.99). For n ≥ 1, we
define Jn as the set of dyadic intervals I ∈ In for which T ∩ I �= ∅.

In Lemma 16.3.3, we constructed a probability measure μk on T which
satisfies (16.24) for 2k−1 ≤ n < 2k , i.e., the first inequality in Eq. (16.101) below.
Thus,

1

2

√
bk ≤

∑

I∈In

√
2−nμk(I) =

∑

I∈Jn

√
2−nμk(I) ≤

√
2−n cardJn , (16.101)

where we have used the Cauchy-Schwarz inequality as in (16.17) in the last
inequality. Summing over n with 2k−1 ≤ n < 2k yields

2k−2
√
bk ≤

∑

2k−1≤n<2k

√
2−n cardJn .

Summing then over k proves that (16.100) for the identity implies (16.99).
We next prove that (16.99) implies (16.100) when π is the identity. We shall

prove that

∑

n≥0

√
2−n cardJn <∞ . (16.102)

Let us as usual enumerate T as a sequence tn = ∑
1≤m≤n a2

m, and let t∗ =
∑

m≥1 a
2
m. Define

Wk = {tn ; max(a2
n, a

2
n+1) > 2−2k } ∪ {t1, t∗} ,

Vk =
⋃{[tn, tn+1] ; a2

n+1 = tn+1 − tn ≤ 2−2k} ⊂ [0, 1] .

Denoting Lebesgue’s measure by λ, we deduce from (16.98) that

λ(Vk) =
∑{

a2
n+1 ; a2

n+1 ≤ 2−2k} ≤
∑

r≥k
br . (16.103)

Also,

cardWk ≤ 2+ card{n;max(a2
n, a

2
n+1) > 2−2k } ≤ 2+ 2 card{n; a2

n > 2−2k} ,
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and since card{n; a2
n > 2−2k } ≤ 22k ∑

m≥1 a
2
m ≤ 22k , we obtain

cardWk ≤ 2+ 2 · 22k . (16.104)

Consider 2k+1 ≤ � < 2k+2 and an interval I ∈ J�. We will prove that one of the
following occurs: Either

I ∩Wk �= ∅ (16.105)

or else

I ⊂ Vk . (16.106)

To prove this, we assume I ∩Wk = ∅, and we prove (16.106). First, since I ∈ J�,
then I meets T ⊂ [t1, t∗] by definition, so that either t1 ∈ I , or t∗ ∈ I , or else

I ⊂]t1, t∗[⊂
⋃

n≥1

[tn, tn+1] . (16.107)

Since we assume that I ∩ Wk = ∅, we have in particular that t1, t
∗ �∈ I and

thus (16.107) holds. Consider an interval [tn, tn+1] which meets I . Then either tn or
tn+1 belongs to I , for otherwise I ⊂]tn, tn+1[, contradicting the fact that I ∩T �= ∅.
Since I∩Wk = ∅, it cannot happen that both tn and tn+1 belong to Wk . The definition
of Wk shows that a2

n+1 ≤ 2−2k , so that [tn, tn+1] ⊂ Vk by definition of Vk. We have
shown that every interval [tn, tn+1] which meets I is a subset of Vk . Since (16.107)
holds, we have proved (16.106), finishing the proof that either (16.105) or (16.106)
holds.

There are at most cardWk intervals I ∈ I� which satisfy (16.105). Since λ(I) =
2−� for I ∈ I�, there are at most 2�λ(V�) such intervals contained in Vk . Since every
interval I ∈ I� satisfies either (16.105) or (16.106), recalling (16.103),

cardJ� ≤ cardWk + 2�λ(Vk) ≤ 2+ 2 · 22k + 2�
∑

r≥k
br ,

so that (using the inequality
√
a + b ≤ √a +√b)

√
cardJ� ≤ L22k−1 + 2�/2

√∑

r≥k
br .

This holds whenever 2k+1 ≤ � < 2k+2 and therefore

∑

2k+1≤�<2k+2

2−�/2
√

cardJ� ≤ L2−2k22k−1 + L2k
√∑

r≥k
br .
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Summation of these inequalities over k ≥ 1, use of the inequality
√∑

r≥k br ≤
∑

r≤k
√
br and of (16.99) implies (16.102). This concludes the proof that (16.99)

implies (16.100) when π is the identity.
The case of general π follows, because the value of bk does not depend on the

order in which we consider the elements am. So we simply replace the numbers am
by the numbers aπ(m) to obtain the equivalence of (16.99) and (16.100). �

The next goal is to complete the proof of Theorem 16.7.1. First, we prove that (i)
implies (f). This is because each set Tπ satisfies (16.100) so that it satisfies condition
(c) of Theorem 16.2.1, as follows from the Cauchy-Schwarz inequality (as in (16.17)
again):

∑

I∈In

√
2−nμ(I) ≤

√
2−n card{I ∈ In ; I ∩ Tπ �= ∅} .

Now we come to the main argument: the proof that (f) implies (g). Let us first
introduce some notations. Given a finite set U , let us denote by T (U) the collection
of sets of the type

T = {0, u1, u1 + u2, . . . , u1 + u2 + · · · + uq
}

where q = cardU and (u�)�≤q is an enumeration of the elements of U . In other
words, to construct T ∈ T (U), we start with 0, and, having constructed an element
of T , we construct the next largest element by adding an element of U , in such a
manner that each element of U is used exactly once for this purpose. For such a set
T , we denote by t∗(T ) its largest element, so that t∗(T ) is the sum of the elements
of U . The center of the proof is the following:

Proposition 16.7.3 There exists a universal constant L∗, with the following prop-
erty. Consider a finite set J ⊂ {10, 11, . . .} with the property that

k < k′ ∈ J ⇒ k′ − k ≥ 5 . (16.108)

For k ∈ J , consider a finite set Uk ⊂ R
+, assume that

u ∈ Uk ⇒ 2−2k+1
< u ≤ 2−2k , (16.109)

and set

bk =
∑

u∈Uk

u . (16.110)
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Assume also that
∑

k∈J bk ≤ 1/2, and denoting by k∗ the smallest element of J ,
assume that

∀k ∈ J , bk ≥ 2−4k2−2k
∗−3

. (16.111)

Let U = ∪k∈JUk . Then there exist a set T ∈ T (U) (so that t∗(T ) =∑k∈J bk) and
a probability measure μ on T such that μ({0}) = 0 with the following property.
Consider x ∈ [0, 1] with x + t∗(T ) ≤ 1. Then for each k ∈ J , we have

∑

2k−2≤n≤2k−1

∑

I∈In,I−x⊂[0,t∗(T )]

√
2−nμ(I − x) ≥ 2k

√
bk

L∗
, (16.112)

so that in particular

∑

n≥0

∑

I∈In,I−x⊂[0,t∗(T )]

√
2−nμ(I − x) ≥

∑

k∈J

2k
√
bk

L∗
. (16.113)

The number 5 in (16.108) is simply a convenient choice whose relevance will
became apparent gradually. The condition (16.111) is purely technical, and its
relevance will become apparent when we prove the proposition by induction over
card J . The important part is condition (16.112). To understand it better, we note
that I −x ⊂ [0, t∗(T )] if and only if I ⊂ [x, x+ t∗(T )] and that for x+ t∗(T ) ≤ 1,
the interval [x, x + t∗(T )] is a subinterval of [0, 1], so that it has a good chance to
contain plenty of intervals I ∈ In which will contribute to making the left-hand side
of (16.113) large (this would be less the case if x + t∗(T ) was ≥ 1).

We will discuss and prove Proposition 16.7.3 later, but our first goal is to
complete the proof of Theorem 16.7.1, i.e., to prove that (f) implies (g).

Lemma 16.7.4 Assume that the sequence (bk)k≥1 satisfies
∑

k≥1 2k
√
bk = ∞.

Then given k̃ and A > 0, we can find a finite set J ⊂ {k̃, k̃ + 1, . . .} which
satisfies (16.108) and

∑
k∈J 2k

√
bk ≥ A and for which bk ≥ 2−4k for all k ∈ J .

Proof For 0 ≤ j ≤ 4, consider the set Ij of integers ≥ k̄ which are equal to
j modulo 5, so that each such set satisfies (16.108). There exist 0 ≤ j ≤ 4
such that

∑
k∈Ij 2k

√
bk = ∞. Define now I = {k ∈ Ij ; bk ≥ 2−4k}. Since

∑
bk≤4−k 2k

√
bk < ∞, we have

∑
k∈I 2k

√
bk = ∞. Then there is a finite subset

J of I with
∑

k∈J 2k
√
bk > A. �

Proof that (f) implies (g) We argue by contradiction, and we assume that (g) fails,
i.e.,

∑
k≥1 2k

√
bk = ∞. Consider the set V = {a2

m;m ≥ 1}. We construct by
induction finite sets Vs ⊂ V with maxVs+1 < minVs , sets Ts ∈ T (Vs), and
probability measures μs on Ts with μs({0}) = 0 and the following property.
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Consider x ∈ [0, 1] with x + t∗(Ts) ≤ 1. Then

∑

n≥0

∑

I∈In,I−x⊂[0,t∗(Ts)]

√
2−nμs(I − x) ≥ 2s . (16.114)

The construction is inductive. Having constructed Vs , consider ks such that 2−2ks <

u for all u ∈ Vs . We construct a set J by applying Lemma 16.7.4 with k̄ = ks + 1.
We then apply Proposition 16.7.3 with Uk = {a2

m; 2−2k+1
< a2

m ≤ 2−2k } for k ∈ J

to find Vs+1, completing the induction.
By construction for s ≥ 1, we have Ts = {0} ∪ {∑1≤m≤n a2

rm,s
; n ≤ qs}

where the integers rm,s for s ≥ 1 and m ≤ qs are all distinct. Consider then a
permutation π with the property that for each s, the integers rm,s , 1 ≤ m ≤ qs
occur as π(js + 1), . . . , π(js + qs) for consecutive integers js + 1, . . . , js + qs . Let
us set xs = ∑

m≤js a
2
π(m). Then for each n ≤ qs , we have xs +∑1≤m≤n a2

rm,s
=

∑
1≤m≤js+n a

2
π(m) so that xs + Ts ⊂ Tπ . In particular, xs + t∗(Ts) ≤ 1, so that we

can use (16.114) for x = xs to obtain

∑

n≥0

∑

I∈In

√
2−nμs(I − xs) ≥

∑

n≥0

∑

I∈In,I−xs⊂[0,t∗(Ts)]

√
2−nμs(I − xs) ≥ 2s .

This proves that the probability measure ν on Tπ given by ν(C) = μs(C − xs)

satisfies

∑

n≥0

∑

I∈In

√
2−nν(I) ≥ 2s .

Thus, condition (c) of Theorem 16.2.1 is not satisfied. Thus, there exists an
orthonormal sequence (ϕm) such that the series

∑
m aπ(m)ϕm does not converge

a.s. so that (f) fails and the proof of Theorem 16.7.1 is complete. �
We turn to the discussion of Proposition 16.7.3. The main idea is very simple (but

unfortunately the details are quite taxing). For each k in J , the following happens:

• If n ≤ 2k−1, at scale 2−n, the measure μ looks very much like the uniform
measure on a set Sk with λ(Sk) ≥ bk .

• The set Sk is a union of intervals. If n ≥ 2k−2, all these intervals are very much
longer than 2−n.

Assuming 2k−2 ≤ n ≤ 2k−1, we can then pretend that μ is the uniform measure
on Sk to estimate the term

∑
I∈In,I−x⊂[0,t∗(T )]

√
2−nμ(I − x). Let us first estimate

how many I ∈ In are such that I − x ⊂ Sk . We have I − x ⊂ Sk if and only if I ⊂
x+ Sk , and when x < 1− t∗(T ), we have x +Sk ⊂ [0, 1] because Sk ⊂ [0, t∗(T )].
Since Sk is a union of intervals, each of which is of length much larger than 2−n,
for x < 1 − t∗(T ), there are about 2nλ(Sk) sets I ∈ In such that I − x ⊂ Sk .
For each of these sets, let us estimate μ(I − x). Since we pretend that μ is the
uniform measure on Sk , it has density 1/λ(Sk) on Sk , so that if I − x ⊂ Sk , then
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μ(I−x) is about 2−n/λ(Sk), and hence
√

2−nμ(I − x) is about 2−n/
√
λ(Sk). Thus,

the sum
∑

I∈In,I−x⊂[0,t∗(T )]
√

2−nμ(I − x) has about 2nλ(Sk) terms each about
2−n/

√
λ(Sk) so it is ≥ √λ(Sk)/L ≥ √bk/L, and then

∑

2k−2≤n≤2k−1

∑

I∈In,I−x⊂[0,t∗(T )]

√
2−nμ(I − x) ≥ 2k

√
bk

L
, (16.115)

which is the desired inequality (16.112).
How is the situation of Proposition 16.7.3 possible? The important idea is

separation of scales. If k′ > k + 1, the elements of Uk′ are in a sense “infinitely
smaller” than those of Uk . The use of (16.108) is to ensure separation of scales
between the different values of k ∈ J . Let us try to visualize the measure μ by
blowing the picture by a factor 2 every second [31]. At the beginning, the measure
μ appears uniform on a given interval [0, b]. After a while however, this no longer
appears to be the case, gaps appear, and μ seems to be carried by a union of many
very small intervals (which can be of rather widely different sizes). It really looks
like the uniform measure on the union of these intervals. Waiting quite longer, this
appears to be no longer the case. Gaps appear. Each of the very small intervals
breaks into extremely small intervals. These can also be widely different sizes.
However, the longer of them are still very much shorter than the shortest of the
previous very small intervals. And μ looks like the uniform measure on the union
of these intervals. The amount of time it takes to go through one step of the process
increases as a geometric series.

The main ingredient of the construction is the following principle. Consider two
probability measures on a set S ⊂ [0, 1] which is a union of very small intervals.
If these two measures give the same (small) mass to each of these intervals, at a
large scale, they are nearly identical. The principle will be used when one of the
probability measures is the uniform probability on S.

It could help the reader to start with the case cardJ = 1.

Proof of Proposition 16.7.3 when card J = 1 Writing k = k∗ for simplicity, we
have J = {k}, and all the elements u of U = Uk satisfy 2−2k+1

< u ≤ 2−2k .
We enumerate U = {u1, . . . , uq }, so that b := bk = ∑

�≤q u� ≥ 2−4k2−2k−3

by (16.111). For � ≤ q , let t� =∑m≤� um, and let T = {t0 = 0, t1, . . . , tq} ∈ T (U).
Consider the probability measure μ on T such that μ({t�}) = u�/b = t� − t�1 for
� ≤ q . One way to visualize this measure is to start with the uniform measure on
the interval [0, b], which is the union of the intervals ]t�−1, t�]. The small interval
]t�−1, t�] has total mass u�/b. This mass is then swept to the right of this interval.
What matters is that the small interval ]t�−1, t�] has the same mass for the uniform
measure on the interval [0, b] and for μ.

For n ≤ 2k−1, at the scale 2−n, the probability μ looks like the uniform measure
on the interval [0, b] because the distance between two consecutive elements of
T is smaller than 2−2k , which is very much smaller than 2−n. For I ∈ In with
I − x ⊂ [0, b], the measure of I for the uniform measure on [0, b] is 2n/b so that
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μ(I−x) will have nearly the same value, and in particular, we will have μ(I−x) ≥
2−n/Lb. Consequently,

√
2−nμ(I − x) ≥ 2−n/(L

√
b). Next, if 2k−2 ≤ n, then

b2n ≥ 2n2−4k2−2k−3
is much larger than 1. Thus, given 0 ≤ x ≤ 1 − t∗(T ), there

are then about 2nb sets I ∈ In for which I ⊂ [x, x + t∗(T )] = [x, x + b] ⊂ [0, 1],
i.e., there are about 2nb sets I ∈ In such that I − x ⊂ [0, t∗(T )] = [0, b] so that∑

I∈In,I−x⊂[0,t∗(T )]
√

2−nμ(I − x) is at least of order 2nb×2−n/L
√
b, i.e.,

√
b/L.

As this is true for each 2k−2 ≤ n ≤ 2k−1, the left-hand side of (16.112) is at least of
order 2k

√
b/L as desired.

Proving that things happen the way we described them requires no skill
whatsoever because there is all the room in the world for the estimates. This is
better left to the reader, as any attempt to write these estimates makes the proof
unreadable.5 �
Proof of Proposition 16.7.3 The proof is by induction over card J . We denote by
k∗ the smallest element of J , and we set J ′ = J \ {k∗}. We enumerate Uk∗ as

u1, . . . , uq . The sum of these elements is at most 1, and each of them is ≥ 2−2k
∗+1

.

Thus, q ≤ 22k
∗+1

. For � ≤ q , we set β� = u�/bk∗ , so that
∑

�≤q β� = 1.
The proof will require using the induction hypothesis for each � ≤ q . The first

step of the proof is to partition each set Uk (k ∈ J ′) into q disjoint sets (Uk,�)�≤q ,
so that the elements of Uk,� will be used for the construction associated with �. This
partitioning is done in such a way that the proportion of Uk attributed to Uk,� is
about β�, that is,

bk,� :=
∑

u∈Uk,�

u � β�bk = β�
∑

u∈Uk

u . (16.116)

To prove that this is possible, it suffices to show that for k ∈ J ′, the elements of Uk

are very small compared to β�bk . This is because since β� = u�/bk∗ ≥ u� ≥ 2−2k
∗+1

by (16.111), we have

β�bk ≥ 2−4k2−2k
∗+1

2−2k
∗−3 ≥ 2× 2−4k2−2k

∗+2
.

The smallest element k̂ of J ′ satisfies k̂ ≥ k∗ + 5 so that since bk,� � β�bk , we will

have bk,� ≥ 2−4k2−2k̂−3
, i.e., the condition (16.111) is satisfied for the sets Uk,� for

k ∈ J ′. Given �, we may then use the induction hypothesis for these sets. We then
obtain sets T� ∈ T (∪k∈J ′Uk,�), with

t∗(T�) =
∑

k∈J ′
bk,� � β�

∑

k∈J ′
bk , (16.117)

5 Again, no skill whatsoever is required there.
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Tk+2+vk+2Tk+vk Tk+1+vk+1

Fig. 16.1 View of the set T at a scale where the intervals between the sets Tk + vk can be seen,
but not yet the individual structure of these sets

and probability measures μ� on T� with the following property. Consider x ∈ [0, 1]
with x + t∗(T�) ≤ 1. Then for each k ∈ J ′, we have

∑

2k−2≤n≤2k−1

∑

I∈In,I−x⊂[0,t∗(T�)]

√
2−nμ�(I − x) ≥ 2k

√
bk,�

L∗
. (16.118)

�
The set T \ {0} will be the union over � ≤ q of translates v� + T� of the sets T�.

The numbers v� are recursively determined as follows, v1 = u1, and, once v� has
been constructed, v�+1 is such that the interval between the largest element w� of
v� + T� and v�+1 is u�+1, i.e., v�+1 = w�+1 + u�+1.6 It should be obvious that

t∗(T ) =
∑

�≤q
u� +

∑

�≤q
t∗(T�) =

∑

k∈J
bk .

Next, we claim that T ∈ T (U). Recall that a set in T (U) is a set such that
to go from one element of this set to the next largest one, one adds an element of
U , in such a way that each element of U is used exactly once in this manner. The
elements u� of Uk∗ is used to go from w�−1 to v�. The elements of ∪k∈J ′Uk,� are
used when going from one element of vk+Tk to the next (since Tk ∈ T (∪k∈J ′Uk,�)).
Conversely, going from one element t ∈ v� + T� ⊂ T to the next element of T
requires adding an element of ∪k∈J ′Uk,�, unless x = w� in which case this requires
adding u�+1 (Fig. 16.1).

The probability measure μ on T is defined as
∑

�≤q β�μ′� where μ′� is the
translation by v� of the probability μ�. The main idea behind this construction is
that at the scale 2−n for n < 2k

∗−1, the measure μ will look uniform on the interval
[0, t∗(T )]. The reason for this is very simple. Observe that since μ�({0}) = 0, the
probability μ′� is supported by the interval ]v�, v�+1], so that μ(]v�, v�+1]) = β�.
However, recalling (16.117), we have

v�+1 − v� = u� + t∗(T�) � β�bk∗ + β�
∑

k∈J ′
bk = β�

∑

k∈J
bk = β�t

∗(T ) .

6 And, as we look at the structure at increasingly finer scale, these are the first gaps which will
appear, and the gaps inside each block are much smaller.
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Thus, the measures of the very small intervals ]v�, v�+1] are almost exactly
proportional to their lengths, so that μ looks uniform on the interval [0, t∗(T )] at
the scale 2−n for n < 2k

∗−1, and as we explained, this implies (16.112) for k = k∗
(and since t∗(T ) ≥ bk∗).

Now, we have to prove (16.112) for k ∈ J ′. Consider I ∈ In with I − x ⊂
[v�, v� + t∗(T�)], so that μ(I − x) ≥ β�μ

′
�(I − x) = β�μ�(I − (x + v�)), using in

the last equality that μ′� is the translation of μ� by v�. We have shown that

∑

2k−2≤n≤2k−1

∑

I∈In,I−x⊂[v�,v�+t∗(T�)]

√
2−nμ(I − x)

≥ √β�
∑

2k−2≤n≤2k−1

∑

I∈In,I−(x+v�)⊂[0,t∗(T�)]

√
2−nμ�(I − (x + v�)) . (16.119)

Consider 0 ≤ x ≤ 1 − t∗(T ), and observe that then for each � ≤ q , we have
x+v� ≤ 1− t∗(T�). We can then use the induction hypothesis (16.118) (with x+v�
instead of x) to obtain that the right-hand side of (16.119) is≥ 2k

√
β�bk,�/L

∗. Thus,
we have shown that

∑

2k−2≤n≤2k−1

∑

I∈In,I−x⊂[v�,v�+t∗(T�)]

√
2−nμ(I − x) ≥ 2k

√
β�bk,�

L∗
. (16.120)

Since the intervals [v�, v�+ t∗(T�)] for � ≤ q are disjoint subintervals of [0, t∗(T )],
by summation of the inequalities (16.120) over � ≤ q , we obtain

∑

2k−2≤n≤2k−1

∑

I∈In,I−x⊂[0,t∗(T )]

√
2−nμ(I − x) ≥

∑

�≤q

2k
√
β�bk,�

L∗
.

Since bk,� � β�bk, the right-hand side is nearly 2k
√
bk/L

∗, and we almost obtain
the required inequality (16.112). To make the proof complete, it suffices to quantify
the errors made in the statement (16.116) and to show that they do not destroy the
argument. Since there is plenty of room, this is better left to the reader.7

16.8 Chaining, II

For the special sets T of the type (16.10), the equivalence of (c) and (d) of
Theorem 16.2.1 tells us for which sets T all the processes satisfying the increment
condition E(Xs −Xt)

2 ≤ |s− t| for s, t ∈ T are bounded. Our goal is to investigate

7 One may use in particular that since the elements of Uk,� are ≤ 2−2k , it should be obvious that

one can achieve bk,� ≥ β�bk − 2−2k ≥ (1− 2−k)β�bk .
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the same question for more general metric spaces under the more general increment
conditions (16.1):

∀ s, t ∈ T , Eϕ
(Xs −Xt

d(s, t)

)
≤ 1 , (16.1)

where ϕ is a Young function as in Definition 16.1.1.
What are the weakest possible natural conditions that will ensure that we control

the size of the process (Xt)t∈T under (16.1)? We consider this question in the
remainder of this chapter.

The material of this section is self-contained, but the reader might do well to
master first the simpler ideas of Sect. 16.1 to provide perspective. For simplicity, we
consider only the case where T is finite. We will first develop a chaining scheme.
This scheme is related, but different, from the scheme considered in Sect. 16.5
(which was well adapted to our limited goals there).

We say that a sequence T = (Tn)n≥0 of subsets of T is admissible if it satisfies

card T0 = 1 (16.121)

and

card Tn ≤ ϕ(4n) . (16.122)

We do not require the sequence (Tn) to be increasing. Let us consider the following
quantities:

Sd(T ) = sup
t∈T

∑

n≥0

4nd(t, Tn) (16.123)

and

S∗d (T ) =
∑

n≥1

∑

s∈Tn

4nd(s, Tn−1)

ϕ(4n)
. (16.124)

In the case where ϕ(x) = exp(x2)−1, which corresponds to Gaussian processes, we
have cardTn ≤ exp(42n), and the quantity (16.123) is then basically the right-hand
side of (2.34) (the difference is that we change n into 4n). The new feature here is the
quantity S∗d (T ), which was not needed in the Gaussian case or more generally in the
case where one has “exponential tails”. The formulation of the following theorem is
due again to W. Bednorz:
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Theorem 16.8.1 Consider a process that satisfies (16.1). Then, for each sequence
T = (Tn)n≥0 of admissible sets, we have

E sup
s,t∈T

|Xs −Xt | ≤ L(Sd(T )+ S∗d (T )) . (16.125)

It is not required here that EXt = 0.

Proof For n ≥ 1, let us define a map θn : Tn → Tn−1 such that for s ∈ Tn, one has

d(s, θn(s)) = d(s, Tn−1) . (16.126)

We may assume that Sd(T ) < ∞ for otherwise there is nothing to prove. This
implies that for large m, Tm is a good approximation of T , and in particular, since
T is finite, there exists m with T = Tm. Let us consider such a value of m. For
t ∈ T , we define πm(t) = t , and we define recursively πn−1(t) = θn(πn(t)), so
that (16.126) implies

d(πn(t), πn−1(t)) = d(πn(t), Tn−1) . (16.127)

For x, y > 0, the inequality

y

x
≤ 1+ ϕ(y)

ϕ(x)
. (16.128)

is obvious if y ≤ x, and if x ≤ y follows from the fact that ϕ(x) ≤ xϕ(y)/y by
convexity of ϕ. We use (16.128) with y = |Xs − Xθn(s)|/d(s, θn(s)) and x = 4n to
obtain (since ϕ(y) = ϕ(|y|)),

|Xs −Xθn(s)| ≤ 4nd(s, θn(s))+ 4nd(s, θn(s))

ϕ(4n)
ϕ
(Xs −Xθn(s)

d(s, θn(s))

)
. (16.129)

Using this for s = πn(t) yields (using a crude bound to obtain a last term
independent of t)

|Xπn(t) −Xπn−1(t)|≤4nd(πn(t), πn−1(t))+
∑

s∈Tn

4nd(s, θn(s))

ϕ(4n)
ϕ
(Xs −Xθn(s)

d(s, θn(s))

)
.

Combining with (16.44) if T0 = {t0}, we obtain

|Xt −Xt0 | ≤
∑

n≥1

4nd(πn−1(t), πn(t))

+
∑

n≥1

∑

s∈Tn

4nd(s, θn(s))

ϕ(4n)
ϕ
(Xs −Xθn(s)

d(s, θn(s))

)
, (16.130)
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and consequently,

sup
t∈T

|Xt − Xt0 | ≤ sup
t∈T

∑

n≥1

4nd(πn−1(t), πn(t))

+
∑

n≥1

∑

s∈Tn

4nd(s, θn(s))

ϕ(4n)
ϕ
(Xs −Xθn(s)

d(s, θn(s))

)
. (16.131)

Taking expectation and using (16.1) yields

E sup
t∈T

|Xt −Xt0 | ≤ sup
t∈T

∑

n≥1

4nd(πn−1(t), πn(t))+ S∗d (T ) . (16.132)

Now, recalling (16.127),

d(πn−1(t), πn(t)) = d(πn(t), Tn−1)

≤ d(t, Tn−1)+ d(t, πn(t))

≤ d(t, Tn−1)+
∑

k≥n
d(πk(t), πk+1(t)) .

Thus, using that
∑

n≤k 4n ≤ 4k+1/2 we get

∑

n≥1

4nd(πn−1(t), πn(t)) ≤
∑

n≥1

4nd(t, Tn−1)+
∑

n≥1

4n
∑

k≥n
d(πk(t), πk+1(t))

=
∑

n≥1

4nd(t, Tn−1)+
∑

k≥1

(∑

n≤k
4n
)
d(πk(t), πk+1(t))

≤
∑

n≥1

4nd(t, Tn−1)+ 1

2

∑

k≥1

4k+1d(πk(t), πk+1(t))

≤
∑

n≥1

4nd(t, Tn−1)+ 1

2

∑

n≥1

4nd(πn−1(t), πn(t)) ,

so that recalling (16.123), we get

∑

n≥1

4nd(πn−1(t), πn(t)) ≤ 2
∑

n≥1

4nd(t, Tn−1) = 8
∑

n≥0

4nd(t, Tn) ≤ 8Sd(T ) .

(16.133)

Combining with (16.132), this finishes the proof. �
Interestingly, the previous proof does not use (16.122)!
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Corollary 16.8.2 Define e∗0 = Δ(T , d) and for n ≥ 1, define

e∗n = inf{ε > 0 ; ∃U ⊂ T , cardU ≤ ϕ(4n) , ∀ t ∈ T , d(t, U) ≤ ε} .
(16.134)

Then

E sup
s,t∈T

|Xs −Xt | ≤ L
∑

n≥0

4ne∗n . (16.135)

Proof Consider an arbitrary point t0 of T , and set T0 = {t0}. For n ≥ 1, consider a
subset Tn of T with cardTn ≤ ϕ(4n) and d(t, Tn) ≤ 2e∗n for each t ∈ T . It is then
obvious that the quantities Sd(T ) and S∗d (T ) of (16.123) and (16.124) satisfy

Sd(T ) ≤ L
∑

n≥0

4ne∗n ; S∗d (T ) ≤ L
∑

n≥0

4ne∗n . �

Exercise 16.8.3 Deduce Pisier’s bound (16.5) from Corollary 16.8.2.

The bound of Theorem 16.8.1 raises two questions: How to construct admissible
sequences? How sharp is this result?

Definition 16.8.4 For a metric space (T , d), let

S(T , d, ϕ) = sup
{
E sup

s,t∈T
|Xs −Xt |

}
, (16.136)

where the supremum is taken over all the processes which satisfy (16.1).

The reader will need this definition throughout the rest of this chapter. We
reformulate (16.125) as

S(T , d, ϕ) ≤ L(Sd(T )+ S∗d (T )) , (16.137)

and the question arises as to which extent this inequality is sharp for the best possible
choice of T . W. Bednorz has recently discovered a rather general setting where this
is the case. To describe it, we need the following concept:

Definition 16.8.5 Consider p > 1. A distance d on a metric space is called p-
concave if dp is still a distance, i.e.,

d(s, t)p ≤ d(s, v)p + d(v, t)p . (16.138)

This definition is well adapted to the study of the distance d(s, t) = √|s − t|,
which is 2-concave. Unfortunately, the usual distance on R

n is not p-concave, and
as we shall see later, this case is considerably more complex.
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One of the results we will prove is that for a p-concave distance, the inequal-
ity (16.137) can be reversed. The proof is indirect. We will show that both sides of
this inequality are equivalent to a new quantity, itself of independent interest.

Theorem 16.8.6 (W. Bednorz [8]) Assume that

the function x �→ ϕ−1(1/x) is convex . (16.139)

Assume that the distance d is p-concave. Then there exists a probability measure μ

on T for which

sup
t∈T

∫ Δ(T ,d)

0
ϕ−1

( 1

μ(B(t, ε))

)
dε ≤ K(p)S(T , d, ϕ) , (16.140)

where S(T , d, ϕ) is defined in (16.136).

Condition (16.139) is inessential and is imposed only for simplicity. It is the
behavior of ϕ−1 at zero that matters.

Theorem 16.8.7 (W. Bednorz, [11]) Consider a probability measure μ on T , and
let

B = sup
t∈T

∫ Δ(T ,d)

0
ϕ−1

( 1

μ(B(t, ε))

)
dε . (16.141)

Then there is an admissible sequence T of subsets of T for which

Sd(T ) ≤ LB ; S∗d (T ) ≤ LB . (16.142)

Thus, through (16.137) and (16.142), any probability measure μ yields a bound
on S(T , d, ϕ). In this context, such a probability μ on (T , d) is traditionally called
a majorizing measure. The importance of majorizing measures seemed to decrease
considerably with the invention of the generic chaining, as they seemed to have
limited use in the context of Gaussian processes (see Sect. 3.1), but as we saw in
Chap. 11, matters are more complicated than that.

Definition 16.8.8 For a metric space (T , d), we define

M(T , d, ϕ) = inf

{

sup
t∈T

∫ Δ(T ,d)

0
ϕ−1

( 1

μ(B(t, ε))

)
dε

}

, (16.143)

where the infimum is taken over all probability measures μ on T .

Combining Theorems 16.8.1, 16.8.6, and 16.8.7, we have proved the following:
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Theorem 16.8.9 Assuming (16.139), if the distance d is p-concave, then

S(T , d, ϕ) ≤ L inf
T
(Sd(T )+ S∗d (T )) ≤ LM(T , d, ϕ) ≤ K(p)S(T , d, ϕ) .

(16.144)

Thus, S(T , d, ϕ) is of the same order as M(T , d, ϕ), but the determination of
the quantity M(T , d, ϕ) is by no means easy.

Let us turn to the proof of Theorem 16.8.6. A p-concave distance satisfies the
following improved version of the triangle inequality:

Lemma 16.8.10 If the distance d is p-concave, then for s, t, v ∈ T , we have

d(s, v) − d(t, v) ≤ d(s, t)
( d(s, t)

d(t, v)

)p−1
. (16.145)

Proof We have

d(s, v)p ≤ d(t, v)p + d(s, t)p = d(t, v)p
(

1+ d(s, t)p

d(t, v)p

)
,

so that since (crudely) (1+ x)1/p ≤ 1+ x for x ≥ 0 and p ≥ 1,

d(s, v) ≤ d(t, v)
(

1+ d(s, t)p

d(t, v)p

)1/p ≤ d(t, v)+ d(s, t)
( d(s, t)

d(t, v)

)p−1
. �

Lemma 16.8.11 Consider s, t ∈ T . Then for each probability measure μ on T , one
has

∫

T

dμ(ω)
∫ max(d(s,ω),d(t,ω))

min(d(s,ω),d(t,ω))

1

μ(B(ω, 3ε))
dε ≤ K(p)d(s, t) . (16.146)

Proof Let us consider the set A = {ω ∈ T ; d(t, ω) ≤ d(s, ω)}, so that for ω ∈ A,
the second integral in (16.146) is from d(t, ω) to d(s, ω). Since for d(t, ω) ≤ ε we
have B(t, 2ε) ⊂ B(ω, 3ε), it suffices to prove that

∫

A

dμ(ω)
∫ d(s,ω)

d(t,ω)

1

μ(B(t, 2ε))
dε ≤ K(p)d(s, t) (16.147)

and to use the similar result where s and t are exchanged. Let

A0 = {ω ∈ A ; d(t, ω) ≤ 2d(s, t)} ,
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so that

∫

A0

dμ(ω)
∫ d(s,ω)

d(t,ω)

1

μ(B(t, 2ε))
dε

=
∫∫

1{d(t,ω)≤ε≤d(s,ω)}1{d(t,ω)≤2d(s,t)}
1

μ(B(t, 2ε))
dεdμ(ω) .

Then, since d(s, ω) ≤ d(s, t) + d(t, ω), for ε ≤ d(s, ω) and d(t, ω) ≤ 2d(s, t), we
have ε ≤ 3d(s, t) so that

∫

A0

dμ(ω)
∫ d(s,ω)

d(t,ω)

1

μ(B(t, 2ε))
dε

≤
∫∫

1{d(t,ω)≤ε}1{ε≤3d(s,t)}
1

μ(B(t, 2ε))
dεdμ(ω)

=
∫

1{ε≤3d(s,t)}
1

μ(B(t, 2ε))
dε
∫

1{d(t,ω)≤ε}dμ(ω)

=
∫

1{ε≤3d(s,t)}
μ(B(t, ε))

μ(B(t, 2ε))
dε

≤
∫

1{ε≤3d(s,t)}dε = 3d(s, t) . (16.148)

Next, for n ≥ 1, let

An = {ω ∈ A ; 2nd(s, t) ≤ d(t, ω) ≤ 2n+1d(s, t)} ⊂ B(t, 2n+1d(s, t)) ,

so that the sets (An)n≥0 cover A. It follows from (16.145) that for ω ∈ An,

d(s, ω)− d(t, ω) ≤ 2−n(p−1)d(s, t) .

Furthermore, for ω ∈ An and d(t, ω) ≤ ε, we have 2n+1d(s, t) ≤ 2ε so that
B(t, 2n+1d(s, t)) ⊂ B(t, 2ε) and

∫ d(s,ω)

d(t,ω)

1

μ(B(t, 2ε))
dε ≤ 2−n(p−1)d(s, t)

1

μ(B(t, 2n+1d(s, t)))
.

Consequently, since μ(An) ≤ μ(B(t, 2n+1d(s, t)),

∫

An

dμ(ω)
∫ d(s,ω)

d(t,ω)

1

μ(B(t, 2ε))
dε ≤ 2−n(p−1)d(s, t) .

Then (16.147) follows by summation over n ≥ 1 and combining with (16.148). �
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Proposition 16.8.12 If the distance d is p-concave, then for each probability
measure μ on T , one has

∫

T

dμ(t)
∫ Δ(T ,d)

0
ϕ−1

( 1

μ(B(t, ε))

)
dε ≤ K(p)S(T , d, ϕ) , (16.149)

where S(T , d, ϕ) is defined in (16.136).

Proof On the probability space (T , μ), consider the process (Xt )t∈T given by

Xt(ω) = c

∫ Δ(T ,d)/2

min(Δ(T ,d)/2,d(t,ω))
ϕ−1

( 1

μ(B(ω, 3ε))

)
dε , (16.150)

where the constant c ≤ 1 will be determined later. Next, we claim that

sup
s,t∈T

|Xs(ω)−Xt(ω)| ≥ c

∫ Δ(T ,d)/2

0
ϕ−1

( 1

μ(B(ω, 3ε))

)
dε .

To see this, we choose s such that d(s, ω) ≥ Δ(T , d)/2, so that Xs(ω) = 0, we
choose t = ω, and we compute Xt(ω) by the formula (16.150). Consequently,

E sup
s,t∈T

|Xs −Xt | ≥ c

∫

T

dμ(ω)
∫ Δ(T ,d)/2

0
ϕ−1

( 1

μ(B(ω, 3ε))

)
dε . (16.151)

Next, we set a0(ω) = min(d(s, ω), d(t, ω)) and b0(ω) = max(d(s, ω), d(t, ω)) and
a(ω) = min(Δ(T , d)/2, a0(ω)), b(ω) = min(Δ(T , d)/2, b0(ω)). Then

|Xs(ω)−Xt(ω)| = c

∫ b(ω)

a(ω)

ϕ−1
( 1

μ(B(ω, 3ε))

)
dε .

Since b(ω) − a(ω) ≤ d(s, t), we have c(b(ω) − a(ω))/d(s, t) ≤ 1. Using the
convexity of ϕ in the first inequality, and Jensen’s inequality in the second inequality,

ϕ
(Xs(ω)− Xt(ω)

d(s, t)

)

= ϕ

(
c(b(ω)− a(ω))

d(s, t)

1

b(ω)− a(ω)

∫ b(ω)

a(ω)

ϕ−1
( 1

μ(B(ω, 3ε))

)
dε

)

≤ c(b(ω)− a(ω))

d(s, t)
ϕ

(
1

b(ω)− a(ω)

∫ b(ω)

a(ω)

ϕ−1
( 1

μ(B(ω, 3ε))

)
dε

)

≤ c

d(s, t)

∫ b(ω)

a(ω)

1

μ(B(ω, 3ε))
dε . (16.152)
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Now, if a0(ω) ≥ Δ(T , d)/2, then b0(ω) ≥ a0(ω) ≥ Δ(T , d)/2, and then
a(ω) = b(ω) = Δ(T , d)/2, and the term in the last line of (16.152) is 0. If
a0(ω) ≤ Δ(T , d)/2, then a(ω) = α0(ω) ≤ b(ω) ≤ b0(ω), and it follows
from Lemma 16.8.11 that the term on the last line of (16.152) is ≤ cK(p).
Consequently, we may choose c = 1/K(p) depending on p only such (16.1) holds.
Combining (16.151) with the definition of S(T , d, ϕ), we then obtain

sup
ω∈T

∫ Δ(T ,d)/2

0
ϕ−1

( 1

μ(B(ω, 3ε))

)
dε ≤ K(p)S(T , d, ϕ) ,

and a change of variable then completes the proof. �
Proof of Theorem 16.8.6 Combine Proposition 16.8.12 and Lemma 3.3.3 used for
Φ(x) = ϕ−1(1/x). �

We now turn to the proof of Theorem 16.8.7. We have to use a probability
measure as in (16.141) to construct a suitable admissible sequence. There is a
genuine difficulty in this construction, namely, that the measure of the balls B(t, ε)
can greatly vary for a small variation of t . This difficulty has been bypassed in full
generality by an argument of W. Bednorz, which we present now. This argument is
so effective that the difficulty might no longer be noticed. Without loss of generality,
we assume

ϕ(1) = 1 , (16.153)

but (16.139) is not required.
The proof of Theorem 16.8.7 is based on the functions εn(t) defined for n ≥ 0 as

εn(t) = inf
{
ε > 0 ; μ(B(t, ε)) ≥ 1

ϕ(4n)

}
. (16.154)

This quantity is well defined since ϕ(4n) ≥ 1 for n ≥ 0.

Lemma 16.8.13 We recall the quantity B of (16.141). We have

μ(B(t, εn(t))) ≥ 1

ϕ(4n)
, (16.155)

|εn(s)− εn(t)| ≤ d(s, t) , (16.156)

∀ t ∈ T ,
∑

n≥0

4nεn(t) ≤ 2B . (16.157)
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Proof First, (16.155) is obvious, and since B(t, ε) ⊂ B(s, ε + d(s, t)), εn(s) ≤
εn(t)+ d(s, t) and (16.156) follows. Next, since

ε < εn(t)⇒ ϕ−1
( 1

μ(B(t, ε))

)
> 4n ,

we have

B ≥
∑

n≥0

∫ εn(t)

εn+1(t)

ϕ−1
( 1

μ(B(t, ε))

)
dε ≥

∑

n≥0

4n(εn(t)− εn+1(t)) .

Now,

∑

n≥0

4n(εn(t)− εn+1(t)) =
∑

n≥0

4nεn(t)−
∑

n≥1

4n−1εn(t) ≥ 1

2

∑

n≥0

4nεn(t) . �

Lemma 16.8.14 For each n ≥ 0, there exists a subset Tn of T that satisfies the
following conditions:

card Tn ≤ ϕ(4n) . (16.158)

The balls B(t, εn(t)) for t ∈ Tn are disjoint . (16.159)

∀ t ∈ T , d(t, Tn) ≤ 4εn(t) . (16.160)

∀ t ∈ Tn , ∀ s ∈ B(t, εn(t)) , εn(s) ≥ 1

2
εn(t) . (16.161)

Proof We define D0 = T , and we choose t1 ∈ D0 such that εn(t1) is as small as
possible. Assuming that we have constructed Dk−1 �= ∅, we choose tk ∈ Dk−1 such
that εn(tk) is as small as possible, and we define

Dk =
{
t ∈ Dk−1 ; d(t, tk) ≥ 2(εn(t)+ εn(tk))

}
.

The construction continues as long as possible. It stops at the first integer p for
which Dp = ∅. We define Tn = {t1, t2 . . . , tp}. Consider tk, tk′ ∈ Tn with k < k′.
Then by construction, and since the sequence (Dk) decreases, tk′ ∈ Dk , so that

d(tk′, tk) ≥ 2(εn(tk′)+ εn(tk)) ,

and therefore the balls B(tk, εn(tk)) and B(tk′ , εn(tk′)) are disjoint. This
proves (16.159) and (16.155) imply (16.158). To prove (16.160), consider t ∈ T

and the largest k ≥ 1 such that t ∈ Dk−1. Then by the choice of tk , we have
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εn(t) ≥ εn(tk). Since by definition of k we have t �∈ Dk , the definition of Dk shows
that

d(t, tk) < 2(εn(t)+ εn(tk)) ≤ 4εn(t) ,

and since tk ∈ Tn, this proves (16.160).
Finally, consider tk and s ∈ B(tk, εn(tk)). If s ∈ Dk−1, then εn(s) ≥ εn(tk),

and (16.161) is proved. Otherwise, the unique k′ such that s ∈ Dk′−1 and s �∈ Dk′
satisfies k′ < k. Since s ∈ Dk′−1 but s �∈ Dk′ , the definition of this set shows that

d(s, tk′) ≤ 2(εn(s)+ εn(tk′)) ,

and since d(s, tk) ≤ εn(tk), we get

d(tk, tk′) ≤ d(s, tk)+ d(s, tk′) ≤ εn(tk)+ 2(εn(s)+ εn(tk′)) . (16.162)

On the other hand, since k′ < k, then tk ∈ Dk−1 ⊂ Dk′ so the definition of this set
implies

d(tk, tk′) ≥ 2(εn(tk)+ εn(tk′)) ,

and comparing with (16.162) completes the proof of (16.161). �
Proof of Theorem 16.8.7 For n ≥ 0, we consider the set Tn provided by
Lemma 16.8.14, so card T0 = 1. Combining (16.157) and (16.160), we obtain

∑

n≥0

4nd(t, Tn) ≤ 8B ,

and this proves that Sd(T ) ≤ 8B.
Next, since μ(B(s, εn(s)) ≥ 1/ϕ(4n) by (16.155) and since d(s, Tn−1) ≤

4εn−1(s) by (16.160), for n ≥ 1, we have

∑

s∈Tn

d(s, Tn−1)

ϕ(4n)
≤ 4

∑

s∈Tn

∫

B(s,εn(s))

εn−1(s)dμ(t) .

It follows from (16.161) that for t ∈ B(s, εn(s)), one has εn(s) ≤ 2εn(t). Combining
with (16.156) implies

εn−1(s) ≤ εn−1(t)+ εn(s) ≤ εn−1(t)+ 2εn(t) ,
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and since the balls B(s, εn(s)) are disjoint for s ∈ Tn, this yields

∑

s∈Tn

4nd(s, Tn−1)

ϕ(4n)
≤ 4n+1

∫

T

(εn−1(t)+ 2εn(t))dμ(t) .

Summation over n ≥ 1 and use of (16.157) conclude the proof. �
When we do not assume that the distance is p-concave, the last inequality

in (16.144) need not hold. This considerably more complex situation will be briefly
discussed in the next section, and we end up the present section by discussing two
more specialized questions. A striking feature of Theorem 16.2.1 is that even though
we studied processes that satisfied E(Xs − Xt)

2 = d(s, t) where d is the usual
distance on the unit interval, we ended up considering the sequence In of partitions
of this unit interval and, implicitly, the distance δ given by δ(s, t) = 2−n where n is
the largest integer for which s, t belong to the same element of In. This distance is
ultrametric, i.e., it satisfies

∀ s, t, v ∈ T , δ(s, t) ≤ max(δ(s, v), δ(t, v)) . (16.163)

In particular, a distance is ultrametric if and only if it is p-concave for all p.
Ultrametric distances are intimately connected to increasing sequences of partitions,
because the balls of a given radius form a partition in a ultrametric space. As the
following shows, the implicit occurrence of an ultrametric structure is very frequent:

Theorem 16.8.15 (W. Bednorz [12]) Let us assume that the Young function ϕ

satisfies

∀ k ≥ 1 ,
∑

n>k

4n

ϕ(4n)
≤ C

4k

ϕ(4k)
. (16.164)

Consider an admissible sequence T of subsets of (T , d). Then there exist an
ultrametric distance δ ≥ d and an admissible sequence T ∗ of subsets of (T , δ)
such that

Sδ(T ∗)+ S∗δ (T ∗) ≤ K(C)(Sd(T )+ S∗d (T )) , (16.165)

where K(C) depends on C only.

In words, this means that if the existence of an admissible sequence provides
a bound for processes that satisfy the increment condition (16.1), then there is an
ultrametric distance δ greater than d and such that the processes satisfying the
increment condition (16.1) for this greater distance basically still satisfy the same
bound.



542 16 Convergence of Orthogonal Series: Majorizing Measures

Proof Let T = (Tn)n≥0. As a first step, we prove that we may assume that the
sequence (Tn) increases. Define T ′0 = T0, and for n ≥ 1, define T ′n = ∪k<nTk .
Thus,

cardT ′n ≤
∑

k<n

ϕ(4k) ≤
∑

k<n

4k−nϕ(4n) ≤ ϕ(4n) ,

where in the second inequality we have used that ϕ(x) ≤ xϕ(y)/y by convexity
of ϕ. Thus, the sequence T ′ = (T ′n)n≥1 is admissible. Since d(t, T ′n) ≤ d(t, Tn−1)

for n ≥ 1, it follows from the definition (16.123) that Sd(T ′) ≤ 4Sd(T ). Next, we
observe that for n ≥ 2, and since T ′n = ∪k<nTk,

∑

s∈T ′n
d(s, T ′n−1) ≤

∑

k<n

∑

s∈Tk
d(s, T ′n−1) ≤

∑

k<n

∑

s∈Tk
d(s, Tk−1) , (16.166)

because Tk−1 ⊂ T ′n−1 for k < n. For n = 1, d(s, T ′n−1) = 0 for s ∈ T ′1 = T0. Thus,
using (16.166) in the second line and (16.164) in the last line,

S∗d (T ′) =
∑

n≥1

∑

s∈T ′n

4nd(s, T ′n−1)

ϕ(4n)

≤
∑

n≥1

∑

k<n

∑

s∈Tk

4nd(s, Tk−1)

ϕ(4n)

=
∑

k≥1

∑

s∈Tk
d(s, Tk−1)

∑

n>k

4n

ϕ(4n)

≤ CS∗d (T ) .

In summary, the sequence T ′ is admissible and increasing and satisfies Sd(T ′) ≤
4Sd(T ) and S∗d (T ′) ≤ CS∗d (T ). Therefore, replacing T by T ′, we now assume that
the sequence (Tn) increases.

Let us consider the points πn(t) as in the proof of Theorem 16.8.1. Since the
sequence (Tn) increases, we have πk(t) = t for t ∈ Tn and k ≥ n. Given s, t ∈ T ,
let us consider the largest integer m for which πm(s) = πm(t) and define

δ(s, t) = 2 max
(∑

k≥m
d(πk(t), πk+1(t)),

∑

k≥m
d(πk(s), πk+1(s))

)
. (16.167)

It is straightforward to check that this defines an ultrametric distance. Moreover,
we have d(s, t) ≤ d(s, πm(s)) + d(t, πm(s)) = d(s, πm(s)) + d(t, πm(t)), using
the definition of m in the last equality. Furthermore, since t = πn(t) for n large
enough, the triangle inequality implies d(t, πm(t)) ≤∑k≥m d(πk(t), πk+1(t)), and
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the same inequality for s then yields that d(s, t) ≤ ∑
k≥m d(πk(t), πk+1(t)) +∑

k≥m d(πk(s), πk+1(s)) ≤ δ(s, t).

Consider now t ∈ T and s = πn(t) ∈ Tn. Then πk(t) = πk(s) for k ≤ n, and
πk(s) = s for k ≥ n. Consequently, the definition of δ shows that

δ(t, Tn) ≤ 2
∑

k≥n
d(πk(t), πk+1(t)) . (16.168)

Interchanging as usual the sums over k and n yields

∑

n≥0

4nδ(t, Tn) ≤
∑

k≥0

d(πk(t), πk+1(t))
∑

n≤k
4n ≤ 2

∑

k≥0

4kd(πk(t), πk+1(t)) .

Denoting by T ∗ the admissible sequence (Tn), then (16.133) proves that Sδ(T ∗) ≤
LSd(T ).

Now, if t ∈ Tn+1, we haveπk(t) = t for k ≥ n+1, and thus (16.168) and (16.127)
yield δ(t, Tn) ≤ 2d(πn+1(t), πn(t)) = 2d(πn+1(t), Tn) = 2d(t, Tn). This implies
that S∗δ (T ∗) ≤ 2S∗d (T ). �

The conclusion of Theorem 16.8.15 is not true without some kind of condition
on ϕ such as (16.164). A counterexample is provided in [104] in the case ϕ(x) = x.

Finally, we briefly investigate the extent to which we can improve (16.125) by
requiring a stronger integrability condition on sups,t |Xs−Xt |. For a Young function
ϕ, and a r.v. X, let us define

‖X‖ϕ = inf
{
u > 0 ; Eϕ(X/u) ≤ 1

}
, (16.169)

so that the distance of (16.2) is simply ‖Xs − Xt‖ϕ . It would be nice if we could
replace the left-hand side of (16.125) by

∥
∥ sup
s,t∈T

|Xs −Xt |
∥
∥
ϕ
,

but unfortunately this is not true. However, we have the following (which is a special
case of a general principle, see [104]):

Proposition 16.8.16 Assume that for a Young function ψ , we have

x ≥ ϕ−1(1) = 1 , y ≥ 1 ⇒ ϕ(xy) ≥ ϕ(x)ψ(y) . (16.170)

Then we may replace (16.125) by

∥
∥ sup
s,t∈T

|Xs −Xt |
∥
∥
ψ
≤ L(Sd(T )+ S∗d (T )) . (16.171)
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In particular, we may improve the metric entropy bound (16.5) into

∥
∥ sup
s,t∈T

|Xs −Xt |
∥
∥
ψ
≤ L

∫ Δ(T ,d)

0
ϕ−1(N(T , d, ε))dε . (16.172)

Proof Proceeding as in (16.130), we observe that for each number a > 0, we have

sup
t∈T

|Xt − Xt0 | ≤ a sup
t∈T

∑

n≥1

4nd(πn−1(t), πn(t))

+
∑

n≥1

∑

s∈Tn
b(n, s)ϕ

(Yn,s

a

)
, (16.173)

where we lighten notation by writing

b(n, s) = 4nd(s, θn(s))

ϕ(4n)
; Yn,s = |Xs −Xθn(s)|

d(s, θn(s))
.

Let us define

h(ω) = inf

{

a > 0 ;
∑

n≥1

∑

s∈Tn
b(n, s)ϕ

(Yn,s(ω)

a

)
≤ 2S∗d (T )

}

, (16.174)

so that obviously h(ω) > 0. Using (16.173) for any a > h(ω) implies

sup
t∈T

|Xt(ω)−Xt0(ω)| ≤ h(ω) sup
t∈T

∑

n≥1

4nd(πn−1(t), πn(t))+ 2S∗d (T ) ,

and recalling (16.133), it suffices to prove that ‖h‖ψ ≤ L. Let us consider g(ω) <
h(ω). We deduce from (16.174)

∑

n≥1

∑

s∈Tn
b(n, s)ϕ

(Yn,s(ω)

g(ω)

)
≥ 2S∗d (T ) . (16.175)

Recalling that ϕ(1) = 1 (so that ϕ(x) ≤ 1 for |x| ≤ 1) and that the sum of the
coefficients b(n, s) for s ∈ Tn and n ≥ 1 is S∗d (T ),

∑

n≥1

∑

s∈Tn
b(n, s)ϕ

(Yn,s(ω)

g(ω)

)
1{|Yn,s (ω)|≤g(ω)} ≤ S∗d (T ) ,

and combining with (16.175),

∑

n≥1

∑

s∈Tn
b(n, s)ϕ

(Yn,s(ω)

g(ω)

)
1{|Yn,s (ω)|>g(ω)} ≥ S∗d (T ) . (16.176)
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Now, (16.170) implies that ϕ(y/g(ω)) ≤ ϕ(y)/ψ(g(ω)) for y ≥ g(ω) and
g(ω) ≥ 1. Multiplying both sides of (16.176) by 1{g(ω)≥1} and using that
ϕ(Yn,s(ω)/g(ω))1{|Yn,s (ω)|>g(ω)}1{g(ω)≥1} ≤ ϕ(Yn,s(ω))/ψ(g(ω)), we obtain

1{g(ω)≥1}ψ(g(ω))S∗d (T ) ≤
∑

n≥1

∑

s∈Tn
b(n, s)ϕ(Yn,s(ω)) .

Since the expected value of the right-hand side is ≤ S∗d (T ), taking expectation
implies E1{g(ω)≥1}ψ(g(ω)) ≤ 1. Taking x = y = 1 in (16.170) proves that ψ(1) ≤
1, so that E1{g(ω)≤1}ψ(g(ω)) ≤ 1 and then Eψ(g) ≤ 2. Taking g(ω) = αh(ω) with
0 < α < 1 and letting α → 1 shows that Eψ(h) ≤ 2 so that Eψ(h/2) ≤ 1 and
‖h‖ψ ≤ 2. �

Condition (16.170) is essentially optimal, as the following challenging exercise
shows:

Exercise 16.8.17 Investigate the necessary conditions on the function ψ so that for
any metric space and any process (Xt)t∈T that satisfies (16.1), one has

∥
∥ sup
s,t∈T

|Xs −Xt |
∥
∥
ψ
≤ L

∫ Δ(T ,d)

0
ϕ−1(N(T , d, ε))dε . (16.177)

Hint: Consider N and the space T of cardinality N where any two distinct points are
at distance 1. Consider ε < 1, and consider disjoint events (Ωt)t∈T with P(Ωt) =
ε/N . Apply (16.177) to the process (Xt)t∈T given by Xt = ϕ−1(N/2ε)1Ωt .

16.9 Chaining, III

We now briefly discuss the problem of the boundedness of processes that sat-
isfy (16.1) in a general metric space, when the distance is not assumed to be
p-concave (and in particular when d is the usual Euclidean distance on R

n). In this
case, there is a new phenomenon which takes place. In all the examples of chaining
we have met up to now, the interpolation pointsπn(t) converge geometrically toward
t , but this feature is not always optimal. To understand this, consider a toy example,
the unit interval with the usual distance.

Proposition 16.9.1 Consider a process (Xt )t∈[0,1] that satisfies

∀ s, t ∈ [0, 1] , E|Xs −Xt | ≤ |s − t| . (16.178)

Then

E sup
0≤s,t≤1

|Xs −Xt | ≤ 1 . (16.179)
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Proof We have to show that if F ⊂ [0, 1] is finite, then E sups,t∈F |Xs − Xt | ≤ 1.
Let F = {t1, . . . , tn} with 0 ≤ t1 < . . . < tn ≤ 1. Then

E sup
�<�′

|Xt� −Xt�′ | ≤ E
∑

1≤�<n

|Xt�+1 −Xt� | ≤
∑

1≤�≤n
t�+1 − t� ≤ 1 . �

The following exercise shows that Proposition (16.9.1) cannot be deduced from
Theorem 16.8.7:

Exercise 16.9.2 Prove that if μ is a probability measure on [0, 1], then

∫ 1

0
dt
∫ 1

0

1

μ(B(t, ε))
dε = ∞ .

The next exercise shows that the result of Proposition 16.9.1 cannot be explained
by the size of the covering numbers of [0, 1].
Exercise 16.9.3 Denote by t = (ti)i≥1 the generic point of T = {0, 1}N. On T ,
consider the ultrametric distance δ given by δ(s, t) = 2−i+1, where i is the smallest
integer for which si �= ti . Construct an unbounded process (Xt) on (T , δ) that
satisfies E|Xs − Xt | ≤ δ(s, t) for each s, t ∈ T . Compare the covering numbers
of (T , δ) and ([0, 1], d) where d is the usual distance.

Exercise 16.9.4 Review the proof of Theorem 16.8.1 to show that when ϕ(x) =
|x|, then one can improve (16.125) into

E sup
s,t∈T

|Xs −Xt | ≤ LS∗d (T ) .

We consider now the case of the processes on T = [0, 1]p, provided with
the usual distance d . Which are the Young functions ϕ such that all processes
satisfying (16.1), i.e.,

∀s, t ∈ T ; Eϕ(Xs −Xt) ≤ d(s, t)

are bounded? The covering numbers N(T , d, ε) behave like ε−p, so that (16.5)
implies that it suffices that

∑

n

2−nϕ−1(2np) <∞ . (16.180)

Theorem 16.9.5 ([104, Theorem 5.1]) Processes which satisfy (16.1) are all
bounded if and only if ϕ satisfies the condition

∑

n

2−n(ϕ′)−1(2n(1−p)) <∞ , (16.181)

where ϕ′ is the derivative of ϕ.
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The difference between (16.180) and (16.181) can be seen clearly in the case
p = 1 where (16.181) is automatically satisfied but (16.180) is not. What happens
here is that as in Proposition 16.9.1, one can join two elements of T by a long
chain of small steps (and this is not the case in the setting of Exercise 16.9.3).
Theorem 16.9.5 is obviously more of theoretical than practical interest so we do
not reproduce the specialized proof.

This is however not the end of the story. The reason why the weak condi-
tion (16.181) suffices for boundedness is a kind of “connectivity” in the structure of
[0, 1]p. This connectivity structure does not exist when the distance is ultrametric,
as Exercise 16.9.3 shows. There are also “intermediate situations” where both
aspects are present, e.g., if one takes a product of [0, 1]p with a ultrametric space.
Complicated necessary and sufficient conditions are found in [104] in such a
case. This probably indicates that no simple complete description of the metric
spaces for which condition (16.1) implies boundedness can be found, even in the
“homogeneous situation” where covering numbers suffice.

16.10 Notes and Comments

Il y a les questions qui se posent, et les questions que l’on se pose.8 Henri Poincaré

Obviously, Poincaré had better mathematical taste than many subsequent mathe-
maticians. My own view is that many of the problems considered in the chapter
belong to the second category rather than the first, and I have included their solution
in this book only because I find it excessively beautiful, in particular thanks to the
work of W. Bednorz, who discovered a number of very clean and seemingly final
arguments. A particularly important contribution of W. Bednorz is to have brought
to light the technical importance of (16.12), after which everything becomes much
easier.

I undertook a systematic study of boundedness of stochastic processes under
increment conditions using majorizing measure in [104]. This paper contains near-
optimal results, but several arguments have been greatly simplified by W. Bednorz.
I undertook this project despite the fact that I felt the topic to be of marginal
importance, because I thought that I had no chance of making progress in the
Gaussian case without having first mastered the elusive notion of majorizing
measure. This strategy was successful.

When the Young function ϕ as in Sect. 16.8 has “polynomial growth” rather
than “exponential growth”, it does not seem possible to characterize the size of T
according to majorizing measures in terms of the size of the trees it contains, as we
did in Sect. 3.1.

8 I won’t dare attempting a literal translation, but roughly this distinguishes between questions of
self-evident importance and more arbitrary questions one may ask.



Chapter 17
Shor’s Matching Theorem

17.1 Introduction

This chapter continues Chap. 4, which should be fresh in the reader’s mind before
attempting to penetrate the more difficult material presented here. In particular, the
notion of “evenly spread” points is explained on page 121. The main result is as
follows:

Theorem 17.1.1 (P. Shor) Consider evenly spread points (Yi)i≤N of [0, 1]2. Set
Yi = (Y 1

i , Y
2
i ). Consider i.i.d. points (Xi)i≤N uniform over [0, 1]2, and set Xi =

(X1
i , X

2
i ). Then with probability ≥ 1− LN−10, there exists a matching π such that

∑

i≤N
|X1

i − Y 1
π(i)| ≤ L

√
N logN (17.1)

sup
i≤N

|X2
i − Y 2

π(i)| ≤ L

√
logN

N
. (17.2)

The power N−10 plays no special role. Theorem 17.1.1 improves upon Theo-
rem 4.5.1 because when |X2

i − Y 2
π(i)| ≤ L

√
logN/N for each i, then

∑
i≤N |X2

i −
Y 2
π(i)| ≤ L

√
N logN .

A remarkable feature of Theorem 17.1.1 is that both coordinates do not play the
same role. Following this idea, one may ask the following:
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Research Problem 17.1.2 (The Ultimate Matching Conjecture) Prove or dis-
prove the following. Consider α1, α2 > 0 with 1/α1 + 1/α2 = 1/2. Then with high
probability, we can find a matching π such that, for j = 1, 2, we have

∑

i≤N
exp

(√
N

logN

|Xj
i − Y

j

π(i)
|

L

)αj

≤ 2N . (17.3)

In Chap. 18, we shall prove a suitable version of the ultimate matching conjecture
in dimension d ≥ 3. Noting that

∑

i≤N
exp a4

i ≤ 2N ⇒ max
i≤N |ai | ≤ L(logN)1/4

and that expa4 ≥ |a| shows that the case α1 = α2 = 4 would provide a very
neat common generalization of Theorems 4.5.1 and 4.7.1. Another case of special
interest is the case “α1 = 2, α2 = ∞” for which one may interpret (17.3) for j = 2
as meaning (17.2). Then (17.3) for j = 1 is very much stronger than (17.1). A
partial result in the direction of this special case of Problem 17.1.2 is as follows:

Theorem 17.1.3 Consider a number 0 < α < 1/2, an integer N ≥ 2, and evenly
spread points (Yi)i≤N of [0, 1]2. Set Yi = (Y 1

i , Y
2
i ). Consider i.i.d. points (Xi)i≤N

uniform over [0, 1]2, and set Xi = (X1
i , X

2
i ). Then with probability ≥ 1− LN−10,

there exists a matching π such that

∑

i≤N
exp

(√
N

logN

|X1
i − Y 1

π(i)|
K(α)

)α

≤ 2N (17.4)

sup
i≤N

|X2
i − Y 2

π(i)| ≤ K(α)

√
logN

N
. (17.5)

Since exp |x|α ≥ |x|/K(α), (17.1) follows from (17.4), and thus Theorem 17.1.3
improves upon Theorem 17.1.1. One may show that when α increases, the con-
clusion of Theorem 17.1.3 becomes stronger. We do not know how to prove
Theorem 17.1.3 for α ≥ 1/2.

Conjecture 17.1.4 Theorem 17.1.3 holds for α = 2.

This is the special case “α1 = 2, α2 = ∞” of the ultimate matching conjecture and
a nice research problem by itself.

A central difficulty in the proof of a matching theorem is how to relate it to
a suitable discrepancy theorem (here Theorem 17.2.1), and the most instructive
part of the present section is how we pass this difficulty. There is however a lethal
weakness in our approach to the discrepancy theorem. It is explained in Sect. 17.3.
Until one finds a way to correct this weakness, no amount of technical effort is going
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to succeed in reaching the value α = 2. For this reason, we only outline the proof
of Theorem 17.1.1, and we refer the reader to [129] for the far more technical proof
of Theorem 17.1.3.

17.2 The Discrepancy Theorem

The proof of Theorem 17.1.1 relies again on Proposition 4.3.2 and a “discrepancy
theorem” of the same nature as (4.38), but for a more complicated class of functions.
This is Theorem 17.2.1. It requires some preparations to state this discrepancy
theorem.

To prove Theorem 17.1.1, we may assume N large, and we do not care about
what happens at a scale less than

√
logN/

√
N . We will then replace [0, 1]2 by

a discrete approximation at that scale. More precisely, let us consider a universal
constant L∗ which we shall choose later. Consider the largest integer p with 2−p ≥
L∗
√

logN/
√
N , so that when N is large enough, p ≤ logN . This idea is to replace

[0, 1]2 by the set of points (k2−p, �2−p) for 1 ≤ k, � ≤ 2p. It is however pointless
to carry the factor 2−p through our calculations, so that we re-scale this set: we
consider the set G = {1, . . . , 2p}2.1 A generic point of G is denoted by τ . Since
G = {1, . . . , 2p}2, we may also denote a point of G by its coordinates (k, �) which
are two integers between 1 and 2p. To each point, τ = (k, �) of G corresponds a
little square Hτ =](k−1)2−p, k2−p]×](�−1)2−p, �2−p] with sides of length 2−p,
and these little squares form a partition of ]0, 1]2. We define “evenly spread” points
(Zi)i≤N of G as follows: we set Zi = τ if Yi belongs to Hτ . Thus, denoting by Z1

i

and Z2
i the components of Zi , we have

|2−pZ1
i − Y 1

i | ≤ 2−p ; |2−pZ2
i − Y 2

i | ≤ 2−p . (17.6)

We define

n(τ) = card{i ≤ N ; Zi = τ } , (17.7)

so that2

∑

τ∈G
n(τ) = N . (17.8)

Since 2−p is about L∗
√

logN/
√
N , N2−2p is about L∗2 logN and hence large.

Each square Hτ contains a large number of points Yi , and due to the fact that these

1 The notation G does not have the same meaning as in Chap. 4. Now the “grid” G is not a subset
of [0, 1]2!
2 We assume of course that the points Yi belong to ]0, 1]2.
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points are evenly spread, it should be obvious that this number of points is about the
same for each square Hτ . That is, given N large, for a certain integer m0, we have

∀τ ∈ G ; m0 ≤ n(τ) ≤ 2m0 . (17.9)

Summation of these inequalities over τ together with (17.8) implies

N2−2p−1 ≤ m0 ≤ N2−2p . (17.10)

Since 2−2pN is about L∗2 logN while p ≤ logN , when L∗ is large, the ratio m0/p

is large. We will prove that our arguments work when this ratio is large enough,
which can be achieved by taking L∗ large enough.

In our discrete approximation, the points Zi replace the points Yi . Now we have
to construct the random points Ui valued in G which replace the points Xi . The
obvious procedure (to define Ui = τ when Xi ∈ Hτ ) is not the correct one,3 which
we describe now. By definition of an evenly spread family, each of the points Yi
belongs to a little rectangle of area 1/N . We denote by Kτ the union of these little
rectangles for which Yi ∈ Hτ so that Kτ is of area n(τ)/N . We consider the G-
valued r.v.s Ui such that Ui = τ when Xi ∈ Kτ . Thus, the r.v.s Ui are i.i.d. with law
μ, where the probability measure μ on G is given by

μ({τ }) = n(τ)

N
. (17.11)

Also, when Ui = τ = (k, �), we have by definition that Xi belongs to the small
rectangle associated with a point Yj ∈ Hτ . Then

|X1
i − Y 1

j | ≤
L√
N
; |X2

i − Y 2
j | ≤

L√
N

and

|2−pU1
i − Y 1

j | ≤ 2−p ; |2−pU2
i − Y 2

j | ≤ 2−p ,

and combining these, we have

|2−pU1
i −X1

i | ≤ L2−p ; |2−pU2
i −X2

i | ≤ L2−p . (17.12)

For a function h on G, we have

∫

hdμ = 1

N

∑

τ∈G
n(τ)h(τ ) . (17.13)

3 We do not want that P(Ui = τ) = 2−2p but rather P(Ui = τ) = n(τ)/N .
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We consider the class H of functions h : G→ R such that

∑

1≤k≤2p , 1≤�≤2p−1

|h(k, �+ 1)− h(k, �)| ≤ 22p (17.14)

∀ k, � , |h(k + 1, �)− h(k, �)| ≤ 1 . (17.15)

To lighten notation, we will write (17.14) as
∑ |h(k, � + 1) − h(k, �)| ≤ 22p,

and we will not mention any more that it is always understood that when a quantity
such as h(k, �+ 1)− h(k, �) occurs in a summation, we consider only the values of
� with � + 1 ≤ 2p. In a similar manner, when the quantity |h(k + 1, �) − h(k, �)|
occurs in a condition, it is always understood that we consider only the values of k
for which k + 1 ≤ 2p.

It will become clear only gradually that the class H of functions is related
to a matching problem. Let us say however that the weak restriction (17.14) is
related to the fact that we ask the strong condition (17.2) on the second coordinates,
whereas the strong restriction (17.15) is related to the fact that we ask only the weak
condition (17.1) on the first coordinates.

The central ingredient of our approach is the following:

Theorem 17.2.1 Consider independent r.v.s Ui valued in G, of law μ. Then, with
probability ≥ 1− exp(−46p), we have

∀h ∈ H ,

∣
∣
∣
∑

i≤N
(h(Ui)−

∫

hdμ)
∣
∣
∣ ≤ L

√
pm0 22p . (17.16)

We shall explain soon how to turn this type of result into a matching theorem.
The larger the class H in (17.16), the better the matching theorem one gets. It is
therefore a natural question to wonder for which classes of functions a result such
as Theorem 17.2.1 might be true.

Research Problem 17.2.2 Consider two functions θ1(x) ≥ x, θ2(x) ≥ x. Consider
the class H of functions h : G→ R such that

∑
θ1(|h(k+1, �)−h(k, �)|)+

∑
θ2(|h(k, �+1)−h(k, �)|) ≤ 22p . (17.17)

What are the conditions on θ1 and θ2 so that

E sup
h∈H

∣
∣
∣
∑

i≤N
(h(Ui)−

∫

hdμ)
∣
∣
∣ ≤ K

√
pm0 22p (17.18)

for a constant K independent of p?

Of particular interest is the case θ1(x) = x(log(3+x))1/2 and θ2(x) = x. A positive
answer (and significant extra work) would allow one to prove Conjecture 17.1.4.
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We shall outline the proof of Theorem 17.2.1 in the next section, but we first state
the matching theorem it implies. In the following statement, we denote by U1

i and
U2
i the components of Ui and similarly for Zi :

Theorem 17.2.3 There exists a number L0 with the following property. Recalling
the number m0 of (17.9), assume that

p ≤ m0

L0
. (17.19)

Consider points (Zi)i≤N in G, and assume that for each τ ∈ G, we have card{i ≤
N;Zi = τ } = n(τ) = Nμ({τ }). Consider points (Ui)i≤N in G, and assume
that (17.16) holds. Then we can find a permutation π of {1, . . . , N} for which

∑

i≤N
|U1

i − Z1
π(i)| ≤ N , (17.20)

∀i ≤ N , |U2
i − Z2

π(i)| ≤ 1 . (17.21)

It is unimportant to have N rather than LN in (17.20).

Proof of Theorem 17.1.1. We consider the points Zi of G given by Zi = τ when
Yi ∈ Hτ and the random points Ui in G given by Ui = τ when Xi ∈ Kτ

(the union of the little rectangles associated with the points Yi ∈ Hτ ). As we
have already observed just below (17.10), when L∗ becomes large, the ratio m0/p

becomes large, so that if L∗ is large enough, then (17.19) holds. Also since p is
about L∗ logN , for L∗ large, we have exp(−46p) ≤ N−10 so that according to
Theorem 17.2.1, (17.16) holds with probability≥ 1−N10. When this is the case, and
since 2−p ≤ L

√
logN/

√
N , it follows from (17.6) and (17.12) that the permutation

π which satisfies (17.20) and (17.21) also satisfies (17.1) and (17.2). �
Beginning of the Proof of Theorem 17.2.3. The first steps of the proof look canonical.
Let us define

M1 = sup
∑

i≤N
(wi +w′i ) , (17.22)

where the supremum is taken over all families (wi), (w
′
i ) for which

∀i, j ≤ N , |U2
i − Z2

j | ≤ 1 ⇒ wi +w′j ≤ |U1
i − Z1

j | . (17.23)

We first claim that there is a permutation π which satisfies (17.21) and for which∑
i≤N |U1

i − Z1
π(i)| ≤ M1. To see this, let us consider a number c > 0, and

let us define ci,j = |U1
i − Z1

j | when |U2
i − Z2

j | ≤ 1 and ci,j = c otherwise.
Consider then numbers (wi)i≤N and (w′i )i≤N such that wi + w′j ≤ ci,j for each
i, j ≤ N . Then (17.23) holds so that by definition of M1, we have

∑
i≤N wi +w′i ≤
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M1. It follows from Proposition 4.3.2 that there is a permutation π such that∑
i≤N ci,π(i) ≤ M1. If one takes c = 2M1, this shows in particular that no

term in the sum equals c, so that for each term, we have |U2
i − Z2

π(i)| ≤ 1 and

ci,π(i) = |U1
i − Z1

π(i)
|. This proves the claim.

The idea now is, considering a family (w′i ), to define the function h′ on G given
by

h′(k, �) = min
j

{|k − Z1
j | −w′j ; |�− Z2

j | ≤ 1
}
.

Rewriting (17.23) as

∀i, j ≤ N , |U2
i − Z2

j | ≤ 1 ⇒ wi ≤ |U1
i − Z1

j | − w′j ,

we have h′(Ui) ≥ wi , and thus (17.22) implies

M1 ≤
∑

i≤N
(h′(Ui)+w′i ) . (17.24)

This construction is a bit clumsy, because given τ ∈ G, there are quite a few values
of i for which Zi = τ . A moment thinking shows that one can only increase the left-
hand side of (17.24) if one replaces the corresponding values of w′i by their average
(over all the values of i for which Zi = τ ). To pursue this idea, given numbers
(u(τ ))τ∈G, we define the function h on G given by

h(k, �) = min
{|k − r| + u(r, s) ; (r, s) ∈ G, |�− s| ≤ 1

}
. (17.25)

For τ = (k, �) ∈ G, let us then choose

u(τ) = − 1

n(τ)

∑
{w′i ; Zi = τ } , (17.26)

so that

∑

i≤N,Zi=τ
w′i = −

∑

τ∈G
n(τ)u(τ ) . (17.27)

The infimum of the numbers−w′i for Zi = τ is less than their average so that given
τ and j with Zj = τ , we can find j ′ with Zj ′ = Zj = τ and −w′

j ′ ≤ u(τ).
Comparing the definitions of h and h′ proves that h′ ≤ h. Consequently, (17.24)
and (17.27) imply

M1 ≤
∑

i≤N
h(Ui)−

∑

τ∈G
n(τ)u(τ ) . (17.28)
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Using (17.13) and (17.28), we get

M1 ≤
∣
∣
∣
∑

i≤N
(h(Ui)−

∫

hdμ)
∣
∣
∣−

∑

τ∈G
n(τ)(u(τ )− h(τ)) . (17.29)

The hope now is that

∑

τ∈G
n(τ)(u(τ )− h(τ)) small ⇒ the function h behaves well, (17.30)

so that we may have a chance that with high probability suph |
∑

i≤N(h(Ui) −∫
hdμ)| (where the supremum is taken over all functions h arising in this manner)

is small, and consequently the right-hand side of (17.29) has a chance to bounded.
The difficulty (which is generic when deducing matching theorems from Proposi-
tion 4.3.2) is to find a usable way to express that “h behaves well”. In the present
case, this difficulty is solved by the following result:

Proposition 17.2.4 Consider numbers u(k, �) for (k, �) ∈ G = {1, . . . , 2p}2, and
consider the function h of (17.25), i.e.,

h(k, �) = inf
{
u(r, s)+ |k − r| ; (r, s) ∈ G, |�− s| ≤ 1

}
. (17.31)

Then

∀ k, � , |h(k + 1, �)− h(k, �)| ≤ 1 (17.32)

and, assuming (17.19),

m0

∑

k,�

|h(k, �+ 1)− h(k, �)| ≤ L
∑

τ∈G
n(τ)(u(τ )− h(τ)) . (17.33)

So, when the left-hand side of (17.30) is small, h behaves well in the sense
that (17.32) holds and that m0

∑
k,� |h(k, � + 1) − h(k, �)| is also small. This

is what motivated the introduction of the class H and of (17.14). The proof of
Proposition 17.2.4 is elementary and is rather unrelated with the main ideas of this
work. It is given in Sect. B.6.

End of the Proof of Theorem 17.2.3. We have to show that provided the constant
L0 of (17.19) is large enough, then the right-hand side of (17.29) is ≤ N . We define

B = 2−2p
∑

|h(k, �+ 1)− h(k, �)| (17.34)

and B ′ = B + 1 so that B ′ ≥ 1 and h/B ′ ∈ H. Then (17.16) implies

∣
∣
∣
∑

i≤N
(h(Ui)−

∫

hdμ)
∣
∣
∣ ≤ L

√
pm0 22pB ′ , (17.35)
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whereas (17.33) and (17.34) imply

∑
n(τ)(u(τ )− h(τ)) ≥ m0

L

∑
|h(k, �+ 1)− h(k, �)| = m022p

L
B .

Combining with (17.29) and (17.35), we get, since B ′ = B + 1,

M1 ≤ L
√
pm0 22pB ′ − m0

L
22pB

≤ B22p
(
L
√
pm0 − m0

L

)
+ L

√
pm022p (17.36)

using that B ′ = B + 1 in the last inequality. Consequently, if the constant L0
in (17.19) is large enough, the first term is negative, so that (17.36) implies as desired
that M1 ≤ L

√
pm022p ≤ m022p ≤ N using (17.19) for an appropriate choice of

L0 and (17.10). �

17.3 Lethal Weakness of the Approach

We turn to the proof of Theorem 17.2.1. The main difficulty is to control γ2(H, d2),
where d2 is the distance in �2(G) or, equivalently, the Euclidean distance on R

G.
Ideally, this should be done by using a suitable functional and Theorem 2.9.1.
However, the functional can be discovered only by understanding the underlying
geometry, which the author does not.

How should one use condition (17.14)? To bypass this difficulty, we will replace
this condition by the more familiar Lipschitz-type condition

|h(k, �+ 1)− h(k, �)| ≤ 2j . (17.37)

More precisely, we consider the class H1 consisting of the functions h : G→ R

such that

∀k, � , |h(k + 1, �)− h(k, �)| ≤ 1 ; |h(k, �+ 1)− h(k, �)| ≤ 1 . (17.38)

Given an integer j ≥ 2, for a number V > 0, we consider the class Hj (V ) of
functions h : G→ R such that

∀k, � , |h(k + 1, �)− h(k, �)| ≤ 1 , |h(k, �+ 1)− h(k, �)| ≤ 2j (17.39)

card{(k, �) ∈ G ; h(k, �) �= 0} ≤ V . (17.40)

The key to our approach is the following, which is proved in Sect. B.5:
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Proposition 17.3.1 If h ∈ H, we can decompose

h =
∑

j≥1

hj where h1 ∈ LH1 and hj ∈ LHj (22p−j ) for j ≥ 2 . (17.41)

Before we analyze the classes Hj := Hj (22p−j ), let us reveal the dirty secret.
To prove (17.16), we will deduce from (17.41) the inequality

sup
h∈H

∣
∣
∑

i≤N
h(Ui)−

∫

hdμ
∣
∣ ≤ L

∑

j≥1

sup
h∈Hj

∣
∣
∑

i≤N
h(Ui)−

∫

hdμ
∣
∣ . (17.42)

That is (Heaven forbid!), we bound the supremum of a sum by the sum of the
suprema.4 This entails a loss which seems to prevent reaching the correct value
α = 2 in Theorem 17.1.3.

Let us now try to understand the size of the classes Hj . In (17.39), the first
and second coordinates play a different role. The continuous equivalent of this is
the class of functions f on the unit square which satisfy |f (x, y) − f (x ′, y)| ≤
|x − x ′| and |f (x, y ′) − f (x, y)| ≤ 2j |y ′ − y|. The function T (f ) given by
T (f )(x, y) = f (U(x, y)) where U(x, y) = (2j/2x, 2−j/2y) is basically 2j/2-
Lipschitz, whereas U preserves Lebesgue’s measure. Thus, one should think (17.39)
means “the function is 2j/2-Lipschitz”. On the other hand, it turns out (even though
this is not obvious at this stage) that condition (17.40) creates a factor 2−j . Thus,
the “size of the class Hj should be 2−j/2 the size of the class H1”. We thus expect
that the right-hand side of (17.42) will converge as a geometric series, therefore
requiring the level zero of sophistication.

The central step in the proof of Theorem 17.2.1 is as follows:

Proposition 17.3.2 Consider 1 ≤ k1 ≤ k2 ≤ 2p , 1 ≤ �1 ≤ �2 ≤ 2p and R =
{k1, . . . , k2} × {�1, . . . , �2}. Assume that

�2 − �1 + 1 = 2−j (k2 − k1 + 1) . (17.43)

Consider independent r.v.s Ui valued in G, of law μ. Then, with probability at least
1 − L exp(−50p), the following occurs. Consider any function h : G → R, and
assume that

h(k, �) = 0 unless (k, �) ∈ R . (17.44)

(k, �) , (k + 1, �) ∈ R ⇒ |h(k + 1, �)− h(k, �)| ≤ 1 (17.45)

(k, �) , (k, �+ 1) ∈ R ⇒ |h(k, �+ 1)− h(k, �)| ≤ 2j (17.46)

∀(k, �) ∈ R , |h(k, �)| ≤ 2(k2 − k1) . (17.47)

4 Just as what happens in the traditional chaining based on entropy numbers.
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Then

∣
∣
∑

i≤N
(h(Ui)−

∫

hdμ)
∣
∣ ≤ L2j/2√pm0 cardR , (17.48)

where m0 is as in (17.9) and (17.10).

In words, R is a rectangle of the appropriate shape (17.43), reflecting the fact
that the two coordinates in (17.39) do not play the same role. The function h is
zero outside R, and its restriction to R satisfies the conditions (17.45) and (17.46).
This however does not suffice to obtain a control as in (17.48), as is shown by the
case where h is constant on R, so that a mild control on the size of h is required as
in (17.47).

Besides the fact that we do not assume that h is zero on the boundary of R (and
require a stronger control than just in expectation), Proposition 17.3.2 is really a
discrete version of Proposition 4.5.19. Therefore, as expected, no really new idea
is required, only technical work, as, for example, replacing the use of the Fourier
transform by a discrete version of it (a technique which is detailed in Sect. 4.5.2).
For this reason, we have decided not to include the proof of Proposition 17.3.2.5

We will also use the following, in the same spirit as Proposition 17.3.2, but very
much easier. It covers the case of “flat rectangles”.

Proposition 17.3.3 Consider 1 ≤ k1 ≤ k2 ≤ 2p , 1 ≤ �0 ≤ 2p and R =
{k1, . . . , k2} × {�0}. Assume that

k2 − k1 + 1 ≤ 2j . (17.49)

Consider independent r.v.s Ui valued in G, of law μ. Then, with probability at least
1 − L exp(−50p), the following occurs. Consider any function h : G → R, and
assume that

h(k, �) = 0 unless (k, �) ∈ R , (17.50)

(k, �) , (k + 1, �) ∈ R ⇒ |h(k + 1, �)− h(k, �)| ≤ 1 , (17.51)

∀(k, �) ∈ R , |h(k, �)| ≤ 2(k2 − k1) . (17.52)

Then

∣
∣
∑

i≤N
(h(Ui)−

∫

hdμ)
∣
∣ ≤ L

√
m0(k2−k1+1)3/2 ≤ L2j/2√m0 cardR . (17.53)

5 Most readers are likely to be satisfied with a global understanding of Shor’s matching theorem and
would not read these proofs. The exceptional reader willing to have a run at the ultimate matching
conjecture should figure out the details herself as preparatory training. Finally, those really eager
on mastering all the technical details can find them in [132].
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Proof of Theorem 17.2.1. In Proposition 17.3.2, there are (crudely) at most 24p

choices for the quadruplet (k1, k2, �1, �2). Thus, with probability at least 1 −
L exp(−46p), the conclusions of Proposition 17.3.2 are true for all values of
k1, k2, �1, and �2, and the conclusions of Proposition 17.3.3 hold for all values of
k1, k2, and �0. We assume that this is the case in the remainder of the proof. Under
these conditions, we show the following:

h ∈ H1 ⇒
∣
∣
∑

i≤N
(h(Ui)−

∫

hdμ)
∣
∣ ≤ L

√
pm0 22p . (17.54)

h ∈ Hj = Hj (22p−j )⇒ ∣
∣
∑

i≤N
(h(Ui)−

∫

hdμ)
∣
∣ ≤ L

√
pm0 22p−j/2 . (17.55)

The conclusion then follows from the decomposition (17.41) of a function in H
provided by Proposition 17.3.1.

The proof of (17.54) relies on the case k1 = �1 = 1 and k2 = �2 = 2p

of Proposition 17.3.3. The function h satisfies (17.45) and (17.46), and hence
|h(k, �) − h(1, 1)| ≤ 2p+1 − 2 for each (k, �) ∈ G. Consequently, the function
h∗(k, �) = h(k, �) − h(1, 1) satisfies (17.44), (17.45), (17.46), and (17.47).
Therefore, h∗ satisfies (17.54), and consequently this is also the case for h.

Next, we turn to the proof of (17.55), and we fix j once and for all. The method
is to find a family R of rectangles with the following properties:

• The rectangles in R all have the appropriate shape to apply either Proposi-
tion 17.3.2 or Proposition 17.3.3.

• The family R is disjoint and covers the support of h.
• The sum of the cardinalities of the rectangles in R is at most eight times the

cardinality of the support of h.
• Each of the functions h1R for R ∈ R satisfies either (17.47) or (17.52).

We then write h = ∑R∈R h1R , and we apply either (17.48) or (17.53) to each
term to obtain the desired result. To understand the idea of the construction of the
family R, one can start with an exercise. Denoting by λ Lebesgue’s measure on the
unit square, the exercise is to prove that a measurable subset A of the unit square
with λ(A) ≤ 1/8 can be covered by a union of disjoint dyadic squares such that for
each squareC in this family, one has λ(C)/8 ≤ λ(A∩C) ≤ λ(C)/2. To see this, one
recursively removes (starting with the larger squares) the dyadic squaresC for which
λ(C∩A) ≥ λ(C)/8. The condition λ(A∩C) ≤ λ(C)/2 is an automatic consequence
of the fact that the dyadic square four times the size of C and containing C has not
been previously removed. The point of this condition is to ensure that C is not
contained in A. In the construction of the family R, this will ensure that h takes the
value zero for at least one point on each square R, so that since it is 1-Lipschitz,
we may bound it as required by (17.47) or (17.52). The unsurprising details of the
construction may be found in Sect. B.4.



Chapter 18
The Ultimate Matching Theorem
in Dimension 3

18.1 Introduction

In this chapter, we continue the study of matchings, but in dimension d = 3 rather
than 2.1 We consider i.i.d. r.v.s (Xi)i≤N uniformly distributed over the set [0, 1]3.
We want to match these points to nonrandom “evenly spread” points (Yi)i≤N .2 Here,
we say that (Yi)i≤N are evenly spread if one can cover [0, 1]3 with N rectangular
boxes with disjoint interiors, such that each box R has a three-dimensional volume
1/N , contains exactly one point Yi , and is such that R ⊂ B(Yi, 10N−1/3). Each
point of [0, 1]3 belongs to such a box R and is within distance 10N−1/3 of a point
Yi .

The plan is to prove that for as large as possible a function ϕ, with probability
close to 1, there exists a permutation π of {1, . . . , N} such that

1

N

∑

i≤N
ϕ
(Xi − Yπ(i)

LN−1/3

)
≤ 2 (18.1)

where N−1/3 is the scaling factor which is appropriate to dimension 3. For example,
one might consider a function such as ϕ(X) = exp d(X, 0)α, where d(X, 0) is the
distance between X and 0. Then (18.1) implies that this distance between Xi and
Yπ(i) is typically about N−1/3 and gives a precise control on the number of indexes
i for which it is significantly larger.

Let us try to explain in words the difference between the situation in dimension
3 and in dimension 2. In dimension 2, there are irregularities at all scales in
the distribution of a random sample (Xi)i≤N of [0, 1]2, and these irregularities

1 No new ideas are required to cover the case d > 3.
2 The reader may review the beginning of Sect. 4.3 at this stage.
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combine to create the mysterious fractional powers of logN . In dimension 3, no
such phenomenon occurs, but there are still irregularities at many different scales.
Cubes of volume about A/N with a dramatic deficit of points Xi exist for A up to
about logN . The larger A, the fewer such cubes. The essential feature of dimension
≥ 3 is that, as we will detail below, irregularities at different scales cannot combine.
Still there typically exists a cube of side about (logN/N)1/3 which contains no
point Xi . A point Yi close to the center of this cube has to be matched with a point
Xi at distance about (logN/N)1/3. Thus, if ϕ satisfies (18.1) and is a function
ϕ(X) = f (d(X, 0)) of the distance of X to 0, the function f cannot grow faster
than exp x3.

We may also consider functions ϕ for which the different coordinates in R
3 play

different roles. It is then the scarcity of points Xi inside certain rectangles which
will provide obstacles to matchings.

Although this is not obvious at this stage, it turns out that the important
characteristic of the function ϕ is the sequence of sets ({ϕ ≤ Nn})n≥1. We will
assume that these sets are rectangles with sides parallel to the coordinate axes,
and we change perspective; we use these rectangles (rather than ϕ) as the basic
object. To describe such rectangles, for each k ≥ 0, we consider three integers
nj (k) ≥ 0, 1 ≤ j ≤ 3 with the following properties: Each sequence (nj (k))k≥0 is
non-decreasing and

∑

j≤3

nj (k) = k . (18.2)

We define

Sk =
∏

j≤3

[−2nj (k), 2nj (k)] , (18.3)

so that, denoting by λ the volume measure, λ(Sk) = 2k+3 by (18.2). Thus, to go
from Sk to Sk+1, one doubles the size of one side, not necessarily the same at each
step. We note for further use that

Sk+1 ⊂ 2Sk . (18.4)

Recalling our notation N0 = 1, Nk = 22k for k ≥ 1, let us then define a function ϕ

by

ϕ(x) = inf{Nk ; x ∈ Sk} , (18.5)

so that ϕ(x) = 1 if x ∈ S0, ϕ(x) = ∞ if x �∈ ⋃k≥0 Sk and ϕ(x) = Nk if x ∈
Sk \ Sk−1. Also (and this motivated the construction), we have

{ϕ ≤ Nk} = Sk . (18.6)
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Thus, the function ϕ depends on the three sequences of integers (nj (k))k≥0, but the
notation does not indicate this.

Theorem 18.1.1 Consider the function ϕ as above. Then with probability ≥ 1 −
LN−10, there exists a permutation π of {1, . . . , N} such that

1

N

∑

i≤N
ϕ
(Xi − Yπ(i)

LN−1/3

)
≤ 2 . (18.7)

Before we discuss this result, we state an elementary fact, which will be used
during this discussion.

Lemma 18.1.2 Assume that [0, 1]3 is divided into sets of equal measure ≤
logN/(2N). Then if N is large enough, with probability close to one (and certainly
≥ 3/4), there is one of these sets which contains no point Xi .

Informal Proof. The probability for any one of these sets not to contain a point Xi

is at least (1 − logN/(2N))N � 1/
√
N . There are more than 2N/ logN such sets

and 1/
√
N × N/ log(N) � 1. The result follows if we pretend that these events

are independent because for independent events (Ωi)i≤k , the probability that none
of the events occurs is

∏
i≤k(1−P(Ωi)) ≤ exp(−∑i≤k P(Ωi)). The assertion that

the event is independent is rigorous for a Poisson point process, and it suffices to
compare the actual process with such a process. �

Let us now argue that Theorem 18.1.1 is sharp. Denoting by λ Lebesgue’s
measure, the function ϕ satisfies λ({ϕ ≤ Nk}) = λ(Sk) = 2k+3. This condition
restricts the growth of the function ϕ. We will show that it is basically necessary.

Proposition 18.1.3 Assume that ϕ is of the type (18.5), but without requiring that∑
j≤3 nj (k) = k. Assume that for a certain number C and all N large enough with

probability ≥ 1/2, we can find a permutation such that

1

N

∑

i≤N
ϕ
(Xi − Yπ(i)

CN−1/3

)
≤ 2 . (18.8)

Then for every k large enough, we have λ({ϕ ≤ Nk}) ≥ 2k/LC3.

Proof Without loss of generality, we may assume that the numberC in (18.8) equals
2n0 for a certain n0 ≥ 1. Let us then fix k and n ≥ 2 + n0 + maxj≤3 nj (k), so
that the set 2−n+n0Sk is a rectangle of the type

∏
j≤3[−2−mj , 2−mj ] where mj =

n − n0 − nj (k) ≥ 2. Then we may divide [0, 1]3 into sets A� which are translates
of 2−n+n0Sk . The sets A� are of measure a := λ(2−n+n0Sk) = 2−3n+3n0λ(Sk).
Consider then N = 23n+3, so that N−1/3 = 2−n−1. The sides of the rectangles A�

are 2−mj+1 = 2−n+n0+nj (k)+1 = N−1/32n0+nj (k)+2. If (Yi)i≤N are evenly spread,
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for each set A�, there is a point Y� within distance 10N−1/3 of its center, and this
point is well inside of A�, say, if A� = c�+2−n+n0Sk , then Y� ∈ c�+2−n+n0−1Sk .3

Let us assume if possible that

a = 2−3n+3n0λ(Sk) ≤ logN

2N
. (18.9)

Applying Lemma 18.1.2, then with probability > 0, there will at the same time
exist a matching as in (18.8), and one of the sets A� will not contain any point
Xj . The corresponding point Y� ∈ c� + 2−n+n0−1Sk near the center of A� can
only be matched to a point Xi �∈ A� = c� + 2−n+n0Sk . Then Y� − Xi �∈
2−n+n0−1Sk = 2n0N−1/3Sk so that (Y� − Xi)/(2n0N−1/3) �∈ Sk = {ϕ ≤ Nk}
and thus ϕ((Y� − Xi)/2n0N−1/3) ≥ Nk . On the other hand, since Xi and Y� are
matched together, (18.8) implies that ϕ((Y� − Xi)/2n0N−1/3) ≤ 2N . In particular,
we have shown that Nk ≤ 2N . Turning things around, when 2N < Nk , (18.9)
must fail, that is, we have logN/(2N) ≤ 2−3n+3n0λ(Sk) = 23n0+3λ(Sk)/N , and
thus logN ≤ 23n0Lλ(Sk) ≤ LC3λ(Sk). Choosing n as large as possible with
2N = 23n+4 < Nk yields Nk ≤ 4N and 2k/L ≤ logN ≤ LC3λ(Sk) which is
the desired result. �
Exercise 18.1.4 Consider a convex function ψ ≥ 0 on R

3, with ψ(0) = 0, which
is allowed to take infinite values. Assume that it satisfies the following:

∀ u ≥ 1 , λ({ψ ≤ u}) ≥ logu , (18.10)

ε1, ε2, ε3 = ±1 ⇒ ψ(ε1x1, ε2x2, ε3x3) = ψ(x1, x2, x3) , (18.11)

ψ(1, 0, 0) ≤ 1 ; ψ(0, 1, 0) ≤ 1 ; ψ(0, 0, 1) ≤ 1 . (18.12)

Then there are a constant L and a function ϕ as in Theorem 18.1.1 with ψ(x) ≤
ϕ(Lx). Hint: All it takes is to observe that a convex set invariant by the symmetries
around the coordinate planes is basically a rectangular box with sides parallel to the
coordinate axes.

As a consequence of this exercise, Theorem 18.1.1 also applies to such functions.
Consider, for example, α1, α2, α3 ∈]0,∞] with

1

α1
+ 1

α2
+ 1

α3
= 1

and the function

ψ(x1, x2, x3) = exp
1

3
(|x1|α1 + |x2|α2 + |x3|α3)− 1 .

3 Note that without loss of generality, we may assume n0 ≥ 10 to give us all the room we need.
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Here, we define |x|∞ = 0 if |x| < 1 and |x|∞ = ∞ if |x| ≥ 1. Then

{ψ ≤ u} ⊃ {(x1, x2, x3) ; ∀ j ≤ 3 , |xj | < (log(1+ u))1/αj } ,

and consequently,

λ({ψ ≤ u}) ≥ log(1+ u) .

Thus, Theorem 18.1.1 proves in this setting the “ultimate matching conjecture” of
Problem 17.1.2.

The special case α1 = α2 = α3 = 3 is essentially the case where ψ(x) =
exp(‖x‖3). It was proved earlier by J. Yukich using the so-called transportation
method (unpublished), but the transportation method seems powerless to prove
anything close to Theorem 18.1.1. This special case shows that with probability
≥ 1− LN−10, we can find a matching for which

∑

i≤N
exp(Nd(Xi, Yπ(i))

3/L) ≤ 2N ,

so that in particular
∑

i≤N d(Xi, Yπ(i))
3 ≤ L (since x ≤ exp x) and for

each i, exp(Nd(Xi, Yπ(i))
3/L) ≤ 2N , which implies maxi≤N d(Xi, Yπ(i)) ≤

LN−1/3(logN)1/3 (a result first obtained by J. Yukich and P. Shor in [97]).

Research Problem 18.1.5 Find a proof of Theorem 18.1.1 a few pages long. The
current proof occupies the entire chapter.

18.2 Regularization of ϕ

For purely technical reasons, we will not be able to work directly with the function
ϕ, so in this section, we construct a regularized version of it. Our goal is to prove
the following:

Proposition 18.2.1 There exists a function ϕ∗ with ϕ∗(0) = 0 that satisfies the
following properties:

∀ k ≥ 0 , 8Sk ⊂ {ϕ∗ ≤ Nk} ⊂ 16Sk , (18.13)

the set {ϕ∗ ≤ u} is convex for each u > 0 , (18.14)

∀ x , ϕ∗(x) = ϕ∗(−x) , (18.15)

u ≥ N5 ⇒ 3

4
{ϕ∗ ≤ u} ⊂ {ϕ∗ ≤ u

4

}
. (18.16)
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The crucial new property of ϕ∗ compared to ϕ is (18.16). Please note that
condition (18.14) does not say that ϕ∗ is convex.

Let us start some auxiliary constructions. For each j ≤ 3, we have nj (k) ≤
nj (k + 1) ≤ nj (k)+ 1. Thus, the sequence (nj (k))k≥0 takes all the values 0 ≤ n ≤
n∗j := supk nj (k) ∈ N ∪ {∞}. For n ≤ n∗j , n ∈ N, we define

kj (n) = inf{k ; nj (k) = n} . (18.17)

In particular, kj (0) = 0, and, as will be of constant use, kj (n+ 1) ≥ kj (n)+ 1. We
then define a function θj : R+ → R

+ by the following properties:

0 ≤ t ≤ 23 ⇒ θj (t) = 0 . (18.18)

n ≤ n∗j ⇒ θj (2
n+3) = logNkj (n) . (18.19)

θj is linear between 2n+3 and 2n+4 for 0 ≤ n < n∗j . (18.20)

t > 2n
∗
j+3 ⇒ θj (t) =∞ . (18.21)

Obviously, this function is non-decreasing.

Lemma 18.2.2 For k ≥ 0, we have

[0, 2nj (k)+3] ⊂ {θj ≤ logNk} ⊂ [0, 2nj (k)+4] . (18.22)

Proof Let n = nj (k) so that by definition of kj (n), we have kj (n) ≤ k < kj (n+1),
and by (18.19) θj (2n+3) = logNkj (n) ≤ logNk so that [0, 2nj (k)+3] ⊂ {θj ≤
logNk}. Next, for t > 2n+4, by (18.19) again, we have θj (t) ≥ logNkj (n+1) >

logNk so that {θj ≤ logNk} ⊂ [0, 2nj (k)+4], and (18.22) is proved. �
Lemma 18.2.3 For t ∈ R

+, we have

θj (t) ≥ logN4 + 2 log 2 ⇒ θj (3t/4) ≤ θj (t)− 2 log 2 . (18.23)

Proof A first observation is that for n ≥ 1, the slope of θj on the interval
[2n+3, 2n+4] is (recalling that logNk = 2k log 2 for k ≥ 2)

2−n−3(logNkj (n+1) − logNkj (n)) = 2−n−3(2kj (n+1) − 2kj (n)) log 2 .

A technical problem here is that there seems to be no reason why this quantity would
increase with n. On the other hand, since kj (n) ≤ kj (n+1)−1, this slope is at least

χ(n) := log 2× 2kj (n+1)−n−4 , (18.24)
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which satisfies χ(n) ≤ χ(n+ 1). As a consequence, the slope of θj on the interval
[2n+1,∞[ is at least χ(n). To prove (18.23), we may assume θj (3t/4) > logN4 for
the proof is finished otherwise. Thus, {θj ≤ logN4} ⊂ [0, 3t/4], and from (18.18),
we have 3t/4 > 23. Consider the largest integer n∗ with 2n

∗+3 ≤ 3t/4, so that
3t/4 ≤ 2n

∗+4 and thus

logN4 < θj (3t/4) ≤ θj (2n
∗+4) = logNkj (n∗+1) ,

and hence kj (n
∗ + 1) ≥ 4. Since 3t/4 ≥ 2n

∗+3, we have t/4 > 2n
∗+1, so that

t − 3t/4 = t/4 > 2n
∗+1. As we noted, the slope of θj on the interval [2n∗+3,∞] is

everywhere at least χ(n∗). Thus, we have proved that

θj (t)− θj (3t/4) ≥ 2n
∗+1χ(n∗) = log 2× 2kj (n

∗+1)−3 ≥ 2 log 2 . �

Proof of Proposition 18.2.1. We define ψj (t) = |t|/8 for |t| ≤ 1 and ψj(t) =
exp θj (|t|) for |t| ≥ 1. We define

ϕ∗(x1, x2, x3) = max
j≤3

ψj (xj ) , (18.25)

so that (18.13) follows from (18.22) and the equality {ϕ∗ ≤ u} = ∏j≤3{ψj ≤ u},
which also proves (18.14). Certainly, (18.15) is obvious.

We turn to the proof of (18.16). Consider u ≥ N5. Given x with ϕ∗(x) ≤ u, we
have to prove that ϕ∗(3x/4) ≤ u/4. Since ϕ∗(x) ≤ u, we have maxj≤3 θj (|xj |) ≤
logu so that, since logu ≥ logN5, we have

max(logN5,max
j≤3

θj (|xj |)) ≤ logu . (18.26)

Now, since logN5 = 25 log 2 ≥ 4 log 2 + 24 log 2 = 4 log 2 + logN4, when
θj (|xj |) ≤ logN4 + 2 log 2, then

θj (3|xj |/4) ≤ θj (|xj |) ≤ logN5 − 2 log 2 ,

where we use that θj is increasing in the first inequality. Now, if θj (|xj |) ≥ logN4+
2 log 2, then (18.23) implies that θj (3|xj |/4)) ≤ θj (|xj |)− 2 log 2. Consequently,

logϕ∗(3x/4) = max
j≤3

θj (3|xj |/4) ≤ max(logN5,max
j≤3

θj (|xj |))− 2 log 2 ,

and using (18.26), we obtain logϕ∗(3x/4) ≤ logu− 2 log 2 = log(u/4). �
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18.3 Discretization

We now think of N as fixed and large. Consider a universal constant L∗ which will
be determined later. We define p as

the largest integer such that L∗23p ≤ N , (18.27)

so that p ≥ 2 for N large. Let G = {1, . . . , 2p}3. We denote by τ the
generic element of G. To each τ = (τj )j≤3 corresponds the small cube Hτ :=∏

j≤3]2−p(τj − 1), 2−pτj ] of side 2−p of which 2−pτ is a vertex. These cubes

form a partition of ]0, 1]3. The idea is simply that since we are not interested in
what happens at scales less than N−1/3, we replace Hτ by the point 2−pτ , and G

is a discrete model for [0, 1]3 (although we have to keep in mind the scaling factor
2−p).

Recalling our evenly spread points Yi , we define Zi = τ where τ ∈ G is
determined by Yi ∈ Hτ . We note that each coordinate of Yi differs by at most
2−p from the corresponding coordinate of 2−pZi , which for further use we express
as (and recalling that S0 = [−1, 1]3 by (18.3))

2pYi − Zi ∈ S0 . (18.28)

We set

n(τ) = card{i ≤ N ; Zi = τ } = card{i ≤ N ; Yi ∈ Hτ } . (18.29)

Lemma 18.3.1 If L∗ is large enough, there exists an integer m0 ≥ L∗/2 such that

∀ τ ∈ G , m0 ≤ n(τ) ≤ 2m0 (18.30)

and

m023p ≤ N ≤ 2m023p . (18.31)

Proof We first observe that (18.31) follows from summation of the inequali-
ties (18.30) over τ ∈ G.

Since the points Yi are evenly spread, there exists a partition of [0, 1]3 in
rectangular boxes Ri with Yi ∈ Ri ⊂ B(Yi , 10/N1/3). Each of these boxes has
volumeN−1. Let us fix τ ∈ G. Let W1 be the union of the Ri such that Ri ⊂ Hτ , and
observe that Nλ(W1) is just the number of these boxes Ri ⊂ Hτ . When Ri ⊂ W1,
we have Yi ∈ Hτ so that

Nλ(W1) ≤ card{i ≤ N; Yi ∈ Hτ } = n(τ) . (18.32)
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Let W2 be the union of the Ri such that Ri ∩ Hτ �= ∅, so that W2 ⊂ Hτ . When
Yi ∈ Hτ , we have Ri ∩Hτ �= ∅ so that Ri ⊂ W2 and

n(τ) = card{i ≤ N; Yi ∈ Hτ } ≤ Nλ(W2) . (18.33)

On the other hand, we have λ(W1) ≤ λ(Hτ ) = 2−3p ≤ λ(W2) so that Nλ(W1) ≤
N2−3p ≤ Nλ(W2), and combining with (18.32) and (18.33), we obtain

|n(τ)−N2−3p| ≤ Nλ(W2 \W1) , (18.34)

where W2\W1 is the union of the boxes Ri for which Ri∩Hτ �= ∅ and Ri∩Hc
τ �= ∅.

Since Ri is of diameter ≤ 20N−1/3, every point of W2 \ W1 is within distance
20N−1/3 of the boundary of Hτ . Since L∗23p ≤ N , we have N−1/3 ≤ 2−p(L∗)−1/3

so that when L∗ is large, we have 20N−1/3 � 2−p. We should then picture W2 \W1
as contained in a thin shell around the boundary of Hτ , and the volume of this
shell is a small proportion of the volume of Hτ , say less than 1/3 of this volume,
λ(W2 \W1) ≤ λ(Hτ )/3 = 2−3p/3, and then (18.34) yields

2

3
N2−3p ≤ n(τ) ≤ 4

3
N2−3p .

Since N2−3p ≥ L∗, the smallest integer m0 ≥ 2N2−3p/3 satisfies m0 ≥ L∗/2 and
4N2−3p/3 ≤ 2m0 so that

∀ τ ∈ G , m0 ≤ n(τ) ≤ 2m0 . �

We will now forget about L∗ until the very end of the proof. We will prove
results that hold when m0 ≥ L for a large universal constant, a condition which can
be achieved by taking L∗ large enough.

18.4 Discrepancy Bound

Let us recall that each of the evenly spread points Yj belongs to a little box Rj of
volume 1/N . For each τ ∈ G, we define Kτ as the union of the boxes Rj for which
the corresponding point Yj ∈ Hτ . We define the r.v.s Ui by Ui = τ where τ is the
random point of G determined by Xi ∈ Kτ . Since the boxes Rj have a diameter
≤ 10N−1/3 and since N−1 ≤ 2−3p/L∗, assuming L∗ ≥ 103, given any point of
Hτ and any point of Kτ , their difference has coordinates≤ 2−p+1. In particular, we
have

2pXi − Ui ∈ 2S0 = 2[−1, 1]3 . (18.35)
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The r.v.s Ui are i.i.d. of law μ where μ is the probability measure on G given by

∀ τ ∈ G , μ({τ }) = n(τ)

N
, (18.36)

so that according to (18.30),

∀ τ ∈ G ,
m0

N
≤ μ({τ }) ≤ 2m0

N
. (18.37)

Thus, μ is nearly uniform on G. To each function w : G → R, we associate the
function hw : G→ R given by

hw(τ) = inf{w(τ ′)+ ϕ∗(τ − τ ′) ; τ ′ ∈ G} . (18.38)

Since ϕ∗(0) = 0, we have

hw ≤ w , (18.39)

and we define4

Δ(w) =
∫

(w − hw)dμ ≥ 0 . (18.40)

Since ϕ∗ ≥ 0 and G is finite, we have Δ(w) < ∞. The crucial ingredient for
Theorem 18.1.1 is the following discrepancy bound:

Theorem 18.4.1 Consider an i.i.d. sequence of r.v.s (Ui)i≤N distributed like μ.
Then with probability ≥ 1− L exp(−100p), the following occurs:

∀w : G→ R ,
∣
∣
∑

i≤N

(
hw(Ui)−

∫

hwdμ
)∣
∣ ≤ L

√
m023p(Δ(w)+ 1) . (18.41)

The essential difficulty in a statement of this type is to understand which kind of
information on the function hw we may obtain from the fact that Δ(w) is given.
In very general terms, there is no choice: we must extract information showing
that such functions “do not vary wildly” so that we may bound the left-hand side
of (18.41) with overwhelming probability. In still rather general terms, we shall
prove that control of Δ(w) implies a kind of local Lipschitz condition on hw . This
is the goal of Sect. 18.5. This local Lipschitz condition implies in turn a suitable
control on the coefficients of a Haar basis expansion of hw , and this will allow us
to conclude. The proof does not explicitly use chaining, although it is in a similar

4 The use of the notation Δ has nothing to do with the Laplacian and everything to do with the fact
that Δ(w) “measure the size of the difference between w and hw”.
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spirit. The formulation in an abstract setting of the principle behind this proof is a
possible topic for further research.

In the remainder of this section, we first prove a matching theorem related
to the bound (18.41), and we then use Theorem 18.4.1 to complete the proof of
Theorem 18.1.1.

Theorem 18.4.2 There exists a constant L1 such that the following occurs. Assume
that

m0 ≥ L1 . (18.42)

Consider points (Ui)i≤N as in (18.41). Then there exists a permutation π of
{1, . . . , N} for which

∑

i≤N
ϕ∗(Ui − Zπ(i)) ≤ N . (18.43)

Proof First we deduce from Proposition 4.3.2 that

inf
π

∑

i≤N
ϕ∗(Ui − Zπ(i)) = sup

∑

i≤N
(wi +w′i ) , (18.44)

where the supremum is over all families (wi)i≤N and (w′i )i≤N for which

∀ i, j ≤ N , wi +w′j ≤ ϕ∗(Ui − Zj) . (18.45)

Given such families (wi) and (w′i ), for τ ∈ G, let us then define

h(τ) = inf
j≤N(−w

′
j + ϕ∗(τ − Zj)) , (18.46)

so that from (18.45), we obtain wi ≤ h(Ui) and thus

∑

i≤N
(wi +w′i ) ≤

∑

i≤N
(h(Ui)+ w′i ) . (18.47)

For τ ∈ G, we define

w(τ) := inf{−w′j ; Zj = τ } , (18.48)

so that, taking in (18.46) the infimum first at a given value τ ′ of Zj , we obtain

h(τ) = inf{w(τ ′)+ ϕ∗(τ − τ ′) ; τ ′ ∈ G} , (18.49)
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and consequently, recalling the notation (18.38),

h(τ) = hw(τ) .

Also, (18.48) implies

−w(τ) = sup{w′j ; Zj = τ } ,

so that, using (18.36),

∑
{w′j ; Zj = τ, j ≤ N} ≤ card{j ; Zj = τ } sup{w′j ; Zj = τ }

= −Nμ({τ })w(τ) ,

and by summation of these inequalities over τ ∈ G,

∑

i≤N
w′i ≤ −N

∫

wdμ . (18.50)

Consequently,

∑

i≤N
(h(Ui)+ w′i ) ≤

∑

i≤N
h(Ui)−N

∫

wdμ

≤
∑

i≤N

(
h(Ui)−

∫

hdμ
)−N

∫

(w − h)dμ

=
∑

i≤N

(
h(Ui)−

∫

hdμ
)−NΔ(w) . (18.51)

Now (18.41) implies, since h = hw ,

∑

i≤N

(
h(Ui)−

∫

hdμ
) ≤ L

√
m023p(Δ(w)+ 1) , (18.52)

and combining with (18.47) and (18.51), we have proved that all families (wi) and
(w′i ) as in (18.45) satisfy

∑

i≤N
(wi + w′i ) ≤ L

√
m023p(Δ(w)+ 1)− NΔ(w) .

Recalling that N ≥ m023p by (18.31), we obtain that for m0 ≥ L1, the right-hand
side is ≤ N . �
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The idea to prove Theorem 18.1.1 is the obvious one: when we match the points
Ui and Zπ(i) in the discretized version of the problem, we will match the points Xi

and Yπ(i) in the original problem, and the next result allows to use the information
provided by (18.30).

Lemma 18.4.3 For any i, j ≤ N , we have

ϕ(2p−6(Xi − Yj )) ≤ 1+ ϕ∗(Ui − Zj) . (18.53)

Proof Assume first that Ui − Zj ∈ 16S0. Combining with (18.28) and (18.35),
we obtain 2p(Xi − Yj ) = 2pXi − Ui + Ui − Zj + Zj − 2pYj ∈ 19S0 so that in
particular 2p−6(Xi−Yj ) ∈ S0 and since ϕ = 1 on S0, we get ϕ(2p−6(Xi−Yj )) = 1,
proving (18.53).

Assume next that Ui − Zj �∈ 16S0, and consider the smallest k for which Ui −
Zj ∈ 16Sk (if no such k exists, there is nothing to prove since ϕ∗(Ui−Zj) = ∞), so
that k ≥ 1. Since Ui−Zj �∈ 16Sk−1, we have ϕ∗(Ui−Zj) ≥ Nk−1 by (18.13). Since
Sk ⊂ 2Sk−1 by (18.4), we have Ui−Zj ∈ 16Sk ⊂ 32Sk−1. Combining with (18.28)
and (18.35), we obtain 2p(Xi − Yj ) ∈ 35Sk−1 so that 2p−6(Xi − Yj ) ∈ Sk−1 and
ϕ(2p−6(Xi − Yj )) ≤ Nk−1 by (18.6). We have proved (18.35). �
Corollary 18.4.4 Consider a permutation π of {1, . . . , N} such that (18.43) holds.
Then (18.7) holds.

Proof This is obvious from (18.53) because by definition of p, we have L∗23p+3 ≥
N so that 2p−6 ≥ N1/3/L. �
Proof of Theorem 18.1.1. According to Theorem 18.4.1, (18.41) occurs with prob-
ability ≥ 1− L exp(−100p) ≥ 1− LN−10. When (18.41) occurs, Theorem 18.4.2
produces a permutation π for which (18.43) holds, and Corollary 18.4.4 shows
that (18.7) holds for the same permutation. �

18.5 Geometry

The real work toward the proof of Theorem 18.4.1 starts here. To lighten notation,
we assume from now on that ϕ = ϕ∗ satisfies (18.13) to (18.16).

In this section, we carry out the task of finding some “regularity” of the functions
hw (defined in (18.38)) for which Δ(w) is not too large. In other words, we describe
some of the underlying “geometry” of this class of functions.

We define

sj (k) = min(p, nj (k)) ; s(k) =
∑

j≤3

sj (k) . (18.54)
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It follows from (18.2) that nj (k) ≤ k, so that

k ≤ p ⇒ sj (k) = nj (k) (18.55)

and also using again (18.2),

k ≤ p ⇒ s(k) = k . (18.56)

It is the nature of the problem that different scales must be used. They will appear
in terms of the sets we define now. We consider the collection Pk of subsets of G of
the form

∏

j≤3

{bj2sj (k) + 1, . . . , (bj + 1)2sj (k)} (18.57)

for bj ∈ N, 0 ≤ bj ≤ 2p−sj (k) − 1. For lack of a better word, subsets of G which
are product of three intervals will be called rectangles. There are 23p−s(k) rectangles
of the previous type, which form a partition of G. Each of these rectangles has
cardinality 2s(k):

C ∈ Pk ⇒ cardC = 2s(k) . (18.58)

We say that a subset A of G is Pk-measurable if it is a union of rectangles belonging
to Pk .

Let us say that two rectangles of Pk are adjacent if for all j ≤ 3, the
corresponding values of bj differ by at most 1. Thus, a rectangle is adjacent to
itself and to at most 26 other rectangles. Given an integer q , let us say that two
rectangles of Pk are q-adjacent if for each j ≤ 3, the corresponding values of bj
differ by at most q . Thus, at most (2q + 1)3, rectangles of Pk are q-adjacent to a
given rectangle. The elementary proof of the following is better left to the reader.
We recall the definition (18.3) of the sets Sk .

Lemma 18.5.1

(a) If C,C′ in Pk are adjacent, and if τ ∈ C, τ ′ ∈ C′, then τ − τ ′ ∈ 2Sk .
(b) If τ ∈ C ∈ Pk, A ⊂ τ + qSk , A ∈ Pk , then A and C are q-adjacent.

Recalling the definition (18.38), given Δ ≥ 0, we define the class S(Δ) of
functions on G by

S(Δ) =
{
hw ; Δ(w) =

∫

(w − hw)dμ ≤ Δ
}
. (18.59)

We next state the main result of this section. The essence of this result is that
for h ∈ S(Δ) at each point, there is a scale at which it is appropriate to control the
variations of h.
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Theorem 18.5.2 Given Δ ≥ 1, for every function h ∈ S(Δ), we can find a partition
(Bk)k≥4 of G such that Bk is Pk-measurable and such that for each C ∈ Ck := {C ∈
Pk;C ⊂ Bk}, we can find a number z(C) such that the following properties hold:

∑

k≥4

∑

C∈Ck
2s(k)z(C) ≤ L23pΔ , (18.60)

k ≥ 4 , C ∈ Ck ⇒ Nk ≤ z(C) ≤ Nk+1 . (18.61)

For every k ≥ 4, if C ∈ Ck and if C′ ∈ Pk is adjacent to C, then

τ ∈ C , τ ′ ∈ C′ ⇒ |h(τ)− h(τ ′)| ≤ z(C) . (18.62)

Let us stress that (18.62) holds in particular for C′ = C.
Any point τ of G belongs to some Bk . Close to τ , the relevant scale to control

the variations of h is given by the partition Pk . Condition (18.61) controls the size
of the numbers z(C), depending on the local scale at which the kind of Lipschitz
condition (18.62) holds. The restriction z(C) ≤ Nk+1 is essential; the lower bound
z(C) ≥ Nk is purely technical. Finally, the global size of the weighted quantities
z(C) is controlled by (18.60).

In the remainder of this chapter, we shall use the information provided by
Theorem 18.5.2 to prove Theorem 18.4.1.

We start the proof of Theorem 18.5.2, which will occupy us until the end of the
present section. This proof is fortunately not as formidable as the statement of the
theorem itself. Considering a function h ∈ S(Δ), we have to construct the objects
of Theorem 18.5.2. By definition of S(Δ), we can find a function w : G→ R such
that

∀ τ ∈ G , h(τ) = inf{w(τ ′)+ ϕ(τ − τ ′) ; τ ′ ∈ G} , (18.63)

while
∫

(w − h)dμ ≤ Δ . (18.64)

For each τ and τ ′ in G, we have

h(τ) ≤ w(τ ′)+ ϕ(τ − τ ′) ,

so that

w(τ ′) ≥ h(τ)− ϕ(τ − τ ′) .
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Let us then define

ĥ(τ ′) = sup{h(τ)− ϕ(τ − τ ′) ; τ ∈ G} , (18.65)

so that

h ≤ ĥ ≤ w . (18.66)

One may think of ĥ as a regularized version of the function w. Moreover,

∫

(̂h− h)dμ ≤
∫

(w − h)dμ ≤ Δ . (18.67)

For C in Pk , let us define

y(C) = min
τ∈C ĥ(τ )−max

τ∈C h(τ) . (18.68)

Thus, for τ ∈ C, we have y(C) ≤ ĥ(τ )− h(τ), so that

μ(C)y(C) ≤
∫

C

(̂h(τ )− h(τ))dμ(τ) .

Using (18.58) and (18.37), we have μ(C) ≥ 2s(k)m0/N . Using also that m0/N ≥
2−3p−1 by (18.31), we finally obtain

2s(k)y(C) ≤ L23p
∫

C

(̂h(τ )− h(τ))dμ(τ) . (18.69)

Lemma 18.5.3 There exists a disjoint sequence (Lk)k≥5 of Pk-measurable sets
with the following properties:

(a) If A ∈ Pk and A ⊂ Lk , then y(A) ≥ Nk/2.
(b) Consider � ≥ 5 and A ∈ P� with y(A) ≥ N�/2. Then there exist �′ ≥ � and

A′ ∈ P�′ with A ⊂ A′ and y(A′) ≥ N�′/2.

Proof If for each k ≥ 5 and each A ∈ Pk we have y(A) < Nk/2, there is nothing to
do. Otherwise, consider the largest k0 for which there exists A ∈ Pk0 with y(A) ≥
Nk0/2. For k > k0, we set Lk = ∅. Let Lk0 be the union of all such rectangles A ∈
Pk0 with y(A) ≥ Nk0/2. We then construct the sets Lk by decreasing induction over
k. Having constructed L� for � ≥ k, we define Lk−1 as the union of all rectangles
A ∈ Pk−1 for which A �⊂ ∪�≥kL� and y(A) ≥ Nk−1/2. It is obvious that this
sequence has the required properties. �

From this point on, we set q = 32. The construction of the partition (Bk)k≥4
is obtained in the next result, although it will take further work to prove that this
partition has the right properties.
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Proposition 18.5.4 There exists a partition (Bk)k≥4 of G consisting of Pk-
measurable sets with the following properties:

(a) If C ∈ Pk , C ⊂ Bk , there exists A ∈ Pk , A ⊂ Lk which is q-adjacent to C.
(b) Consider C ∈ Pk, C ⊂ Bk , k ≥ 5. Consider � ≥ k. Consider the unique

D ∈ P� with C ⊂ D. If there exists A ∈ P� with y(A) ≥ N�/2 which is
q-adjacent to D, then k = �.

Proof If for each k ≥ 5 and each A ∈ Pk we have y(A) < Nk/2, we set B4 = G

and Bk = ∅ for k > 4. Otherwise, consider the sequence (Lk)k≥5 constructed in the
previous lemma. We denote by k0 the largest integer for which there exists A ∈ Pk0

with y(A) ≥ Nk0/2. We construct the sequence (Bk) as follows. For k > k0, we
set Bk = ∅. We define Bk0 as the union of all the rectangles C ∈ Pk0 which are
q-adjacent to a rectangle A ∈ Pk0 , A ⊂ Lk0 . We then define the sequence (Bk)k≥5
by decreasing induction over k. Having defined B� for � ≥ k, we define Bk−1 as the
union of all the rectangles C ∈ Pk−1 which are q-adjacent to an A ∈ Pk−1 with
A ⊂ Lk−1 but for which C �⊂ ∪�≥kB�. Finally, B4 is what is left after we have
constructed (Bk)k≥5.

The property (a) is obvious by construction. To prove (b), we note that by
Lemma 18.5.3, there exists �′ ≥ � for which the element A′ ∈ P�′ with A ⊂ A′
satisfies A′ ⊂ L�′ . Then the element D′ ∈ P�′ such that D ⊂ D′ is q-adjacent to
A′. By construction of B�′ , we have D′ ⊂ ∪�′′≥�′B�′′ . Since C ⊂ D′ and C ⊂ Bk ,
and since the sets (B�′′) form a partition, we have �′ ≤ k so that � = �′ = k. �

The reader should keep in mind the following important notation which will be
used until the end of the chapter. For k ≥ 4, we write

Ck = {C ∈ Pk, C ⊂ Bk} . (18.70)

For C ∈ Ck, k ≥ 5, we set

x(C) = max{y(C′) ; C′ ∈ Pk , C′ ⊂ Lk , C′ is q -adjacent to C} , (18.71)

using that such C′ exists by Proposition 18.5.4, (a). Using Lemma 18.5.3, (a) we
further have

x(C) ≥ Nk/2 . (18.72)

Our next goal is to prove the following, which is the main step toward (18.60):

Lemma 18.5.5 We have

∑

k≥5

∑

C∈Ck
2s(k)x(C) ≤ L23pΔ . (18.73)
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Proof When C ∈ Ck by definition of x(C), there exists C̄ ∈ Pk which is q-adjacent
to C and such that x(C) = y(C̄) and C̄ ⊂ Lk . Thus,

∑

k≥5

∑

C∈Ck
2s(k)x(C) =

∑

k≥5

∑

C∈Ck
2s(k)y(C̄)

≤ (2q + 1)3
∑

k≥5

∑

C∈Ck,C⊂Lk

2s(k)y(C) , (18.74)

because there are at most (2q + 1)3 sets C′ ∈ Ck for which C̄′ is a given C ∈ Ck .
Since the sets Lk are disjoint, it follows from (18.69) and (18.67) that the sum on
the right-hand side is ≤ L23pΔ. �

For C ∈ Ck , k ≥ 5, we set

z(C) = min(2x(C),Nk+1) ≥ Nk .

If C ∈ C4, we set z(C) = N5. Thus, (18.61) holds. Moreover,

∑

C∈C4

2s(4)z(C) = N52s(4) card C4 ≤ N52s(4) cardP4 = N523p ≤ L23pΔ

since Δ ≥ 1. Therefore, (18.60) follows from (18.73).
We turn to the proof of (18.62), the core of Theorem 18.5.2.

Proposition 18.5.6 If k ≥ 4, C ∈ Ck , C′ ∈ Pk are adjacent, and τ ∈ C, τ ′ ∈ C′,
then

h(τ ′) ≤ h(τ)+ z(C) . (18.75)

Since z(C) ≥ Nmax(k,5), there is nothing to prove unless

h(τ ′)− h(τ) ≥ Nmax(k,5) ,

so we assume that this is the case in the rest of the argument. It follows from (18.63)
that for some ρ ∈ G, we have

h(τ) = w(ρ)+ ϕ(τ − ρ) . (18.76)

We fix such a ρ, and we define

u = max(h(τ ′)− h(τ), ϕ(τ − ρ)) , (18.77)

so that u ≥ Nmax(k,5). We set

U = {ϕ ≤ u} .



18.5 Geometry 579

According to (18.14), this is a convex set, and (18.15) implies that U = −U .
Consider the largest integer � ≥ 1 such that u ≥ N�. Since u ≥ Nmax(k,5), we have
� ≥ max(k, 5), and by the definition of �, we have u < N�+1. We then use (18.13)
as well as S�+1 ⊂ 2S� to obtain

8S� ⊂ U ⊂ 32S� . (18.78)

Lemma 18.5.7 There exists A ∈ P� with

A ⊂ V := ρ + τ ′

2
+ S� ⊂

(
τ ′ + 3U

4

)
∩
(
ρ + 3U

4

)
. (18.79)

Proof Since C and C′ are adjacent, it follows from Lemma 18.5.1 (a) that

τ ′ − τ ∈ 2Sk ⊂ 2S� ⊂ U

4
.

Since ϕ(τ − ρ) ≤ u, we have τ − ρ ∈ U , so that τ ′ − ρ = τ ′ − τ + τ − ρ ∈ 5U/4
and therefore ρ − τ ′ ∈ 5U/4 since U is symmetric by (18.15). Consequently,

ρ + τ ′

2
∈ τ ′ + 5U

8
; ρ + τ ′

2
∈ ρ + 5U

8
. (18.80)

Thus, defining V as in (18.79), the second inclusion in this relation holds. Even
though the point (ρ+τ ′)/2 need not be in G, since the set S� is twice larger in every
direction than an element of P�, it is obvious that V entirely contains an element A
of P�. �
Lemma 18.5.8 We have y(A) ≥ u/2.

Proof Since u ≥ N5, it follows from (18.16) that ϕ(x) ≤ u/4 for x ∈ 3U/4.
Consequently, if ρ′ ∈ G∩V by (18.79), we have ϕ(ρ′ − τ ′) ≤ u/4 and ϕ(ρ′ −ρ) ≤
u/4. Thus,

ĥ(ρ′) ≥ h(τ ′)− ϕ(τ ′ − ρ′) ≥ h(τ ′)− u

4
.

Also, by (18.63), we have

h(ρ′) ≤ w(ρ)+ ϕ(ρ′ − ρ) ≤ w(ρ) + u

4
.

Thus, using (18.76) in the second line and (18.77) in the last line,

min
ρ′∈V∩G

ĥ(ρ′)− max
ρ′∈V∩G

h(ρ′) ≥ h(τ ′)−w(ρ)− u

2

= h(τ ′)− h(τ)+ ϕ(τ − ρ)− u

2
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≥ max(h(τ ′)− h(τ), ϕ(τ − ρ))− u

2

= u

2
. (18.81)

Since A ⊂ V , this implies the required result by the definition of y(A). �
Proof of Proposition 18.5.6. We will prove that u ≤ z(C), from which (18.75)
follows. Since τ ′ − τ ∈ U/4, using (18.79) in the second inclusion and (18.78)
in the third one, we have

V ⊂ τ ′ + 3U

4
⊂ τ + U ⊂ τ + 32S� . (18.82)

Since � ≥ k, and since C ∈ Pk , there is a unique rectangle D ∈ P� with C ⊂ D,
and since A ⊂ V and τ ∈ C, (18.82) and Lemma 18.5.1 (b) imply that D and A

are 32-adjacent. Moreover, by Lemma 18.5.8, we have y(A) ≥ u/2 ≥ N�/2. By
Proposition 18.5.4 (b), we have � = k. Thus, D = C ∈ Pk and A ∈ Pk . Since
A and C are 32-adjacent, it then follows from the definition (18.71) that x(C) ≥
y(A) ≥ u/2. Also, u < N�+1 = Nk+1, so that u ≤ min(2x(C),Nk+1) = z(C),
completing the proof of (18.75). �

Finally, it remains to prove that, with the notation of (18.62),

h(τ) ≤ h(τ ′)+ z(C) . (18.83)

For this, we repeat the previous argument, exchanging the roles of τ and τ ′, up
to (18.82), which we replace by

V ⊂ τ + 3U

4
⊂ τ + U ⊂ τ + 32S� ,

and we finish the proof in exactly the same manner. �

18.6 Probability, I

To prove a discrepancy bound involving the functions of the class S(Δ) of
Theorem 18.5.2, we must understand “how they oscillate”. There are two sources
for such oscillations.

• The function h oscillates within each rectangle C ∈ Ck .
• The value of h may jump when one changes the rectangle C.

In the present section, we take care of the first type of oscillation. We show that we
can reduce the proof of Theorem 18.4.1 to that of Theorem 18.6.9, that is, to the
case where h is constant on each rectangle C ∈ Ck. This is easier than the proof of
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Theorem 18.6.9 itself, but already brings to light the use of the various conditions
of Theorem 18.5.2. Throughout the rest of the proof, for τ ∈ G, we consider the r.v.

Yτ = card{i ≤ N ; Ui = τ } −Nμ({τ }) , (18.84)

where Ui are i.i.d. r.v.s on G with P(Ui = τ ) = μ({τ }). We recall the number m0
of (18.30), and we note right away that

EY 2
τ ≤ Nμ({τ }) ≤ 2m0 ,

so that we may think of |Yτ | as being typically of size about
√
m0. Before we start

the real work, let us point out a simple principle.

Lemma 18.6.1 Consider a sequence (ai)i≤M of positive numbers. For a set
I ⊂ {1, . . . ,M}, define SI = ∑

i∈I ai . For an integer r ≤ M , define Ar =
max{SI ; card I ≤ r}, and consider I with card I = r and SI = Ar . Then for
i �∈ I , we have ai ≤ Ar/r .

Proof Assume without loss of generality that the sequence (ai) is non-increasing.
Then I = {1, . . . , r}, and Ar ≥ rar , while for i �∈ I , we have i ≥ r so that
ai ≤ ar ≤ Ar/r . �

The main result of this section is as follows:

Proposition 18.6.2 With probability ≥ 1− L exp(−100p), the following happens.
Consider any Δ ≥ 1 and a partition (Bk)k≥4 of G such that Bk is Pk-measurable,
and for each C ∈ Ck := {C ∈ Pk;C ⊂ Bk}, consider a number z(C) such that the
following properties hold:

∑

k≥4

∑

C∈Ck
2s(k)z(C) ≤ L23pΔ , (18.85)

k ≥ 4 , C ∈ Ck ⇒ z(C) ≤ Nk+1 . (18.86)

Then

∑

k≥4

∑

C∈Ck
z(C)

∑

τ∈C
|Yτ | ≤ L23p√m0Δ . (18.87)

The basic problem to bound a sum as in (18.87) is that a few of the r.v.s WC :=∑
τ∈C |Yτ |might be quite large due to random fluctuations. The strategy to take care

of this is at kindergarten level. Given a subset I of Ck, we write

∑

C∈Ck
z(C)WC ≤ max

C∈Ck
z(C)

∑

C∈I
WC +

∑

C∈Ck
z(C) max

C∈Ck\I
WC . (18.88)
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Next, consider an integer r and the quantity

Ar,k := max
I⊂Ck,card I=r

∑

C∈I
WC . (18.89)

In particular, A1,k = maxC∈Ck WC , and

∑

C∈Ck
z(C)WC ≤ A1,k

∑

C∈Ck
z(C) . (18.90)

If the set I is such that the maximum is attained in (18.89), then by Lemma 18.6.1,
we have WC ≤ Ar,k/r for C �∈ I , and (18.88) implies

∑

C∈Ck
z(C)WC ≤ Ar,k max

C∈Ck
z(C)+ Ar,k

r

∑

C∈Ck
z(C) . (18.91)

We will prove (18.87) by application of these inequalities for a suitable value r = rk .
The probabilistic part of the proof is to control from above the random quantities
Ar,k. This is done by application of the union bound in the most brutish manner. The
wonder is that everything fits so well in the computations.

To carry out this program, we need first to understand the properties of this family
(Yτ ) of r.v.s and other related entities. This is the motivation behind the following
definition:

Definition 18.6.3 Consider a finite set V . We say that a family (Yv)v∈V is of type
B(N) if there exist a probability space (Ω, θ), i.i.d. r.v.s (Wi)i≤N valued in Ω , of
law θ and functions ψv on Ω , |ψv | ≤ 1, with disjoint supports for different v, such
that

1

2 cardV
≤ θ({ψv �= 0}) ≤ 2

cardV
(18.92)

and for which

Yv =
∑

i≤N

(
ψv(Wi)−

∫

ψvdθ
)
. (18.93)

The family (Yτ )τ∈G is of type B(N), with ψτ = 1{τ } and Ω = G provided with
the uniform probability. The following basic bound simply follows from Bernstein’s
inequality:

Lemma 18.6.4 Consider any family (Yv)v∈V of type B(N) and numbers (ηv)v∈V
with |ηv| ≤ 1. Then for u > 0, we have

P
(∣
∣
∑

v∈V
ηvYv

∣
∣ ≥ u

)
≤ 2 exp

(
− 1

L
min

(
u,

u2 cardV

N
∑

v∈V η2
v

))
. (18.94)
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Proof Consider the r.v.s Wi and the functions ψv as in Definition 18.6.3. We define

Si =
∑

v∈V
ηvψv(Wi) .

Since the functions ψv have disjoint supports, we have |Si | ≤ 1 and also

E(Si − ESi)2 ≤ ES2
i ≤

2

cardV

∑

v∈V
η2
v .

Since
∑

v∈V ηvYv = ∑
i≤N(Si − ESi), and since |Si | ≤ 1, (18.94) follows from

Bernstein’s inequality (4.44). �
We are now ready to write our basic bound. We shall use the following well-

known elementary fact: For k ≤ n, we have

(
n

k

)

≤
(en

k

)k
. (18.95)

Lemma 18.6.5 For each u > 0 and k, r ≤ cardPk , we have

P(Ar,k ≥ u) ≤ 2r2s(k)
(e23p

r

)r
exp

(
− 1

L
min

(
u,

u2

m0r2s(k)

))
. (18.96)

Proof By definition of Ar,k, when Ar,k ≥ u, we can find a subset I ⊂ Ck with
card I = r and for τ ∈ C ∈ I a number ξτ = ±1 such that

∑

τ∈C∈I
ξτ Yτ ≥ u . (18.97)

We bound the probability of this event by the union bound. Since cardC = 2s(k)

for C ∈ Pk and cardPk = 23p−s(k) ≤ 23p, the factors in front of the exponential
in (18.96) are a bound for the possible number of choices of I and the ξτ . To bound
the probability that given I and the ξτ (18.97) occurs, we use the bound (18.94) for
V = G with ητ = 0 if τ �∈ I and ητ = ξτ if τ ∈ I , so that

∑
τ∈G η2

τ = r2s(k)

and cardV = 23p. Finally, we use that by 18.31, we have N ≤ 2m03p to reach the
bound (18.96). �
The rest of the argument is hand-to-hand combat with the inequality (18.96) to
choose the appropriate values of r = rk and u while maintaining the right-hand
side at most L exp(−100p). It is convenient to distinguish the cases of “small k”
and “large k”. These are the cases 4 ≤ k < k0 and k ≥ k0 for an integer k0 ≥ 4
which we define now. If 23p < N6, we define k0 = 4. Otherwise, we define k0 as
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the largest integer with Nk0+2 ≤ 23p, so that Nk0+3 ≥ 23p and thus

p

L
≤ 2k0 ≤ Lp . (18.98)

Recalling (18.27), as N becomes large, so does p, and the condition 2k0 ≤ Lp then
forces that k0 ≤ p. Recalling the quantity s(k) of (18.54) and that s(k) = k for
k ≤ p by (18.56), we then have s(k) = k for k ≤ k0.

We first take care of the values k ≥ k0. This is the easiest case because for these
values, the r.v.s WC = ∑

τ∈C |Yτ | are not really larger than their expectations, as
the following shows:

Lemma 18.6.6 With probability ≥ 1− L exp(−100p) for k0 ≤ k ≤ p, we have

A1,k ≤ L2s(k)
√
m0 . (18.99)

Proof We recall that 2s(k) = 2k ≥ 2k0 ≥ p/L by (18.98). Consider a parameter
B ≥ 1. Using (18.96) for r = 1 and u = B

√
m02s(k), we obtain

P
(
A1,k ≥ B

√
m02s(k)

)
≤ 22s(k)e23p exp

(
− B2s(k)

L

)
≤ exp

(
L2s(k) − B2s(k)

L

)
.

If B is a large enough constant, with probability ≥ 1 − L exp(−100p) for each
k0 ≤ k ≤ p, we have A1,k ≤ B2s(k)

√
m0. �

We now take care of the small values of k.

Lemma 18.6.7 With probability ≥ 1− L exp(−100p) for 4 ≤ k ≤ k0, we have

Ark,k ≤ Lrk2k
√
m0 (18.100)

where rk = )23p/Nk+2*.
Proof Since 4 ≤ k ≤ k0 by definition of k0, we have Nk+2 ≤ 23p, and thus rk ≥ 1.
Since )x* ≥ 1 ⇒ )x* ≥ x/2, this yields rk ≥ 23p/(2Nk+2). Consequently,

(
e23p

rk

)rk

≤ (2eNk+2)
rk ≤ exp(L2krk) .

Thus, given a parameter B ≥ 1, and choosing u = B
√
m0rk2k in (18.96), we obtain

P
(
Ark,k ≥ B

√
m0rk2k

)
≤ exp

((
L− B

L

)
rk2k

)
. (18.101)
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Now, since the sequence (2k/Nk+2) decreases, using (18.98) in the last inequality,

2krk ≥ 23p+k

2Nk+2
≥ 23p 2k0

2Nk0+2
≥ 2k0

2
≥ p

L
. (18.102)

Taking for B a large enough constant, (18.101) and (18.102) imply the result. �
Proof of Proposition 18.6.2. We assume that the events described in Lem-
mas 18.6.7 and 18.6.6 occur, and we prove (18.87). First, using (18.90),

∑

k≥k0

∑

C∈Ck
z(C)WC ≤

∑

k≥k0

A1,k

∑

C∈Ck
z(C) ,

so that using (18.99), we have

∑

k≥k0

∑

C∈Ck
z(C)WC ≤ L

√
m0

∑

k≥k0

∑

C∈Ck
2s(k)z(C) . (18.103)

Next for k ≤ k0, by (18.86), we have z(C) ≤ Nk+1 for C ∈ Ck so that (18.91)
implies

∑

C∈Ck
z(C)WC ≤ Ar,kNk+1 + Ar,k

r

∑

C∈Ck
z(C) .

Using this with r = rk , and using (18.100), we obtain (and since rk ≤ 23p/Nk+2)

∑

C∈Ck
z(C)

∑

τ∈C
|Yτ | ≤ L

√
m023pNk+1

Nk+2
+ L2k

√
m0

∑

C∈Ck
z(C) . (18.104)

Summation of these inequalities for 4 ≤ k ≤ k0 and use of (18.85) prove (18.87).
�

Let us denote by L0 the constant in (18.60).

Definition 18.6.8 Consider Δ > 1. A function h : G → R belongs to S∗(Δ) if
we can find a partition (Bk)k≥4 of G where Bk is Pk-measurable with the following
properties, where we recall the notation Ck := {C ∈ Pk;C ⊂ Bk} of (18.70). First

for each k ≥ 4 , h is constant on each rectangle C ∈ Ck . (18.105)

Next, for each C ∈ Ck we can find a number z(C) satisfying the following
properties:

∑

k≥4

∑

C∈Ck
2s(k)z(C) ≤ L023pΔ , (18.106)
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and

k ≥ 4 , C ∈ Ck ⇒ Nk ≤ z(C) ≤ Nk+1 . (18.107)

Moreover, if C ∈ Ck and if C′ ∈ Pk is adjacent to C and such that for k′ > k, we
have C′ �⊂ Bk′ , then

τ ∈ C , τ ′ ∈ C′ ⇒ |h(τ)− h(τ ′)| ≤ z(C) . (18.108)

Let us stress the difference between (18.108) and (18.62). In (18.108),C′ is adjacent
to C as in (18.62) but satisfies the further condition that C′ �⊂ Bk′ for k′ ≥ k.
Equivalently, C′ ⊂ ∪�≤kB�.

In the rest of this chapter, we shall prove the following:

Theorem 18.6.9 Consider an i.i.d. sequence of r.v.s (Ui)i≤N distributed like μ.
Then with probability ≥ 1 − L exp(−100p), the following occurs: For Δ ≥ 1,
whenever h ∈ S∗(Δ),

∣
∣
∣
∑

i≤N

(
h(Ui)−

∫

hdμ
)∣
∣
∣ ≤ L

√
m023pΔ . (18.109)

Let us observe right away the following fundamental identity, which is obvious from
the definition of Yτ :

∑

i≤N

(
h(Ui)−

∫

hdμ
)
=
∑

τ∈G
h(τ)Yτ . (18.110)

Proof of Theorem 18.4.1. Consider a function h ∈ S(Δ), the sets Bk , and the
numbers z(C) as provided by Theorem 18.5.2. Let us define the function h∗ on
G as follows: if C ∈ Ck , then h∗ is constant on C and

∫
C hdμ = ∫C h∗dμ. In other

words, the constant value h∗(C) of h∗ on C is the average value of h on C:

h∗(C) = 1

μ(C)

∫

C

hdμ . (18.111)

Using (18.62) for C′ = C, averaging over τ ′ ∈ C and using Jensen’s inequality
yields that |h− h∗| ≤ z(C) on C, so that

∣
∣
∑

τ∈C
h(τ)Yτ −

∑

τ∈C
h∗(τ )Yτ

∣
∣ ≤ z(C)

∑

τ∈C
|Yτ |

and by summation,

∣
∣
∑

τ∈G
h(τ)Yτ −

∑

τ∈G
h∗(τ )Yτ

∣
∣ ≤

∑

k≥4

∑

C∈Ck
z(C)

∑

τ∈C
|Yτ | .
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According to Proposition 18.6.2, with probability≥ 1−L exp(−100p), the last sum
is≤ L

√
m023pΔ, so that with the same probability for each function h ∈ S(Δ), we

have

∣
∣
∑

τ∈G
h(τ)Yτ

∣
∣ ≤ ∣∣

∑

τ∈G
h∗(τ )Yτ

∣
∣+ L

√
m023pΔ .

Using 18.110 for both h and h∗, we then have

∣
∣
∑

i≤N

(
h(Ui)−

∫

hdμ
)∣
∣ ≤ ∣∣

∑

i≤N

(
h∗(Ui)−

∫

h∗dμ
)∣
∣+ L

√
m023p .

Therefore, using Theorem 18.6.9, it suffices to prove that h∗ ∈ S∗(Δ). Using the
same sets Bk and the same values z(C) for h∗ as for h, it suffices to prove (18.108).
Consider C and C′ as in this condition and τ ∈ C, τ ′ ∈ C′. Consider k′ such
that τ ′ ∈ C′′ ∈ Ck′ . Then we have k′ ≤ k, for otherwise C′ ⊂ C′′ ⊂ Bk′ ,
which contradicts the fact that we assume that C′ �⊂ Bk′ . Thus, C′′ ⊂ C′, and
consequently, by (18.62) for ρ ∈ C and ρ′ ∈ C′′, we have |h(ρ) − h(ρ′)| ≤ z(C).
Recalling (18.111), and using Jensen’s inequality, proves that |h∗(C) − h∗(C′)| ≤
z(C) which concludes the proof since |h∗(τ )− h∗(τ ′)| = |h∗(C)− h∗(C′)|. �

18.7 Haar Basis Expansion

The strategy to prove Theorem 18.6.9 is very simple. We write an expansion
h = ∑v av(h)v along the Haar basis, where av(h) is a number and v is a function
belonging to the Haar basis. (See the details in (18.117).) We then write

∣
∣
∑

i≤N

(
h(Ui)−

∫

hdμ
)∣
∣ ≤

∑

v

|av(h)|
∣
∣
∑

i≤N

(
v(Ui)−

∫

vdμ
)∣
∣

=
∑

v

|av(h)||Yv| , (18.112)

where

Yv =
∑

i≤N

(
v(Ui)−

∫

vdμ
)
. (18.113)

The first task is to use the information h ∈ S∗(Δ) to bound the numbers
|av(h)|. This is done in Proposition 18.7.1, and the final work of controlling the
sum in (18.112) is the purpose of the next and last section.
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We first describe the Haar basis. For 1 ≤ r ≤ p + 1, we define the class H(r) of
functions on {1, . . . , 2p} as follows:

H(p + 1) consists of the function that is constant equal to 1 . (18.114)

For 1 ≤ r ≤ p, H(r) consists of the 2p−r functions fi,r for 0 ≤ i < 2p−r that are
defined as follows:

fi,r (σ ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if i2r < σ ≤ i2r + 2r−1

−1 if i2r + 2r−1 < σ ≤ (i + 1)2r

0 otherwise.

(18.115)

In this manner, we define a total of 2p functions. These functions are orthogonal in
L2(θ) where θ is the uniform probability on {1, . . . , 2p} and thus form a complete
orthogonal basis of this space. Let us note that |fi,r | ∈ {0, 1}. Also, if f ∈ Hp+1,
we have

∫
f 2dθ = 1, while if r ≤ p, we have

∫

f 2
i,rdθ = 2−p+r . (18.116)

Given three functions f1, f2, f3 on {1, . . . , 2p} denote by f1 ⊗ f2 ⊗ f3
the function on G = {1, . . . , 2p}3 given by f1 ⊗ f2 ⊗ f3((σ1, σ2, σ3)) =
f1(σ1)f2(σ2)f3(σ3). For 1 ≤ q1, q2, q3 ≤ p + 1, let us denote by V(q1, q2, q3)

the set of functions of the type v = f1 ⊗ f2 ⊗ f3 where fj ∈ H(qj ) for j ≤ 3.
The functions v ∈ V(q1, q2, q3) have disjoint supports, and for v ∈ V , we have
|v|2 ∈ {0, 1}. As q1, q2, and q3 take all possible values, these functions form a
complete orthogonal system of L2(ν), where ν denotes the uniform probability on
G. Consequently, given any function h on G, we have the expansion

h =
∑

1≤q1,q2,q3≤p+1

∑

v∈V(q1,q2,q3)

av(h)v , (18.117)

where

av(h) =
∫
hvdν
∫
v2dν

. (18.118)

The decomposition (18.117) then implies

∣
∣
∑

τ∈G
h(τ)Yτ

∣
∣ ≤

∑

1≤q1,q2,q3≤p+1

∑

v∈V(q1,q2,q3)

|av(h)|
∣
∣
∑

τ∈G
v(τ)Yτ

∣
∣ . (18.119)
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This will be our basic tool to prove Theorem 18.6.9, keeping (18.110) in mind.
Fixing q1, q2, and q3, the main effort will be to find competent bounds for

∑

v∈V(q1,q2,q3)

|av(h)|
∣
∣
∑

τ∈G
v(τ)Yτ

∣
∣ . (18.120)

Since we think of q1, q2, and q3 as fixed, we lighten notation by writing

V := V(q1, q2, q3) ; ∀v ∈ V , Yv =
∑

τ∈G
v(τ)Yτ . (18.121)

Let us set q∗j = min(qj , p). Since qj ≤ p + 1, we have qj − 1 ≤ q∗j ≤ qj , so that

23p−q1−q2−q3 ≤ cardV = 23p−q∗1−q∗2−q∗3 ≤ L23p−q1−q2−q3 . (18.122)

Also, recalling (18.116), we obtain that for v ∈ V(q1, q2, q3)

∫

v2dν = 2q
∗
1+q∗2+q∗3−3p ≥ 1

L
2q1+q2+q3−3p . (18.123)

Recall Definition 18.6.8 of the class S∗(Δ). The next task is, given a function
h ∈ S∗(Δ), to gather information about the coefficients av(h). This information
depends on the information we have about h, that is, the sets Bk and the coefficients
z(C). We think of h as fixed, and for k ≥ 4, we consider the function Rk on G

defined as follows:

Rk = 0 outside Bk . (18.124)

If C ∈ Ck, then Rk is constant = z(C) on C . (18.125)

These functions have disjoint supports. They will be essential for the rest of this
chapter. We may think of them as the parameters which govern “the size of h”.
Since ν(C) = 2s(k)−3p for C ∈ Pk,

∑

C∈Ck
2s(k)z(C) = 23p

∫

Rkdν , (18.126)

and thus from (18.106),

∑

k≥4

∫

Rkdν ≤ LΔ . (18.127)

Our basic bound is as follows:
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Proposition 18.7.1 Consider q1, q2, q3, and q = q1 + q2 + q3. Consider j ≤ 3
with qj ≤ p. Define kj as the largest k for which nj (k) < qj . Then for any v ∈ V =
V(q1, q2, q3), we have

|av(h)| ≤ L23p−q+qj ∑

4≤�≤kj
2−nj (�)

∫

|v|R�dν . (18.128)

Since |v| ∈ {0, 1}, ∫ |v|R�dν is simply the integral of R� on the support of v. A
crucial fact here is that these supports are disjoint, so that

∑

v∈V

∫

|v|R�dν ≤
∫

R�dν .

The reason why only terms for 4 ≤ � ≤ kj appear in (18.128) is closely related to
the fact that h ∈ S(Δ) is constant on the elements C of Ck and that av(1C) = 0
for C ∈ Pk as soon as qj ≤ nj (k) and qj ≤ p for some j ≤ 3. Observe also that
Proposition 18.7.1 offers different bounds, one for each value of j with qj ≤ p. We
will choose properly between these bounds.

In view of (18.118) and (18.123), to prove Proposition 18.7.1, it suffices to show
that when qj ≤ p, we have

∣
∣
∫

vhdν
∣
∣ ≤ 2qj

∑

4≤�≤kj
2−nj (�)

∫

|v|R�dν . (18.129)

The proof relies on a simple principle to which we turn now. We say that a subset of
N
∗ is a dyadic interval if it is of the type {r2q + 1, . . . , (r + 1)2q} for some integers

r, q ≥ 0. The support of a function fi,r of (18.115) is a dyadic interval. Given two
dyadic intervals I and J with card J ≥ card I , we have

I ∩ J �= ∅ ⇒ I ⊂ J .

Lemma 18.7.2 Consider one of the functions fi,r of (18.115), and call its support
I . Consider a partition Q of I into dyadic intervals. Assume that to each J ∈ Q is
associated a number z(J ). Consider a function g : I → R. Assume that whenever
J, J ′ ∈ Q are adjacent and cardJ ≥ cardJ ′,

σ ∈ J , σ ′ ∈ J ′ ⇒ |g(σ)− g(σ ′)| ≤ z(J ) . (18.130)

Then

∣
∣
∑

σ∈I
fi,r (σ )g(σ )

∣
∣ ≤ card I

∑

J∈Q
z(J ) . (18.131)

Let us insist that (18.130) is required in particular if J = J ′ ∈ Q.
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Proof We first prove that for all σ, σ ′ in I , we have

|g(σ)− g(σ ′)| ≤ 2
∑

J∈Q
z(J ) . (18.132)

Without loss of generality, we may assume that σ ≤ σ ′. Let us enumerate Q as
J1, J2, . . . in a way that J�+1 is immediately to the right of J�. If for some J ∈ Q
we have σ, σ ′ ∈ J , then (18.130) implies |g(σ)−g(σ ′)| ≤ z(J ) and hence (18.132).
Otherwise, σ ∈ J�1 and σ ′ ∈ J�2 for some �1 < �2. For �1 < � < �2, consider a
point σ� ∈ J�. Set σ�1 = σ and σ�2 = σ ′. Then

|g(σ ′)− g(σ)| = |g(σ�2)− g(σ�1)| ≤
∑

�1≤�<�2

|g(σ�+1)− g(σ�)| . (18.133)

Moreover, it follows from (18.130) (distinguishing whether card J�+1 ≥ card J� or
the other way around) that

|g(σ�+1)− g(σ�)| ≤ z(I�)+ z(I�+1) , (18.134)

and combining with (18.133) proves (18.132). Letting I1 = {i2r+1, . . . , i2r+2r−1}
and I2 = {i2r + 2r−1 + 1, . . . , (i + 1)2r}, we have I = I1 ∪ I2. Recalling that
I = {i2r + 1, . . . , (i + 1)2r}, we have

∣
∣
∑

σ

g(σ )fi,r (σ )
∣
∣ = ∣∣

∑

σ∈I1

g(σ)−
∑

σ∈I2

g(σ)
∣
∣ = ∣∣

∑

σ∈I1

(g(σ )− g(σ + 2r−1))
∣
∣

and using (18.132), this concludes the proof since card I1 = card I/2. �
Proof of (18.129). Without loss of generality, we assume that j = 1, so that q1 ≤
p. By definition of the class V(q1, q2, q3), v is of the type f1 ⊗ f2 ⊗ f3 for fj ∈
H(qj ). Also, ν = ν1 ⊗ ν2 ⊗ ν3, where νj is the uniform probability on {1, . . . , 2p}.
Therefore,

∣
∣
∫

vhdν
∣
∣ ≤ ∣∣

∫
(
∫

f1hdν1
)
f2f3dν2dν3

∣
∣ ≤

∫
∣
∣
∫

f1hdν1
∣
∣|f2f3|dν2dν3 .

(18.135)

Let us fix τ 2 and τ 3 in {1, . . . , 2p}. We shall prove that

∣
∣
∫

f1(σ )h(σ, τ
2, τ 3)dν1(σ )

∣
∣

≤ S := 2q1
∑

4≤�≤k1

2−n1(�)

∫

|f1(σ )|R�(σ, τ
2, τ 3)dν1(σ ) . (18.136)
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Therefore, using Fubini’s theorem, (18.136) yields

∫
∣
∣
∫

f1hdν1
∣
∣|f2f3|dν2dν3 ≤ 2q1

∑

4≤�≤k1

2−n1(�)

∫

|v|R�dν ,

and combining with (18.135) yields the result.
We shall deduce (18.136) from Lemma 18.7.2. Recalling the definition of the

class V(q1, q2, q3), f1 is of the type fi,r given by (18.115) for r = q1 ≤ p and
a certain value of i. Let I be the support of f1, and note that

∫
I f (σ )dν1(σ ) = 0.

Consider the map ψ : {1, . . . , 2p} → G given by ψ(σ) = (σ, τ 2, τ 3), and let
I∗ = ψ(I). Assume first

∃� , n1(�) ≥ r = q1 , ∃C ∈ C� , C ∩ I∗ �= ∅ . (18.137)

Since C ∈ P�, J = ψ−1(C) is a dyadic interval with cardJ = 2n1(�) ≥ 2q1 =
card I , and since I ∩ J �= ∅ because C ∩ I∗ �= ∅ by (18.137), we have I ⊂ J . Now
h is constant on C, so that the function σ �→ h(σ, τ1, τ2) is constant on I . Since∫
I
f1dν1 = 0 and I is the support of f1, the left-hand side of (18.136) is zero in this

case. So we may assume that (18.137) fails, i.e.,

∀� , ∀C ∈ C� , C ∩ I∗ �= ∅ ⇒ n1(�) < q1 . (18.138)

We consider the partition Q of I that consists of the sets of the type ψ−1(C) ∩ I ,
where, for some � ≥ 1, C ∈ C� and C ∩ I∗ �= ∅. When J = ψ−1(C) ∈ Q, we
define

z(J ) := z(C) .

We now prove that (18.130) follows from (18.108). Consider J, J ′ ∈ Q which
are adjacent with cardJ ≥ cardJ ′. Then J = ψ−1(C) and J ′ = ψ−1(C′) where
C and C′ are adjacent and C ∈ C�, C′ ∈ C�′ . We claim that we may assume that
� ≥ �′. Since card J = 2n1(�) and card J ′ = 2n1(�

′), this is automatically the case if
card J ≥ card J ′. If card J = card J ′, it suffices if necessary to exchange the names
of J and J ′. Thus, C′ ∈ C�′ for some �′ ≤ � and in particular C′ ⊂ B�′ so that
C′ �⊂ Bk for k > �, and then by (18.108), we have |h(τ) − h(τ ′)| ≤ z(C) = z(J )

for τ ∈ C and τ ′ ∈ C′, and this proves (18.130).
We define

S∗ :=
∑

J∈Q
z(J ) =

∑{
z(C) ; C ∩ I∗ �= ∅ , C ∈

⋃

�≥1

C�
}
. (18.139)
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Using Lemma 18.7.2 in the inequality, we obtain

∣
∣
∫

|f1(σ )h(σ, τ
1, τ 2)

∣
∣ = 2−p

∣
∣
∑

σ∈I
f1(σ )h(σ, τ

2, τ 3)
∣
∣

≤ (2−p card I)S∗ = 2−p+q1S∗ .

Recalling the quantity S of (18.136), we now prove that 2q1S∗ = 2pS, finishing the
proof of (18.136) and of the lemma. For this, we observe that if C ∈ C� is such that
C ∩ I∗ �= ∅, then J = ψ−1(C) is a dyadic interval with J ∩ I �= ∅. Moreover,
since (18.138) implies card J = 2n1(�) ≤ card I = 2q1 , we have J ⊂ I , so that
card(C ∩ I∗) = 2n1(�). Consequently,

z(C) = 2−n1(�)
∑

σ∈J
|f1(σ )|R�(σ, τ

2, τ 3) (18.140)

because there are 2n1(�) non-zero terms in the summation, and for each of these
terms, |f1(σ )| = 1 and R�(σ, τ

2, τ 3) = z(C). We rewrite (18.140) as

z(C) = 2p−n1(�)

∫

J

|f (σ)|R�(σ, τ
2, τ 3) .

Summation of the relations (18.140) over C ∈⋃�≥1 C� with C∩I∗ �= ∅ then proves
that 2pS = 2q1S∗. �

18.8 Probability, II

We go back to the problem of bounding the quantities (18.120)

∑

v∈V(q1,q2,q3)

|av(h)||Yv | , (18.141)

where the r.v.s Yv are defined in (18.113). We think of q1, q2, and q3 as fixed, and
we write again q = q1 + q2 + q3 and V = V(q1, q2, q3). We will then bound with
high probability the sum (18.141) by a quantity C(q1, q2, q3) in such a way that the
sum over q1, q2, and q3 of these quantities is≤ L

√
m023pΔ. The plan is to combine

the bound of Proposition 18.7.1 with probabilistic estimates. Computation of EY 2
v

shows that |Yv| is typically of size about
√
m02q/2 but some of the quantities |Yv |

might be much larger than their typical values.



594 18 The Ultimate Matching Theorem in Dimension 3

We will use the same kindergarten technique as in Sect. 18.6, namely, if bv are
positive numbers and if

Ar = max
card I=r

∑

v∈I
|Yv| , (18.142)

then

∑

v∈V
bv|Yv| ≤ A1

∑

v∈V
bv (18.143)

and

∑

v∈V
bv|Yv| ≤ Ar

r

∑

v∈V
bv + Ar max

v∈V
bv . (18.144)

The random quantity Ar depends also on q1, q2, and q3, but this is kept implicit.

Lemma 18.8.1 For each u > 0, and r ≤ 23p, we have

P(Ar ≥ u) ≤ 2r
(e23p

r

)r
exp

(
− 1

L
min

(
u,

u2

2qm0r

))
. (18.145)

Proof Since the functions v ∈ V have disjoint supports, it should be obvious from
the definition (18.113) that the family of r.v.s (Yv)v∈V belongs to B(N). When
Ar > u, we can find a set I with card I = r and numbers ηv = ±1, v ∈ I

with
∑

v∈I ηvYv ≥ u. The result then follows from (18.94) and the union bound
since cardV ≤ 23p, N ≤ 23p+1m0 and

∑
v∈I η2

v = r . �
Corollary 18.8.2 With probability ≥ 1 − L exp(−100p), the following occurs.
Consider any 1 ≤ q1, q2, q3 ≤ p + 1 and q = q1 + q2 + q3. Then for each
k ≥ 4, we have

23p < Nk+2 , k ≤ q ⇒ A1 ≤ L
√
m02k/22q/2 (18.146)

and

k ≤ q ≤ p,Nk+2 ≤ 23p, r := )23p/Nk+2* ⇒ Ar ≤ Lr
√
m02k/22q/2 .

(18.147)

Proof To prove (18.146), we observe that since 23p < Nk+2, we have 2k ≥ p/L.
Considering a parameter C ≥ 1, we take u = C

√
m02k/22q/2 ≥ 2k in (18.145) so

that min(u, u2/(m02q)) ≥ C2k and the result by taking C a large enough constant.



18.8 Probability, II 595

To prove (18.147), we note if x ≥ 1 we have )x* ≥ 1 so that x ≤ )x*+1 ≤ 2)x*.
Therefore, since Nk+2 ≤ 23p, we have r = )23p/Nk+2* ≥ 1 and 23p/Nk+2 ≤
2r so that 23p/r ≤ 2Nk+2. We first prove that r2k ≥ p/L. If Nk+2 ≤ 2p, then
23p/Nk+2 ≥ 22p and r2k ≥ r ≥ 22p ≥ p/L. If Nk+2 ≥ 2p, this holds because then
2k ≥ p/L.

Consider then a parameter B ≥ 1. For u = Br
√
m02k/22q/2, since 2q/2+k/2 ≥

2k, we have min(u, u2/2qm0r) ≥ B2kr , and since 23p/r ≤ expL2k , the bound
in (18.145) is ≤ exp(r2k(L − B/L)). Since r2k ≥ p/L, when B is a large enough
constant, we obtain exp(r2k(L− B/L)) ≤ L exp(−100p). �

Corollary 18.8.2 contains all the probabilistic estimates we need. From that point
on, we assume that (18.146) and (18.147) hold, and we draw consequences. Thus,
all these consequences will hold with probability ≥ 1 − L exp(−100p). We first
reformulate (18.143) and (18.144).

Proposition 18.8.3 Consider numbers (bv)v∈V , bv ≥ 0. Then for k ≤ q , we have

23p < Nk+2 ⇒
∑

v∈V
bv|Yv| ≤ L

√
m02k/22q/2

∑

v∈V
bv (18.148)

and

Nk+2 ≤ 23p ⇒
∑

v∈V
bv|Yv| ≤ L

√
m02k/22q/2

(∑

v∈V
bv + 23p

Nk+2
max
v∈V

bv

)
.

(18.149)

It is good to observe that (18.149) has the same form as (18.148) but with an extra
term. Controlling this extra term requires controlling maxv∈V bv . One problem in
using Proposition 18.8.3 is to decide which value of k to use. If the value is too
large, the term 2k/2 may become too large, but if the value of k is too small, then it
is the extra term which creates issues.

Proof (18.148) is an immediate consequence of (18.143) and (18.146). To
prove (18.149), we use (18.144) for the value r = )23p/Nk+2*. In the second term
of (18.144), we use the bound

Ar ≤ Lr
√
m02k/22q/2 ≤ L

23p

Nk+2

√
m02k/22q/2 .

In the first term of (18.144), we use the bound Ar/r ≤ L
√
m02k/22q/2 . �

We will typically use Proposition 18.8.3 with bv = |av(h)|, which is why we
systematically try to estimate

∑
v∈V |av(h)| and maxv∈V |av(h)|.
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18.9 Final Effort

We turn to the task of bounding the quantities

S(q1, q2, q3) :=
∑

v∈V(q1,q2,q3)

|av(h)||Yv |

of (18.141). For each value of q1, q2, and q3, our goal is to provide a suitable bound
on S(q1, q2, q3) to imply that

∑

q

∑

q1+q2+q3=q
S(q1, q2, q3) ≤ L

√
m023pΔ . (18.150)

The proof relies on Proposition (18.8.3). The proof is not easy for a reason which
is quite intrinsic. There are lower-order terms (many of them) for which there is
plenty of room, but there are also “dangerous terms” for which there is no room
whatsoever and for which every estimate has to be tight. This is to be expected
when one proves an essentially optimal result.

Let us start by a simple result showing that the large values of q do not create
problems.

Lemma 18.9.1 We have

S(q1, q2, q3) ≤ Lp23p−q/6√m0Δ . (18.151)

This bound is not useful for q small because of the extra factor p. But it is very
useful for large values of q because of the factor 2−q/6.

Proof First, if q1 = q2 = q3 = p + 1, then the unique element v of V(q1, q2, q3)

is the constant function equal to 1 and Yv = ∑
τ∈G v(τ)Yτ = ∑

τ∈G Yτ = 0 (as
is obvious from the definition (18.84) of Yτ ). In all the other cases, one of the qj
is ≤ p so that q := q1 + q2 + q3 < 3(p + 1). We then choose j ≤ 3 such that
qj ≤ q/3 < p+ 1, so that we can use the bound (18.128). We use the trivial bound
nj (�) ≥ 0, and we get5

|av(h)| ≤ L23p−2q/3
∑

4≤�≤kj

∫

|v|R�dν .

5 This was our first instance of choosing between the various bounds proposed by Proposi-
tion 18.7.1. There will be several others.
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Thus, since the functions v ∈ V(q1, q2, q3) have disjoint supports and satisfy |v| ≤
1, and using (18.127),

∑

v∈V(q1,q2,q3)

|av(h)| ≤ L23p−2q/3Δ . (18.152)

Consider the smallest k for which 23p ≤ Nk+2 so that Nk+1 ≤ 23p and then 2k ≤
Lp. Using (18.148) for bv = |av(h)|, we obtain

∑

v∈V(q1,q2,q3)

|av(h)||Yv| ≤ L
√
m02k/22q/2

∑

v∈V(q1,q2,q3)

|av(h)| ,

and combining with (18.152) and using that 2k ≤ p yields (18.151). �
To illustrate the use of (18.151), we note that there are at most q3 possible choices

of q1, q2, and q3 for which q1 + q2 + q3 = q , so that

∑

q1+q2+q3=q
S(q1, q2, q3) ≤ Lpq323p−q/6√m0Δ . (18.153)

Summing these inequalities over q ≥ p and using that p
∑

q≥p q32−q/6 ≤ L shows
that in the sum (18.151), we need only be concerned with the values of q ≤ p.
From now on, we always assume that q ≤ p. We classify the elements v ∈ V by the
integer

k(v) = max
{
k ;
∫

|v|Rkdν �= 0
}
, (18.154)

the largest value of k for which the support of v meets Bk (so that k(v) ≥ 4). Given
q1, q2, and q3 and an integer k, we define

S(q1, q2, q3, k) =
∑

v∈V ,k(v)=k
|av(h)||Yv| , (18.155)

so that S(q1, q2, q3) =∑k≥4 S(q1, q2, q3, k) .

Lemma 18.9.2 Set q∗ = )q/4*. Then for k′ ≤ q∗, we have

S(q1, q2, q3, k
′) ≤ L

√
m023p

(
2−q/24Δ+ 22q

Nq∗+1

)
. (18.156)
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Proof In one sentence, this bound follows from Proposition 18.8.3 by taking k =
q∗. We choose j such that qj ≤ q/3, so that using again the trivial bound 2−nj (�) ≤
1, the bound (18.128) implies that for v ∈ V ,

|av(h)| ≤ L23p−2q/3
∑

4≤�≤kj

∫

|v|R�dν . (18.157)

We recall that
∑

v∈V
∫ |v|R�dν ≤ ∫ R�dν because the functions v ∈ V have disjoint

support and satisfy |v| ≤ 1. Using this in the first inequality and (18.127) in the
second inequality,

∑

v∈V
|av(h)| ≤ L23p−2q/3

∑

�≥4

∫

R�dν ≤ L23p−2q/3Δ . (18.158)

It is the factor 2−2q/3 which saves the day. We are going to apply Proposition 18.8.3
with k = q∗. The factor 2k/2+q/2 on the right of (18.148) and (18.149) is then
2q

∗/2+q/2 ≤ 25q/8, and 5q/8− 2q/3 = −q/24.
When k(v) ≤ q∗ by definition of k(v), we have

∫ |v|R�dν = 0 for � > q∗, so
that (18.157) implies

k(v) ≤ q∗ ⇒ |av(h)| ≤ L23p2−2q/3
∑

4≤�≤q∗

∫

|v|R�dν ,

Since
∫ |v|dν = 2q−3p and R� ≤ N�+1 and

∫ |v|dν = 2q−3p, the supports of the
functions R� being disjoint, we obtain |av(h)| ≤ L2qNq∗+1.

Let us now consider k′ ≤ q∗ and set bv = |av(h)| if k(v) = k′ and bv = 0
otherwise. Using (18.158) in the first inequality, we have proved that

∑

v∈V
bv ≤ L23p−2q/3Δ ; max

v∈V
bv ≤ L2qNq∗+1 . (18.159)

If 23p < Nq∗+2, we use (18.148) for k = q∗ and (18.159) to obtain

S(q1, q2, q3, k
′) ≤ L

√
m02q

∗/22q/223p−2q/3Δ

which implies (18.156) since q∗ ≤ q/4 (and hence q∗/2+ q/2− 2q/3 ≤ −q/24).
If Nq∗+2 ≤ 23p, we then use (18.149) and (18.159) to obtain

S(q1, q2, q3, k
′) ≤ L

√
m02q

∗/22q/2
(

23p−2q/3Δ+ 23p

Nq∗+2
2qNq∗+1

)
. (18.160)

Using that Nq∗+2 = N2
q∗+1 and since q∗ ≤ q/4, we obtain (18.156) again. �

The bound (18.156) sums well over q since Nq∗ is so large.



18.9 Final Effort 599

Matters become more complicated in the case k(v) ≥ q∗, because we no longer
have a strong bound such as (18.159) for the values of |av(h)|. So we have to use a
larger value of k to be able to control the last term in (18.149). But then the factor
2k/2+q/2 becomes large, and we have to be more sophisticated; we can no longer
afford to use the crude bound 2−nj (�) ≤ 1 in (18.128). In fact, in that case, there are
“dangerous terms” for which there is little room. How to use the factor 2−nj (�) is
described in Lemma 18.9.4.

Let us set6

βk =
∫

Rkdν , (18.161)

so that (18.127) implies

∑

k≥4

βk ≤ LΔ , (18.162)

and we also have

∑

v∈V

∫

|v|Rkdν ≤ βk . (18.163)

Let us also define

D(k, q1, q2, q3) =
∏

j≤3

1{nj (k)≤qj } . (18.164)

Proposition 18.9.3 For k > q∗ = )q/4*, we have

S(q1, q2, q3, k) ≤ LD(k, q1, q2, q3)
√
m023p2(k−q)/6(βk + βk−1)

+ L
√
m023p

(
Δ

22q

Nk−1
+ 2q/2+k/2

Nk+1

)
. (18.165)

The crucial term is the factor 2(k−q)/6, which will sum nicely over q ≥ k. There
is plenty of room to estimate the second-order quantities represented by the second
term.

The proof of Proposition 18.9.3 requires two lemmas.

Lemma 18.9.4 If k(v) = k ≥ q∗, we have

|av(h)| ≤ bv(h)+ cv(h) , (18.166)

6 βk depends on h although this is not indicated in the notation.



600 18 The Ultimate Matching Theorem in Dimension 3

where

cv(h) := L23p
∑

4≤�≤k−2

∫

|v|R�dν , (18.167)

and

bv(h) := LD(k, q1, q1, q3)23p2−2q/3−k/3
∫

|v|(Rk + Rk−1)dν . (18.168)

As we will show in the next lemma, the terms cv(h) are a secondary nuisance, but
the terms bv(h) will be harder to control, because to control them all the estimates
have to be tight. The purpose of the decomposition is to identify this “dangerous
part”bv(h) of |av(h)| and, when using the bound (18.129), to choose the value of j
with the goal of controlling this dangerous part as well as possible, in particular by
creating the crucial factor 2−2q/3−k/3 in (18.168).

Proof We recall the bound (18.128): If kj is the largest value of k for which nj (k) <

qj , then for any j ≤ 3,

|av(h)| ≤ L23p−q+qj ∑

4≤�≤kj
2−nj (�)

∫

|v|R�dν .

We split the summation to obtain |av(h)| ≤ bv,j (h)+ cv(h) where

bv,j (h) = L23p−q+qj ∑

�∈{k,k−1};4≤�≤kj
2−nj (�)

∫

|v|R�dν (18.169)

and cv(h) is given by (18.167), using also there the crude bound qj − nj (�) ≤ q .
Let us now choose j . If for some j ≤ 3 we have k ≥ kj + 2, we choose such a j .
Then the term bv,j (h) is zero because there is no term in the summation and we are
done. Otherwise, k ≤ kj + 1 for all j ≤ 3, and since nj (k − 1) ≥ nj (k) − 1, we
have

bv,j (h) ≤ L23p−q+qj−nj (k)
∫

|v|(Rk + Rk−1)dν .

Since k ≤ kj + 1 for each j ≤ 3, we have nj (k) ≤ nj (kj + 1) ≤ nj (kj )+ 1 ≤ qj ,
and thus D(k, q1, q2, q3) = 1. We choose j ≤ 3 such that

qj − nj (k) ≤ 1

3

∑

j ′≤3

(qj ′ − nj ′(k)) = 1

3
(q − s(k)) = 1

3
(q − k) ,

so that bv,j (h) ≤ bv(h) where bv(h) is given by (18.168). �
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We lighten notation by writing
∑

v∈V ,k(v)=k as
∑

k(v)=k.

Lemma 18.9.5 We have

∑

k(v)=k
cv(h) ≤ L23pΔ

2q

Nk−1
. (18.170)

Here we see how useful it is to have controlled separately the small values of k and
to assume k ≥ q∗, which ensures that 2q/Nk−1 is very small.

Proof We bound the sum by the number of terms times the maximum of each
term. Since s(k) = k, combining (18.107) and (18.106) shows that cardCk ≤
LΔ23p−s(k)/Nk . Each C ∈ Ck has cardinality ≤ 2s(k) and can meet at most 2s(k)

supports of different functions v so that

card{v ∈ V ; k(v) = k} ≤ LΔ
23p

Nk
. (18.171)

Since R� ≤ N�+1, we have, using that
∫ |v|dν = 2q−3p for v ∈ V ,

∑

4≤�≤k−2

∫

|v|R�dν ≤ LNk−1

∫

|v|dν ≤ L2q−3pNk−1 , (18.172)

so that |cv(h)| ≤ L2qNk−1. Combining with (18.171) proves the result since Nk =
N2
k−1. �

Proof of Proposition 18.9.3. From Lemma 18.9.4 and (18.170), (18.163), we
obtain

∑

k(v)=k
|av(h)| ≤ LD(k, q1, q2, q3)23p2−2q/3−k/3(βk + βk−1)+ L23pΔ

2q

Nk−1
.

(18.173)

To bound maxk(v)=k |av(h)|, we go back to (18.128). Since
∑

�≤k
∫ |v|R�dν ≤

L2q−3pNk+1, we obtain the bound

|av(h)| ≤ L2qNk+1 . (18.174)

The rest of the argument is nearly identical to the end of the proof of Lemma 18.9.2
using now (18.173) and (18.174) instead of (18.159) and (18.160). Let bv = |av(h)|
for k(v) = k and bv = 0 otherwise. We use the bound (18.148) if 23p < Nk+2.
Otherwise, we use the bound (18.149). This concludes the proof, using also that
Nk+2 = N2

k+1. �
Combining Lemmas 18.9.2 and Proposition 18.9.3, we obtain the following:
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Proposition 18.9.6 Recalling that q∗ = )q/4* have

S(q1, q2, q3) ≤ L
√
m023p

(
2−q/24Δ+

∑

k≥q∗

(
A(k, q1, q2, q3, h)+ B(k, q)

))
,

(18.175)

where

A(k, q1, q2, q3, h) := D(k, q1, q2, q3)2
(k−q)/6(βk + βk−1) , (18.176)

B(k, q) := Δ
22q

Nk−1
+ 2q/2+k/2

Nk+1
. (18.177)

Proof of Theorem 18.6.9. We have to prove that (18.109) holds. Combin-
ing (18.110) and (18.119), we have to prove that

∑

3≤q≤3p+3

∑

q1+q2+q3=q
S(q1, q2, q3) ≤ L

√
m023pΔ . (18.178)

Lemma 18.9.1 takes care of the summation over q ≥ p. Control of the summation
for q ≤ p will be obtained by summing the inequalities (18.175) and interchanging
the summation in k and q . Given q , there are at most q3 possible values of
(q1, q2, q3) with q = q1 + q2 + q3, and

∑

q≥1

q32−q/24 ≤ L .

Also,

∑

q≥1

∑

k≥q∗
q3B(k, q) ≤ L(1+Δ) ≤ LΔ ,

because q∗ = )q/4* and Nk is doubly exponential in k. It remains only to take care
of the contribution of the term A(k, q1, q2, q3, h). We will prove that

∑

q1,q2,q3

∑

k≥4

A(k, q1, q2, q3, h) ≤ LΔ , (18.179)

and this will finish the proof. The first step is to exchange the order of summation

∑

q1,q2,q3

∑

k≥4

A(k, q1, q2, q3, h) =
∑

k≥4

(βk + βk−1)
∑

q1,q2,q3

D(k, q1, q2, q3)2(k−q)/6 .

(18.180)
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Each term D(k, q1, q2, q3) is 0 or 1. When D(k, q1, q2, q3) = 1, we have nj (k) ≤
qj for each j ≤ 3. Since

∑
j≤3 nj (k) = k, the non-negative integers qj − nj (k)

have a sum ≤ q − k. This can happen only for q ≥ k, and then crudely there are at
most (q − k + 1)3 possible choices of q1, q2, and q3 of a given sum q . That is,

∑

q1,q2,q3

D(k, q1, q2, q3)2(k−q)/6 ≤
∑

q≥k
(q − k + 1)32(k−q)/6 ≤ L . (18.181)

The required inequality (18.179) then follows from (18.180), (18.181), and (18.162).
�



Chapter 19
Applications to Banach Space Theory

We concentrate on topics which make direct use of our previous results. Many
more results in Banach space theory use probabilistic constructions, for which the
methods of the book are relevant. Some of these results may be found in [132].
The reader should not miss the magnificent recent results of Gilles Pisier proved in
Sect. 19.4.

As is customary, we use the same notation for the norm on a Banach space X

and on its dual X∗. The norm on the dual is given by ‖x∗‖ = sup{x∗(x); ‖x‖ ≤ 1}
so that in particular |x∗(x)| ≤ ‖x∗‖‖x‖. The reader will keep in mind the duality
formula

‖x‖ = sup{x∗(x) ; ‖x∗‖ ≤ 1} = sup{x∗(x) ; x∗ ∈ X∗1} , (19.1)

which is of constant use.
I am particularly grateful to Rafał Meller for his help with this chapter.

19.1 Cotype of Operators

The notion of cotype of a Banach space reflects a basic geometric property of this
space, but we will study only very limited aspects related to our previous results.

19.1.1 Basic Definitions

We start by recalling some basic definitions. More background can be found in
classical books such as [27] or [137].
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Given an operator U (i.e., a continuous linear map) from a Banach space X to
a Banach space Y and a number q ≥ 2, we denote by C

g
q (U) its Gaussian cotype-

q constant, that is, the smallest number A (possibly infinite) for which, given any
integer n, and any elements x1, . . . , xn of X, we have

(∑

i≤n
‖U(xi)‖q

)1/q ≤ AE
∥
∥
∑

i≤n
gixi

∥
∥ . (19.2)

Here, (gi)i≤n are i.i.d. standard Gaussian r.v.s, the norm of U(xi) is in Y and the
norm of

∑
i≤n gixi is in X.

The occurrence of the quantity

E
∥
∥
∑

i≤n
gixi

∥
∥ = E sup

x∗∈X∗1

∑

i≤n
gix

∗(xi) , (19.3)

where X∗1 = {x∗ ∈ X∗; ‖x∗‖ ≤ 1} suggests that results on Gaussian processes
will bear on this notion. This is only true to a small extent. It is not really the
understanding of the size of the quantity (19.3) at given x1, x2, . . . , xn which matters
but the fact that (19.2) has to hold for any elements x1, x2, . . . , xn.

Given a number q ≥ 2, we define the Rademacher cotype-q constant Cr
q(U)

as the smallest number A (possibly infinite) such that, given any integer n, any
elements (xi)i≤n of X, we have

(∑

i≤n
‖U(xi)‖q

)1/q ≤ AE
∥
∥
∑

i≤n
εixi

∥
∥ , (19.4)

where (εi)i≤n are i.i.d. Bernoulli r.v.s. The name “Rademacher cotype” stems from
the fact that Bernoulli r.v.s are usually (but inappropriately) called Rademacher
r.v.s in Banach space theory. Since Bernoulli processes are tricker than Gaussian
processes, we expect that Rademacher cotype will be harder to understand than
Gaussian cotype. This certainly seems to be the case.

Proposition 19.1.1 We have

C
g
q (U) ≤

√
π

2
Cr
q(U) . (19.5)

Proof Indeed (7.40) implies E‖∑i≤n εixi‖ ≤
√
π/2E‖∑i≤n gixi‖ . �

Given q ≥ 1, we define the (q, 1)-summing norm ‖U‖q,1 of U as the smallest
number A (possibly infinite) such that, for any integer n, any vectors x1, . . . , xn of
X we have

(∑

i≤n
‖U(xi)‖q

)1/q ≤ A max
εi=±1

∥
∥
∑

i≤n
εixi

∥
∥ . (19.6)
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It should then be obvious that ‖U‖q,1 ≤ Cr
q(U). Consequently,

√
2

π
max(Cg

q (U), ‖U‖q,1) ≤ Cr
q(U) . (19.7)

Research Problem 19.1.2 Is it true that for some universal constant L and every
operator U between Banach spaces we have

Cr
q(U) ≤ Lmax(Cg

q (U), ‖U‖q,1) ? (19.8)

A natural approach to this question would be a positive answer to the following
far-reaching generalization of the Latała-Bednorz theorem:

Research Problem 19.1.3 (S. Kwapien) Does there exist a universal constant L
with the following property: Given any Banach space X and elements x1, . . . , xn of
X, we can write xi = x ′i + x ′′i where

E
∥
∥
∑

i≤n
gix

′
i

∥
∥ ≤ LE

∥
∥
∑

i≤n
εixi

∥
∥ ; max

εi=±1

∥
∥
∑

i≤n
εix

′′
i

∥
∥ ≤ LE

∥
∥
∑

i≤n
εixi

∥
∥ .

Exercise 19.1.4 Prove that a positive answer to Problem 19.1.3 provides a positive
answer to Problem 19.1.2. Hint: Study the proof of Theorem 19.1.5 below.

19.1.2 Operators from �∞
N

We now specialize to the case where X is the space �∞N of sequences x = (xj )j≤N
provided with the norm

‖x‖ = sup
j≤N

|xj | ,

and we give a positive answer to Problem 19.1.2.1

Theorem 19.1.5 Given q ≥ 2 and an operator U from �∞N to a Banach space Y ,
we have

√
2

π
max(Cg

q (U), ‖U‖q,1) ≤ Cr
q(U) ≤ Lmax(Cg

q (U), ‖U‖q,1) . (19.9)

1 It is possible to show that similar results hold in the case where X = C(W), the space of
continuous functions over a compact topological space W . This is deduced from the case X = �∞N
using a reduction technique unrelated to the methods of this book; see [60].
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The reason we succeed is that in the case X = �∞N we can give a positive answer to
Problem 19.1.3, as a simple consequence of the Latała-Bednorz Theorem.2

Proposition 19.1.6 Consider n elements x1, . . . , xn of �∞N . Then we can find a
decomposition xi = x ′i + x ′′i such that

E
∥
∥
∑

i≤n
gix

′
i

∥
∥ ≤ LE

∥
∥
∑

i≤n
εixi

∥
∥ (19.10)

and

max
εi=±1

∥
∥
∑

i≤n
εix

′′
i

∥
∥ ≤ LE

∥
∥
∑

i≤n
εixi

∥
∥ . (19.11)

Proof of Theorem 19.1.5. We shall prove the right-hand side inequality of (19.9):

Cr
q(U) ≤ L(C

g
q (U)+ ‖U‖q,1) . (19.12)

Let us consider a decomposition xi = x ′i + x ′′i as in Proposition 19.1.6. Then

(∑

i≤n
‖U(x ′i )‖q

)1/q ≤ LC
g
q (U)E

∥
∥
∑

i≤n
gix

′
i

∥
∥ ≤ LC

g
q (U)E

∥
∥
∑

i≤n
εixi

∥
∥ (19.13)

(∑

i≤n
‖U(x ′′i )‖q

)1/q ≤ L‖U‖q,1 max
εi=±1

∥
∥
∑

i≤n
εix

′′
i

∥
∥ ≤ L‖U‖q,1E

∥
∥
∑

i≤n
εixi

∥
∥ .

(19.14)

Since ‖U(xi)‖ ≤ ‖U(x ′i )‖ + ‖U(x ′′i )‖, the triangle inequality in �
q
n implies

(∑

i≤n
‖U(xi)‖q

)1/q ≤
(∑

i≤n
‖U(x ′i )‖q

)1/q +
(∑

i≤n
‖U(x ′′i )‖q

)1/q
,

and combining with (19.13) and (19.14), this proves (19.12). �
Exercise 19.1.7 Before you read the next proof, make sure that you understand the
following reformulation of the Latała-Bednorz theorem: Given any subset T of �2,
we can write T ⊂ T1 + T2 with E supt∈T1

∑
i≥1 gi ti ≤ Lb(T ) and supt∈T2

‖t‖1 ≤
Lb(T ).

Proof of Proposition 19.1.6. Let us write xi = (xij )1≤j≤N . For 1 ≤ j ≤ N ,
consider tj ∈ R

n given by tj = (xij )i≤n. Let t0 = 0 ∈ R
n and consider

2 Weaker results suffice, and the author proved Theorem 19.1.5 long before the Bernoulli
conjecture was solved.
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T = {t0, t1, . . . , tN } so that

b(T ) = Emax
(

0, sup
1≤j≤N

∑

i≤n
εixij

)
≤ E

∥
∥
∑

i≤n
εixi

∥
∥ . (19.15)

Theorem 6.2.8 (The Latała-Bednorz theorem) in the formulation of Exer-
cise 19.1.7) provides for 0 ≤ j ≤ N a decomposition tj = t ′j + t ′′j , where
t ′j = (x ′ij )i≤n, t ′′j = (x ′′ij )i≤n, and

E sup
0≤j≤N

∑

i≤n
gix

′
ij ≤ Lb(T ) (19.16)

∀j ≤ N ,
∑

i≤n
|x ′′ij | ≤ Lb(T ) . (19.17)

Since t0 = 0 = t ′0 + t ′′0 , for each 0 ≤ j ≤ N , we can replace t ′j by t ′j − t ′0 and t ′′j by
t ′′j −t ′′0 , so that we may assume that t ′0 = t ′′0 = 0. For i ≤ n, we consider the elements
x ′i = (x ′ij )j≤N and x ′′i = (x ′′ij )j≤N of �∞N . Thus xi = x ′i + x ′′i . Obviously (19.17)
implies (19.11).

Let us now prove (19.10). When a process (Xt )t∈T ′ is symmetric and Xs = 0 for
some s ∈ T ′, then Lemma 2.2.1 implies

E sup
t∈T

|Xt | ≤ E sup
s,t∈T ′

|Xs −Xt | = 2E sup
t∈T ′

Xt .

Using this for Xt = ∑i≤n gixi when t = (xi)i≤n and T ′ = {t ′0, t ′1, . . . , t ′N } yields
(using that Xt ′0 = 0 since t ′0 = 0), using also (19.16) in the last inequality,

E
∥
∥
∑

i≤n
gix

′
i

∥
∥ = E sup

0≤j≤N
∣
∣
∑

i≤n
gix

′
ij

∣
∣ ≤ 2E sup

0≤j≤N

∑

i≤n
gix

′
ij ≤ Lb(T ) . �

19.1.3 Computing the Cotype-2 Constant with Few Vectors

The results of the present section are included not because they are very important
but because the author cannot help feeling that they are part of an unfinished story
and keeps hoping that someone will finish this story. The main result of the section
is arguably a new comparison theorem between Gaussian and Rademacher averages
(Theorem 19.1.11 below) which makes full use of Theorem 6.6.1.

When U is an operator between two finite dimensional Banach spaces X and Y ,
we recall the definition (19.4) of the Rademacher cotype-2 constant Cr

2(U) of U .
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Definition 19.1.8 Let us associate to each Banach space X an integer M(X). We
say that M(X) vectors suffice to compute the Rademacher cotype-2 constant of an
operator from X to any Banach space Y if for any such operator U one can find
vectors x1, . . . , xM(X) in X with

( ∑

i≤M(X)

‖U(xi)‖2
)1/2

>
1

L
Cr

2(U)E
∥
∥
∑

i≤M(X)

εixi
∥
∥ . (19.18)

N. Tomczak-Jaegermann proved [137] that “N vectors suffice to compute the Gaus-
sian cotype-2 constant of an operator from any Banach space X of dimension N”.
This motivated the previous definition.3 Our main result is that N logN log logN
vectors suffice to compute the Rademacher cotype-2 constant of an operator U from
a Banach space X of dimension N . It does not appear to be known if N vectors
suffice.

Consider a Banach space X of dimension N ≥ 3, and its dual X∗. Consider
elements x1, . . . , xn in X and assume without loss of generality that they span X

(we will typically have n � N). We will now perform some constructions, and the
reader should keep in mind that they depend on this sequence (xi)i≤n. We identify
X∗ with a subspace of �2

n by the map x∗ �→ (x∗(xi))i≤n, so that

‖x∗‖2 =
(∑

i≤n
x∗(xi)2

)1/2
. (19.19)

This norm arises from the dot product given by

(x∗, y∗) =
∑

i≤n
x∗(xi)y∗(xi) .

Consider an orthonormal basis (e∗j )j≤N of X∗ for this dot product. Then

x∗ =
∑

j≤N
(x∗, e∗j ) e∗j ; ‖x∗‖2

2 =
∑

j≤N
(x∗, e∗j )2 ,

so that the elements x∗ of X∗ with ‖x‖2 ≤ 1 are exactly the elements
∑

j≤N βje
∗
j

with
∑

j≤N β2
j ≤ 1. The dual norm ‖ · ‖2 on X is then given by

‖x‖2 = sup{|x∗(x)| ; ‖x∗‖2 ≤ 1}

= sup

{
∣
∣
∑

j≤N
βje

∗
j (x)

∣
∣ ;
∑

j≤N
β2
j ≤ 1

}

=
(∑

j≤N
e∗j (x)2

)1/2
. (19.20)

3 Similar questions in various settings are also investigated, for example, in [43].
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Using (19.19) with x∗ = e∗j , we obtain 1 = ‖e∗j‖2 = ∑
i≤n e∗j (xi)2 so that,

using (19.20) to compute ‖xi‖2
2, we get

∑

i≤n
‖xi‖2

2 =
∑

i≤n

∑

j≤N
e∗j (xi)2 =

∑

j≤N

∑

i≤n
e∗j (xi)2 = N . (19.21)

Considering independent standard normal r.v.s (ηj )j≤N , G := ∑j≤N ηj e
∗
j is a

standard Gaussian random vector valued in (X∗, ‖ · ‖2). For a subset T of X, we
define

g(T ) = E sup
x∈T

G(x) = E sup
x∈T

∑

j≤N
ηj e

∗
j (x) . (19.22)

The reason for the notation is that g(T ) is the usual quantity when we consider
T as a subset of the Hilbert space (X, ‖ · ‖2), simply because by (19.20), the map
x �→ (e∗j (x))j≤N is an isometry from (X, ‖ · ‖2) to �2

N .4 For further use, we spell

now a consequence of (19.22) and of Sudakov’s dual minoration (Lemma 15.2.7).5

Lemma 19.1.9 Consider a subset T of X with T = −T and the semi-norm ‖ · ‖T
on X∗ given by ‖x∗‖T = supx∈T x∗(x). Then the unit ball of (X∗, ‖ · ‖2) can be
covered by Nn balls for the norm ‖ · ‖T of radius Lg(T )2−n/2.

Proof It follows from (19.22) that g(T ) = E‖G‖T . The conclusion then follows
from Lemma 15.2.7. �

We will not use anymore the formula (19.22) but only the general fact that in any
Hilbert space, if T = {±tk ; k ≥ 1}, then

g(T ) ≤ L sup
k≥1

(‖tk‖2
√

log(k + 1)
)
, (19.23)

as shown in Proposition 2.11.6. Let us stress again that the quantity g(T ) depends
on T and on the whole sequence (xi)i≤N .

Lemma 19.1.10 If T = {±x1, . . . ,±xn}, then

g(T ) ≤ L
√

log(N + 1) . (19.24)

When the sequence (‖xi‖2)i≤n is non-increasing, and if M = )N logN*, the set
T ′ = {±xi ; M ≤ i ≤ n} satisfies

g(T ′) ≤ L . (19.25)

4 Please keep in mind, however, that this embedding of T in a Hilbert space depends on x1, . . . , xn
and so does the quantity g(T ).
5 Please note that the original norm of T plays no part in this result.
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Proof Both results are based on (19.23). Since the norm ‖ · ‖2 on X is the dual
norm of the norm (19.19), it is obvious that ‖xi‖2 ≤ 1. Assuming that the sequence
(‖xi‖2)i≥1 is non-increasing, we see from (19.21) that ‖xi‖2 ≤ √

N/i and thus
‖xi‖ ≤ min(1,

√
N/i). Using (19.23) for the sequences tk = xk (1 ≤ k ≤ n), we

obtain

g(T ) ≤ L sup
k≥1

(

min
(

1,

√
N

k

)√
log(k + 1)

)

≤ L
√

logN .

Using again (19.23) for the sequences tk = xM+k (1 ≤ k ≤ n−M), we now obtain

g(T ′) ≤ L sup
k≥1

(√
N

M + k

√
log(k + 1)

)

≤ L

√
N

M
logM ≤ L . �

In the next statement, we define T = {±x1, . . . ,±xn}, and for a subset I of
{1, . . . , n}, we define T I as the collection of elements xi for i outside I ,

T I = {±xi ; i ≤ n , i �∈ I } . (19.26)

We are now ready to state our new comparison principle between Gaussian and
Rademacher averages.

Theorem 19.1.11 We have

E
∥
∥
∑

i≤n
gixi

∥
∥ ≤ LE

∥
∥
∑

i≤n
εixi

∥
∥(1+ g(T )) . (19.27)

More generally, for any subset I of {1, . . . , n}, we have

E
∥
∥
∑

i �∈I
gixi

∥
∥ ≤ LE

∥
∥
∑

i �∈I
εixi

∥
∥
(

1+ E‖∑i≤n gixi‖
E‖∑i �∈I gixi‖

g(T I )

)

. (19.28)

When I = ∅ (19.28) specializes into (19.27). Using (19.24), we see that (19.27)
generalizes the classical inequality

E
∥
∥
∑

i≤n
gixi

∥
∥ ≤ L

√
logNE

∥
∥
∑

i≤n
εixi

∥
∥ . (19.29)

Let us also stress that in (19.28), the quantity g(T I ) is computed as in (19.22), that
is, for the norm ‖ · ‖2 on X involving the whole sequence (xi)i≤N and not only the
(xi)i �∈I .

We will prove Theorem 19.1.11 later. First, we draw some consequences.
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Corollary 19.1.12 There exists a subset I of {1, . . . , n} such that card I ≤ N logN
and that either of the following holds true:

E
∥
∥
∑

i �∈I
gixi

∥
∥ ≤ 1

2
E
∥
∥
∑

i≤n
gixi

∥
∥ (19.30)

or else

E
∥
∥
∑

i �∈I
gixi

∥
∥ ≤ LE

∥
∥
∑

i �∈I
εixi

∥
∥ . (19.31)

Proof The set I = {1, . . . ,M} satisfies g(T I ) ≤ L by (19.25) so that if (19.30)
fails, (19.31) follows from (19.28). �
Corollary 19.1.13 We can find elements y1, . . . , yM of X such that

Cr
2(U)

L
E
∥
∥
∑

j≤M
εjyj

∥
∥ <

( ∑

j≤M
‖U(yj )‖2

)1/2
(19.32)

and M ≤ N logN log logN .

We have obtained (19.18) for M ≤ N logN log logN , that is, “M vectors suffice to
compute the Rademacher cotype-2 constant of U”.

Proof We find elements x1, . . . , xn of X such that

Cr
2(U)

2
E
∥
∥
∑

i≤n
εixi

∥
∥ <

(∑

i≤n
‖U(xi)‖2

)1/2
. (19.33)

The next step of the proof consists of showing that we can find a subset J of
{1, . . . , n} with cardJ ≤ N logN log logN such that

E
∥
∥
∑

i �∈J
gixi

∥
∥ ≤ LE

∥
∥
∑

i≤n
εixi

∥
∥ . (19.34)

To this aim, consider the largest integer k0 with 2k0 ≤ √
logN so that k0 ≤

log logN . By induction over k, for k ≤ k0, we construct subsets Ik of {1, . . . , n}
with card Ik ≤ N logN and either

E
∥
∥

∑

i �∈I1∪...∪Ik
gixi

∥
∥ ≤ 1

2
E
∥
∥

∑

i �∈I1∪...∪Ik−1

gixi
∥
∥ (19.35)
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or else

E
∥
∥

∑

i �∈I1∪...∪Ik
gixi

∥
∥ ≤ LE

∥
∥

∑

i �∈I1∪...∪Ik−1∪Ik
εixi

∥
∥ . (19.36)

The induction step is performed by using Corollary 19.1.12 for the set of indices
{i ≤ n; i �∈ I1 ∪ . . . ∪ Ik−1} rather than the set {1, . . . , n}. If at the k-th step (19.36)
holds, we then stop the construction, and we define J = I1 ∪ . . . ∪ Ik . Thus M :=
card J ≤ kN logN ≤ k0N logN and

E
∥
∥
∑

i �∈J
gixi

∥
∥ ≤ LE

∥
∥
∑

i �∈J
εixi

∥
∥ ≤ LE

∥
∥
∑

i≤n
εixi

∥
∥ ,

so that (19.34) holds. If instead (19.36) never occurs during the construction, we
continue this construction until k = k0, and we define now J = I1 ∪ . . .∪ Ik0 . Thus
M := card J ≤ k0N logN and, iterating (19.35),

E
∥
∥
∑

i �∈J
gixi

∥
∥ ≤ 2−k0E

∥
∥
∑

i≤n
gixi

∥
∥ .

Combining with (19.29), this implies

E
∥
∥
∑

i �∈J
gixi

∥
∥ ≤ 2−k0L

√
logNE

∥
∥
∑

i≤n
εixi

∥
∥ ,

and this proves (19.34) by the choice of k0.
Now that we have proved (19.34), we consider two cases.

Case 1. We have

∑

i∈J
‖U(xi)‖2 ≥ 1

2

∑

i≤n
‖U(xi)‖2 . (19.37)

Then, using (19.33) in the third inequality,

Cr
2(U)

4
E
∥
∥
∑

i∈J
εixi

∥
∥ ≤ Cr

2(U)

4
E
∥
∥
∑

i≤n
εixi

∥
∥

<
1

2

(∑

i≤n
‖U(xi)‖2

)1/2 ≤
(∑

i∈J
‖U(xi)‖2

)1/2
,

and this proves (19.32).6

6 It is certainly disturbing at first that this case does not use at all any of the previous work. The
point is that (19.37) is very unlikely to hold.
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Case 2. (19.37) fails so that we have

∑

i �∈J
‖U(xi)‖2 ≥ 1

2

∑

i≤n
‖U(xi)‖2 .

Then (19.33) yields

Cr
2(U)

4
E
∥
∥
∑

i≤n
εixi

∥
∥ <

(∑

i �∈J
‖U(xi)‖2

)1/2

and combining with (19.34), we obtain

Cr
2(U)

L
E
∥
∥
∑

i �∈J
gixi

∥
∥ <

(∑

i �∈J
‖U(xi)‖2

)1/2
, (19.38)

which implies that the Gaussian cotype-2 constant Cg

2 (U) of U is ≥ Cr
2(U)/L.

It is proved in [137] that the Gaussian cotype-2 constant Cg

2 (U) of U “can be
computed on N vectors”, so that we can find N elements y1, . . . , yN of X such
that

C
g
2 (U)

L
E
∥
∥
∑

j≤N
gjyj

∥
∥ ≤

(∑

j≤N
‖U(yj )‖2

)1/2
. (19.39)

Using (6.6), we have E‖∑j≤N εjyj‖ ≤ LE‖∑j≤N gj yj‖ so that (19.39)

implies (19.32) since C
g

2 (U) ≥ Cr
2(U)/L. �

We turn to the proof of Theorem 19.1.11. We fix a set I ⊂ {1, . . . , n}, and we
recall the set T I of (19.26). We consider the set

VI = {(x∗(xi))i �∈I ; x∗ ∈ X∗1} ⊂ R
I c ,

where I c = {1, . . . , n} \ I and X∗1 is the unit ball of X∗ for the orginal norm. On
VI , we consider the distance d∞ induced by the supremum norm on R

I c . The key
step is the following:

Lemma 19.1.14 We have

γ1(VI , d∞) ≤ Lg(T I )E
∥
∥
∑

i≤n
gixi

∥
∥ . (19.40)
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Proof of Theorem 19.1.11. By duality, we have

g(VI ) = E
∥
∥
∑

i �∈I
gixi

∥
∥ ; b(VI ) = E

∥
∥
∑

i �∈I
εixi

∥
∥ . (19.41)

We appeal to Theorems 6.6.1 and 2.7.11 to obtain

g(VI ) ≤ L
(
b(VI )+

√
b(VI )γ1(VI , d∞)

) = L
(
b(VI )+

√
g(VI )C

)
,

where

C = b(VI )

g(VI )
γ1(VI , d∞) ≤ Lb(VI )g(T

I )
E‖∑i≤n gixi‖
E‖∑i �∈I gixi‖

where we have used (19.40) and the first part of (19.41) in the inequality.
Using that for any c > 0 we have the inequality

√
xy ≤ cx + y/c, we conclude

that

g(VI ) ≤ Lb(VI )+ 1

2
g(VI )+ LC ,

so that g(VI ) ≤ Lb(VI ) + LC, which, recalling (19.41), is the desired inequal-
ity (19.28). �

It remains to prove Lemma 19.1.14. The proof of this lemma involves several
ingredients which have to be combined in an unusual way. One of them is the
following general principle, where we recall that N0 = 1 and that Nn = 22n for
n ≥ 1:

Lemma 19.1.15 Consider a set W provided with two distances d2 and d1. Assume
that for a certain number S and every integer n ≥ 0, every number a > 0, every ball
Bd2(t, a) of W can be covered by Nn sets of d1-diameter at most aS2−n/2. Then

γ1(W, d1) ≤ LSγ2(W, d2) .

Proof Consider an admissible sequence (Bn) of W with

∀t ∈ W ,
∑

n≥0

2n/2Δ(Bn(t), d) ≤ 2γ2(W, d2) .

We construct by induction an increasing sequence of partitions (Cn) satisfying

card Cn ≤ Nn+2 (19.42)

∀C ∈ Cn , ∃B ∈ Bn , C ⊂ B , Δ(C, d1) ≤ S2−n/2Δ(B, d2) . (19.43)
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First, we set C0 = {W }. We note that using the hypothesis for a = Δ(W, d2) and
n = 0, we have

Δ(W, d1) ≤ SΔ(W, d2) . (19.44)

Thus (19.43) is true for n = 0. Assuming that Cn has been constructed, we split each
element C of Cn as follows: First, we split C into the sets C ∩ B , B ∈ Bn+1. Then
we split each set C ∩ B into Nn+1 pieces C′ such that

Δ(C′, d1) ≤ S2−(n+1)/2Δ(C ∩ B, d2) .

This is possible by hypothesis, and this completes the construction of Cn+1. Clearly,
Cn+1 consists of at most Nn+2 · N2

n+1 = Nn+3 sets, and it is obvious that (19.42)
and (19.43) hold for n+ 1. A consequence of (19.43) is that

∀t , Δ(Cn(t), d1) ≤ S2−n/2Δ(Bn(t), d2)

and thus

∑

n≥0

2nΔ(Cn(t), d1) ≤ S
∑

n≥0

2n/2Δ(Bn(t), d2)

≤ 2Sγ2(W, d2) .

Using (19.44) and Lemma 2.9.10 then yields the result. �
Proof of Lemma 19.1.14. Let us denote by X∗1 the unit ball of X∗ and by d2 the
distance associated to the norm ‖ · ‖2. By (19.1), the process given for x∗ in
X∗1 by Xx∗ = ∑

i≤n gix∗(xi) satisfies supx∗∈X∗1
∑

i≤n gix∗(xi) = ‖∑i≤n gixi‖.
Theorem 2.10.1 yields

γ2(X
∗
1, d2) ≤ LE

∥
∥
∑

i≤n
gixi

∥
∥ . (19.45)

Consider the norm ‖ · ‖1 on X∗ given by

‖x∗‖1 = sup
i≤n,i /∈I

|x∗(xi)| = sup
x∈T I

x∗(x) ,

where T I = {±xi; i ≤ n, i /∈ I }. Lemma 19.1.9 asserts that the unit ball of (X∗, ‖ ·
‖2) can be covered by Nn balls for the norm ‖ · ‖1 of radius Lg(T I )2−n/2. Denoting
by d1 the distance associated to the norm ‖ · ‖1, Lemma 19.1.15 then implies

γ1(X
∗
1 , d1) ≤ Lg(T I )γ2(X

∗
1 , d2) .

Combining with (19.45) completes the proof since obviously γ1(VI , d∞) =
γ1(X

∗
1 , d1). �
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19.2 Unconditionality

19.2.1 Classifying the Elements of B1

Consider a general σ -finite measure space (Ω,μ), and

B1 =
{
f ∈ L1(μ) ;

∫

|f |dμ ≤ 1
}
.

Theorem 19.2.1 below provides a kind of classification of the elements of B1. It is
at the root of Proposition 10.14.3. It will be used a number of times in the following
sections, allowing us to gain an excellent control of the subsets T of B1 which are
small in some other sense, for example, γ2(T , d2) < ∞. It has no content when μ

is a probability and is of interest only in the case where the total mass of μ is large.
The parameter τ below is of secondary importance, and one may assume τ = 0 at
first reading. We recall the notation a ∧ b = min(a, b) .

Theorem 19.2.1 For any integer τ ∈ Z, there exists an admissible sequence of
partitions (Cn) of B1, and for each C ∈ Cn, an integer �n(C) ∈ Z, such that if we
set

�(f, n) = �n(Cn(f )) (19.46)

where as usual Cn(f ) denotes the element of Cn containing f , we have

∀ f ∈ B1 ,

∫

(2�(f,n)f )2 ∧ 1dμ ≤ 2n+τ , (19.47)

and

∀f ∈ B1 ,
∑

n≥0

2n−�(f,n) ≤ 18 · 2−τ . (19.48)

We note that (19.47) implies

∀f ∈ B1 , μ
({|f | > 2−�(f,n)

}) ≤ 2n+τ . (19.49)

A first (and partial) understanding of the meaning of this result is that it classifies
the functions f of B1 according to the values of the integers �(f, n) for which

μ
({|f | > 2−�(f,n)

}) � 2n+τ .

The effectiveness of this result will be understood through multiple applications, the
first of which is a proof of Proposition 10.14.3 at the end of the present subsection.
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Lemma 19.2.2 For any number a ∈ R, we have

∑

k∈Z
(2k+2a2) ∧ 2−k ≤ 8|a| . (19.50)

Proof Without loss of generality, we assume that a > 0. Consider the largest integer
k0 such that 2k0a < 1 so that 2k0+1a ≥ 1. Thus, 2k0+2a2 ≤ 4a, 2−k0+1 ≤ 4a and

∑

k∈Z
(2k+2a2) ∧ 2−k ≤

∑

k<k0

2k+2a2 +
∑

k≥k0

2−k = 2k0+2a2 + 2−k0+1 ≤ 8a . �

Lemma 19.2.3 Given f ∈ B1 and n ≥ 0, we define �(f, n) as the largest integer
≤ 2n+ τ for which

∫

(2�(f,n)f )2 ∧ 1dμ ≤ 2n+τ . (19.51)

Then
∑

n≥0

2n−�(f,n)+τ ≤ 18 . (19.52)

Proof Let us consider the set J (f ) = {n ; �(f, n) < 2n+ τ }. Then, for n ∈ J (f ),
we have

∫

(2�(f,n)+1f )2 ∧ 1dμ ≥ 2n+τ ,

and therefore
∫

(2�(f,n)+2f 2) ∧ 2−�(f,n)dμ ≥ 2n−�(f,n)+τ . (19.53)

It is obvious by construction that the sequence (�(f, n))n is non-decreasing in n. For
k ∈ Z, we define Jk(f ) = {n ∈ J (f ); �(f, n) = k}. Let I (f ) = {k ∈ Z; Jk(f ) �=
∅}. It follows from (19.53) that when k ∈ I (f ), Jk(f ) has a largest element nk , and
then, using again (19.53) in the last inequality,

∑

n∈Jk(f )
2n−�(f,n)+τ =

∑

n∈Jk(f )
2n−k+τ ≤ 2nk+1−k+τ ≤ 2

∫

(2k+2f 2) ∧ 2−kdμ .

Summing the previous equations over k ∈ I (f ) and using (19.50), we obtain

∑

n∈J (f )
2n−�(f,n)+τ ≤ 2

∫ ∑

k∈I (f )
(2k+2f 2) ∧ 2−kdμ ≤ 16

∫

|f |dμ ≤ 16 .

The result follows since
∑

n�∈J (f ) 2n−�(f,n)+τ ≤∑n≥0 2−n ≤ 2. �
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Proof of Theorem 19.2.1. We define �(f, n) as in Lemma 19.2.3. Since h2∧1 ≤ |h|
and since f ∈ B1

∫

(2n+τ f )2 ∧ 1dμ ≤ 2n+τ
∫

|f |dμ ≤ 2n+τ ,

and the definition of �(f, n) implies �(f, n) ≥ n+τ and therefore τ+n ≤ �(f, n) ≤
τ + 2n so that �(f, n) can take at most n + 1 different values. We define C0 =
{B1}, and �0(B1) = τ . Consider the partition Cn of B1 induced by the following
equivalence relation: f and f ′ are equivalent if and only if �(f,m) = �(f ′,m) for
each m ≤ n. The sequence (Cn) is increasing. Moreover, since �(f,m) can take at
most m + 1 values, and since the values of �(f,m) for m ≤ n determine to which
element of Cn the function f belongs,

cardCn ≤ (n+ 1)! ≤ Nn , (19.54)

so that the sequence (Cn) is admissible.
By construction of Cn, for f ∈ C ∈ Cn, �(f, n) has a fixed value �n(C), that is,

f ∈ C, we have �n(Cn(f )) = �n(C) = �(f, n) so that (19.46) holds. Also (19.47)
holds by construction. Finally (19.48) follows from (19.52). �

As the crude inequality (19.54) shows, the use of admissible sequences is not
really canonical for a “classification result” such as Theorem 19.2.1 (one could
consider sequences of partitions with a much smaller cardinality). This, however,
suffices for the applications, and we have not yet found uses for sharper results.

Proof of Proposition 10.14.3. We have to produce an admissible sequence of
partitions (An) of Ba and for n ≥ 0 and A ∈ An an integer jn(A) satisfying
the conditions of Definition 10.14.1, where the quantity S of (10.170) is ≤
Lar . Consider the admissible sequence of (Cn) of B1 obtained by application of
Theorem 19.2.1 with τ = −2 (when μ is the counting measure on N). Consider
the bijection f �→ af between B1 and Ba . Define the admissible sequence (An)

of partitions of Ba consisting of the sets aC for C ∈ Cn. Thus, if A ∈ An,
then A/a ∈ Cn. Define j0(Ba) as the largest integer with 2a ≤ r−j0(Ba) (so
that (10.169) holds). For n ≥ 1 and A ∈ An, define �′n(A) = �n(A/a) (recalling
that A/a ∈ Cn). Define jn(A) as the largest integer for which arjn(A) ≤ 2�

′
n(A), so

that r−jn(A) ≤ ar2−�′n(A). It then follows from (19.52) that for f ∈ Ba , we have∑
n≥0 2nr−jn(An(f )) ≤ Lar so that as desired, the quantity S of (10.170) is ≤ Lar .

Also, for f ∈ A, we have f/a ∈ A/a so that, using (19.47) in the last inequality,

ϕjn(A)(f, 0) =
∑

i≥1

(rjn(A)fi)
2 ∧ 1 ≤

∑

i≥1

(2�n(A/a)(fi/a))
2 ∧ 1 ≤ 2n−2 .

Since the function ϕj is the square of a distance, we have ϕjn(A)(f, g) ≤ 2n for
f, g ∈ An, and this proves (10.168). �
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19.2.2 Subsets of B1

To lighten notation, we write

an := 1
√

log(n+ 1)
. (19.55)

To understand the main result of this section, Theorem 19.2.4 below, we have to
keep in mind the following consequence of Theorem 2.11.9:

A set T with 0 ∈ T and γ2(T , d) ≤ 1 is (basically) a subset

of the convex hull of a sequence (xn) with ‖xn‖ ≤ an . (19.56)

This is really a structure theorem, giving in a sense a complete description of the
sets T with γ2(T , d) ≤ 1. When furthermore T ⊂ B1 = {y ∈ �2;∑i≥1 |yi | ≤ 1},
we will obtain a much more precise description of T . Given a finite subset I of
N
∗ = N \ {0}, and a number a > 0, we define B2(I, a) as the set of elements of �2

with support in I and with �2 norm ≤ a, that is,

B2(I, a) =
{
x ∈ R

N
∗ ; i �∈ I ⇒ xi = 0 ;

∑

i∈I
x2
i ≤ a2

}
. (19.57)

Theorem 19.2.4 Consider a subset T of �2. Assume that for a certain number S,
we have γ2(T , d2) ≤ S and T ⊂ SB1. Then there exist sets In ⊂ N

∗ such that
card In ≤ log(n+ 1) with

T ⊂ LS conv
⋃

n≥1

B2(In, an) , (19.58)

where convA denotes the closed convex hull of A.

We start by some simple observations.

Lemma 19.2.5 Consider sets In ⊂ N
∗ such that

∀n ≥ 1 , card In ≤ log(n+ 1) . (19.59)

Consider independent standard Gaussian r.v.s (gi)i≥1. Then

E sup
n≥1

an

(∑

i∈In
g2
i

)1/2

≤ L . (19.60)
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Proof For each i, we have E exp(g2
i /4) ≤ 2 so that for any set I ,

E exp
(1

4

∑

i∈I
g2
i

)
≤ 2card I ,

and, for v ≥ 8 card I ,

P
(∑

i∈I
g2
i ≥ v

)
≤ 2card I exp

(
− v

4

)
≤ exp

(
− v

8

)
.

Now, (19.59) implies that for w2 ≥ 8, we have, using the value (19.55) of an,

P
(

sup
n≥1

an

(∑

i∈In
g2
i

)1/2 ≥ w

)

≤
∑

n≥1

P
(∑

i∈In
g2
i ≥ w2 log(n+ 1)

)

≤
∑

n≥1

exp
(
− w2 log(n+ 1)

8

)
,

and the last sum is ≤ L exp (−w2/L) for w large enough. �
Exercise 19.2.6 If the sets In satisfy card In ≥ log(n+ 1), prove that

E sup
n≥1

(
1

card In

∑

i∈In
g2
i

)1/2

≤ L .

Exercise 19.2.7 Find another proof of Lemma 19.2.5 by constructing a sequence
(uk) of �2 with ‖uk‖2 ≤ Lak and

⋃

n≥1

B2(In, an) ⊂ conv{uk ; k ≥ 1} .

Hint: Recall Lemma 14.3.2. Use this for each ball B2(I, a) in the left-hand side
above.

Exercise 19.2.8 We recall that for T ⊂ �2, we write

g(T ) = E sup
t∈T

Xt = E sup
t∈T

∑

i≥1

tigi .

Consider subsets Tn of �2, and assume that for certain numbers bn, we have ‖x‖2 ≤
bn for x ∈ Tn. Prove that

g
(⋃

n≥1

Tn

)
≤ L sup

n

(
g(Tn)+ bn

√
log(n+ 1)

)
. (19.61)
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Use (19.61) with Tn = B(an, In) and bn = an to give another proof of
Lemma 19.2.5.

The following is a kind of converse to Theorem 19.2.4:

Proposition 19.2.9 Consider sets In ⊂ N
∗ with card In ≤ log(n+ 1). Then the set

T1 := conv
⋃

n≥1 B2(In, an) satisfies γ2(T1, d2) ≤ L and T1 ⊂ B1.

Proof It follows from the Cauchy-Schwarz inequality that B2(In, an) ⊂ B1 so that
T1 ⊂ B1. It follows from Lemma 19.2.5 that g(T1) ≤ L and from Theorem 2.10.1
that γ2(T1, d2) ≤ L. �

Thus, Theorem 19.2.4 in a sense provides a complete description of the sets
T ⊂ B1 for which γ2(T , d2) ≤ 1.

Proof of Theorem 19.2.4. By homogeneity, we may assume that S = 1. We denote
by Δ2(A) the diameter of A for the distance d2 induced by �2. Since γ2(T , d2) ≤ 1,
we may consider an admissible sequence (Bn)n≥0 with

sup
t∈T

∑

n≥0

2n/2Δ2(Bn(t)) ≤ 2 . (19.62)

Next, we take advantage of the fact that T ⊂ B1. We consider the admissible
sequence (Cn) provided by Theorem 19.2.1 when τ = 0, Ω = N

∗, and μ is the
counting measure. We consider the increasing sequence of partitions (An)n≥0 where
An is generated by Bn and Cn, so cardAn ≤ Nn+1. The numbers �(t, n) of (19.46)
depend only on An(t). Therefore,

s ∈ An(t)⇒ �(s, n) = �(t, n) . (19.63)

For every A ∈ An, we pick an arbitrary element vn(A) = (vn,i (A))i≥1 of A. We
set

Jn(A) =
{
i ∈ N

∗ ; |vn,i (A)| > 2−�(vn(A),n)
}
,

so that cardJn(A) ≤ 2n by (19.49) since μ is the counting measure, and we define

J ′n(A) =
⋃{

Jk(B) ; k < n , B ∈ Ak , A ⊂ B
}
.

For n ≥ 1 and A ∈ An, we set In(A) = Jn(A)\J ′n(A), so that card In(A) ≤ 2n. We
define I0(T ) = J0(T ) and F as the family of pairs (In(A), 2−n/2) for A ∈ An and
n ≥ 0. The heart of the argument is to prove that

T ⊂ L conv
⋃

(I,a)∈F
B2(I, a) . (19.64)
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To prove this, let us fix t ∈ T and for n ≥ 1 define

In(t) = In(An(t)) = Jn(An(t)) \
⋃

k<n

Jk(Ak(t)) (19.65)

and πn(t) = vn(An(t)). Since πn(t) ∈ An(t), it follows from (19.63) that

�(πn(t), n) = �(t, n) . (19.66)

Thinking of a point t ∈ �2 as a function from N
∗ to R, for I ⊂ N

∗, we consider the
element t1I ∈ �2 given by

t1I = (ti1I (i))i≥1 . (19.67)

For i ∈ In(t), we have i �∈ Jn−1(An−1(t)) so that by definition of this
set |vn−1,i (An−1(t))| ≤ 2−�(t,n−1). Since πn−1(t) = vn−1(An−1(t)), we have
|πn−1(t)i | = |vn−1,i (An−1(t))| ≤ 2−�(t,n−1). We have proved that

‖πn−1(t)1In(t)‖∞ ≤ 2−�(t,n−1) , (19.68)

so that ‖πn−1(t)1In(t)‖2 ≤ 2n/2−�(t,n−1) since card In(t) = card In(An(t)) ≤ 2n.
Since t, πn−1(t) ∈ An−1(t), we have ‖t1In(t)−πn−1(t)1In(t)‖2 ≤ ‖t−πn−1(t)‖2 ≤
Δ2(An−1(t)) and thus,

‖t1In(t)‖2 ≤ c(t, n) := Δ2(An−1(t))+ 2n/2−�(t,n−1) . (19.69)

Therefore,

t1In(t) ∈ 2n/2c(t, n)B2(In(t), 2−n/2) . (19.70)

For each t ∈ T , we define c(t, 0) = 1. Since t ∈ T ⊂ B1 and card J0(T ) =
card I0(t) ≤ 20 = 1, (19.70) also holds for n = 0. We claim now that

t =
∑

n≥0

t1In(t) . (19.71)

We first show that

|ti | > 0 ⇒ i ∈
⋃

n≥0

Jn(An(t)) . (19.72)

To prove this, consider i with |ti | > 0 and n large enough so that Δ2(An(t)) <

|ti |/2. Then for all x ∈ An(t), we have |xi − ti | ≤ |ti |/2 and hence |xi | > |ti |/2.
Recalling that (19.48) holds for τ = 0, we have in particular 2n−�(x,n) ≤ 18 ≤ 25 so
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that �(x, n) ≥ n− 5, and for n large enough, for all x ∈ An(t), we have 2−�(x,n) <
|xi|. This holds in particular for x = πn(t) = vn(An(t)). Thus, by definition of
Jn(A), this shows that i ∈ Jn(An(t)).

It follows from (19.72) that if |ti | > 0, there is a smallest n ≥ 0 such that
i ∈ Jn(An(t)). If n = 0, then i ∈ J0(T ) = I0(T ). If n > 0, then (19.65) implies that
i ∈ In(t) and that furthermore, the sets In(t) are disjoint. We have proved (19.71).

Combining (19.71) and (19.70), we have

t =
∑

n≥0

t1In(t) =
∑

n≥0

2n/2c(t, n)u(n) , (19.73)

where u(n) ∈ B2(In(t), 2−n/2). Furthermore,
∑

n≥0 2n/2c(t, n) ≤ L by (19.62)
and (19.48), so the relation (19.73) proves (19.64).

It remains to deduce (19.58) from (19.64). This tedious argument simply requires
a cautious enumeration of the pairs (I, a) ∈ F as follows. Consider the set In
consisting of all the sets of the type In(A) for A ∈ An so that cardIn ≤ cardAn ≤
Nn+1. We then find a sequence (Ik)k≥1 of sets with the following properties. First,
Ik = ∅ if k < N2. Next, for n ≥ 0, In = {Ik;Nn+1 ≤ k < Nn+2}.7 This is
possible because cardIn ≤ Nn+1 ≤ Nn+2 − Nn+1. Furthermore, card Ik ≤ 2n for
Nn+1 ≤ k < Nn+2 since card I ≤ 2n for I ∈ In.

Thus for Nn+1 ≤ k < Nn+2, we have

card Ik ≤ 2n ≤ 2n+1 log 2 = logNn+1 ≤ log(k + 1) ≤ 2n+2 . (19.74)

This proves that for all k, we have card Ik ≤ log(k + 1). Consider now (I, a) ∈ F .
We prove that for some k, we have I = Ik and a ≤ Lak , which obviously conclude
the proof. By definition of F , there exists n ≥ 0 such that I ∈ In and a = 2−n/2 so
that by our construction I = Ik for some k with Nn+1 ≤ k < Nn+2 and a = 2−n/2

satisfies a ≤ 2/
√
k + 1 = 2ak by the last inequality of (19.74). �

Numerous relations exist between the following properties of a set T :
γ2(T , d2) ≤ 1; T ⊂ B1; γ1(T , d∞) ≤ 1 (where d∞ denotes the distance
associated with the supremum norm). We started exploring this theme in Chap. 6.
For example, the essence of Theorem 19.2.10 below is that the conditions T ⊂ B1
and γ1(T , d∞) ≤ 1 taken together are very restrictive. We pursue this direction in
the rest of this section, a circle of ideas closely connected to the investigations of
Sect. 19.3.1 below.

For I ⊂ N
∗ and a > 0, in the spirit of the definition 19.57 of B2(I, a), we define

B∞(I, a) as the set of elements of support in I and of �∞ norm ≤ a, that is,

B∞(I, a) = {x = (xi)i≥1 ; i �∈ I ⇒ xi = 0 ; i ∈ I ⇒ |xi| ≤ a
}
. (19.75)

7 The sets Ik are not required to be all different from each other.
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We have

x ∈ B∞(I, a)⇒
∑

i≥1

x2
i ≤ a2 card I

and thus, recalling the sets B2(I, a) of (19.57), this implies

B∞(I, a) ⊂ B2(I, a
√

card I ) . (19.76)

Theorem 19.2.10 Consider a set T ⊂ SB1, and assume that γ1(T , d∞) ≤ S. Then
we can find subsets In of N∗ with card In ≤ log(n+ 1), for which

T ⊂ LS conv
⋃

n≥1

B∞
(
In,

1

log(n+ 1)

)
. (19.77)

Proof Replacing T by T/S, we may assume that S = 1. We proceed as in the proof
of Theorem 19.2.4, but we may now assume

∀t ∈ T ,
∑

n≥0

2nΔ∞(An(t)) ≤ 2 .

Using (19.68) rather than (19.69), we get

‖t1In(t)‖∞ ≤ c(t, n) := Δ∞(An−1(t))+ 2−�(t,n−1)

so that

t1In(t) ∈ 2nc(t, n)B∞(In(t), 2−n)

and the proof is finished exactly as before. �
Corollary 19.2.11 If T ⊂ SB1 and γ1(T , d∞) ≤ S, then γ2(T , d2) ≤ LS.

Proof Indeed (19.76) and (19.77) imply that T ⊂ LS conv
⋃

n≥1 B2(In, an), and
Lemma 19.2.5 shows that this implies that γ2(T , d2) ≤ LS. �
The information provided by (19.77) is however very much stronger than the
information γ2(T , d2) ≤ S.

19.2.3 1-Unconditional Sequences and Gaussian Measures

Definition 19.2.12 A sequence (ei)i≤N of vectors of a Banach space X is 1-
unconditional if for each numbers (ai)i≤N and signs (εi)i≤N we have

∥
∥
∑

i≤N
aiei

∥
∥ = ∥∥

∑

i≤N
εiaiei

∥
∥ .
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Exercise 19.2.13 Prove that a sequence (ei)i≤N in R
n provided with the Euclidean

norm is 1-unconditional if and only it is orthogonal.

There are many natural norms on R
N for which the canonical basis (ei)i≤N is 1-

unconditional, for example, the norms ‖ · ‖p for p ≥ 1 given for x = (xi)i≤N by
‖x‖pp =∑i≤N |xi |p or the norms given by the formula (19.82) below.

The main result of this section is Theorem 19.2.15 below. It is in a sense a dual
version of Theorem 19.2.4. Our next result, which does not involve unconditionality,
provides perspective on this result. It is in a sense a dual version of (19.56). We recall
the notation an := 1/

√
log(n+ 1).

Theorem 19.2.14 Consider elements (ei)i≤N of a Banach space8 X and S =
E‖∑i≤N giei‖. Then we can find a sequence x∗n ∈ X∗ such that for each n ≥ 1, we
have

(∑

i≤N
x∗n(ei)2

)1/2 ≤ an (19.78)

and

∀x ∈ X , ‖x‖ ≤ LSN (x) , (19.79)

where N (x) := supn≥1 |x∗n(x)| .
The point of this result is that, using Proposition 2.11.6,

ESN
(∑

i≤N
giei

)
≤ LS = LE

∥
∥
∑

i≤N
giei

∥
∥ .

In words, given a norm ‖ · ‖, if we are only interested in the quantity S =
E‖∑i≤N giei‖, our norm in a sense does not differ from a larger norm (see (19.79))
of the type SN , where N (x) = supn |x∗n(x)| for a sequence (x∗n) that sat-
isfies (19.78). Thus, Theorem 19.2.14 is a structure theorem, just as its dual
version (19.56). If E‖∑i≤N giei‖ is the only characteristic of the norm in which
we are interested, we basically have a complete understanding of this norm.

Proof of Theorem 19.2.14. Denoting by x∗ an element of the dual X∗, consider the
set of sequences

T = {(x∗(ei))i≤N ; ‖x∗‖ ≤ 1} ⊂ R
N .

8 The reason for the change of notation is the results of this chapter have a natural extension when
the finite sequence (ei )i≤N is replaced by an infinite sequence which is a basis of X. We refer to
[132] for this.
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As usual, for a sequence t = (ti )i≤N ∈ R
N , we write Xt =∑i≤N tigi . Thus,

S = E
∥
∥
∑

i≤N
giei

∥
∥ = E sup

‖x∗‖≤1

∑

i≤N
x∗(ei)gi = E sup

t∈T
Xt .

Consider then a countable subset T ′ of T such that

sup
{∑

i≤N
tixi ; (ti ) ∈ T

}
= sup

{∑

i≤N
tixi ; (ti) ∈ T ′

}
. (19.80)

We apply Theorem 2.11.9 to T ′ to obtain a sequence yn = (yn,i)i≤N with ‖yn‖2 ≤
an and T ′ ⊂ LS conv{yn; n ≥ 1} and where yn is moreover a multiple of the
difference of two elements of T ′. Thus,

sup
{∑

i≤N
tixi ; (ti) ∈ T ′

}
≤ LS sup

{∑

i≤N
yn,ixi ; n ≥ 1

}
.

Since yn is a multiple of the difference of two elements of T , there exists x∗n in X∗
with yn = (x∗n(ei))i≤N , that is, yn,i = x∗n(ei). Thus (19.78) follows from the fact
that ‖yn‖2 ≤ an. Moreover, when x =∑i≤N xiei , we obtain from (19.1) that

‖x‖ = sup
{∑

i≤N
x∗(ei)xi ; ‖x∗‖ ≤ 1

}
= sup

{∑

i≤N
tixi ; (ti ) ∈ T

}

= sup
{∑

i≤N
tixi ; (ti) ∈ T ′

}
≤ LS sup

{∑

i≤N
yn,ixi ; n ≥ 1

}

= LS sup
{∑

i≤N
x∗n(ei)xi ; n ≥ 1

}
= LS sup

n≥1
x∗n(x) ≤ LS sup

n≥1
|x∗n(x)| .

This proves (19.79) and finishes the argument. �
Suppose now that the sequence (ei)i≤N is 1-unconditional. Then Theo-

rem 19.2.14 is not satisfactory because the sequence (ei)i≤N is not 1-unconditional
for the norm N produced by this theorem. We provide a version of Theorem 19.2.14
which is adapted to the case where the sequence (ei)i≤N is 1-unconditional.

Theorem 19.2.15 Consider a 1-unconditional sequence (ei)i≤N in a Banach space
X, and let S = E‖∑i≤N giei‖. Then we can find a sequence (In) of subsets of
{1, . . . , N} satisfying (19.59) and

∀x ∈ X , x =
∑

i≤N
xiei , ‖x‖ ≤ LS sup

n≥1
an

(∑

i∈In
x2
i

)1/2

. (19.81)
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To explain the meaning of this result, let us assume that the sequence (ei)i≤N
spans X, and when x =∑i≤N xiei , let us define the new norm

N (x) = sup
n≥1

an

(∑

i∈In
x2
i

)1/2

. (19.82)

This sequence (ei)i≤N is 1-unconditional for this norm, and (19.81) implies ‖x‖ ≤
LSN (x). Moreover, Lemma 19.2.5 implies that EN (

∑
i≤N giei) ≤ L. In words,

given the 1-unconditional sequence (ei)i≤N , if we are only interested in the quantity
S = E‖∑i≤N giei‖, we can replace our norm by a larger norm of the type SN , for
which the sequence (ei)i≤N is still 1-unconditional. Again, this should be viewed as
a structure theorem.

Exercise 19.2.16 In the statement of Theorem 19.2.15 prove that one may instead
request card In ≥ log(1+ n) and replace (19.81) by

‖x‖ ≤ LS sup
n≥1

(
1

card In

∑

i∈In
x2
i

)1/2

.

We start the proof of Theorem 19.2.15 with a simple observation.

Lemma 19.2.17 Consider a 1-unconditional sequence (ei)i≤N and S =
E‖∑i≥1 giei‖. Then the set

T = {(x∗(ei))i≤N ; x∗ ∈ X∗ , ‖x∗‖ ≤ 1
} ⊂ R

N (19.83)

satisfies

∀ y ∈ T ,
∑

i≤N
|yi | ≤ 2S . (19.84)

Proof Denote by ηi the sign of gix∗(ei) so that

∑

i≤N
|gi ||x∗(ei)| =

∑

i≤N
|x∗(giei)| =

∑

i≤N
ηix

∗(giei )

= x∗
(∑

i≤N
ηigiei

)
≤ ∥∥

∑

i≤N
ηigiei

∥
∥ = ∥∥

∑

i≤N
giei

∥
∥ .

Taking expectation completes the proof since E|gi | = √
2/π ≥ 1/2. �

Proof of Theorem 19.2.15. We recall the set T of (19.83). Lemma 19.2.17 implies
that T ⊂ 2SB1. (This is the only place where the fact that the sequence (ei)i≤N is
unconditional is used.) Moreover, Theorem 2.10.1 implies that γ2(T , d2) ≤ Lg(T ),
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whereas

g(T ) = E sup
‖x∗‖≤1

x∗
(∑

i≤N
giei

)
= E

∥
∥
∑

i≤N
giei

∥
∥ = S .

Theorem 19.2.4 provides sets In that satisfy (19.59) and T ⊂ LST1, where

T1 = conv
⋃

n≥1

B2(In, an) .

Thus, by duality, if x =∑i≤N xiei , we have, using the Cauchy-Schwarz inequality
in the last step,

‖x‖ = sup
t∈T

∑

i≤N
tixi ≤ LS sup

t∈T1

∑

i≤N
tixi ≤ LS sup

n≥1
an sup

t∈B2(In,an)

∑

i≤N
tixi

= LS sup
n≥1

an sup
t∈B2(In,an)

∑

i∈In
tixi ≤ LS sup

n≥1
an

(∑

i∈In
x2
i

)1/2

and this proves (19.81). �
The following exercise is similar to Theorem 19.2.15 but for r.v.s with exponen-

tial tails rather than Gaussian:

Exercise 19.2.18 Assume that the r.v.s Yi are independent and symmetric and
satisfy P(|Yi | ≥ x) = exp(−x). Consider a 1-unconditional sequence (ei)i≤N in
a Banach space E, and let S = E‖∑i≥1 Yiei‖. Prove that we can find a sequence
(In) of subsets of {1, . . . , N} with card In ≤ log(n+ 1) and

∀ x ∈ E , x =
∑

i≤N
xiei , ‖x‖ ≤ LS sup

n≥1

1

log(n+ 1)

∑

i∈In
|xi| .

Hint: Use Theorem 8.3.3.

19.3 Probabilistic Constructions

To prove the existence of an object with given properties, the probabilistic method
exhibits a random object for which one can prove through probabilistic estimates
that it has the required properties with positive probability.9

9 There are many situations where this method applies but where one does not know how to exhibit
any explicit object with these properties.
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19.3.1 Restriction of Operators

Consider q > 1, the space �
q
N , and its canonical basis (ei)i≤N . Consider a Banach

space X and an operator U : �
q
N → X. We will use many times the trivial

observation that such an operator is entirely determined by the elements xi = U(ei)

of X. Our goal is to give in Theorem 19.3.1 below (surprisingly mild) conditions
under which there are large subsets J of {1, . . . , N} such that the norm ‖UJ ‖ of the
restriction UJ to the span of the elements (ei)i∈J is much smaller than the norm of
U . We first compute this norm. We denote by X∗1 the unit ball of the dual of X, by
p the conjugate exponent of q . Setting xi = U(ei), we have

‖UJ ‖ = sup

{

x∗
(∑

i∈J
αixi

) ;
∑

i∈J
|αi |q ≤ 1 , x∗ ∈ X∗1

}

(19.85)

= sup

{(∑

i∈J
|x∗(xi)|p

)1/p ; x∗ ∈ X∗1
}

.

The set J will be constructed by a random choice. Specifically, given a number
0 < δ < 1, we consider (as in Sect. 11.11) i.i.d. r.v.s (δi)i≤N with

P(δi = 1) = δ ; P(δi = 0) = 1− δ , (19.86)

and we set J = {i ≤ N; δi = 1}. Thus (19.85) implies

‖UJ ‖p = sup
t∈T

∑

i≤N
δi |ti |p , (19.87)

where

T = {(x∗(xi))i≤N ; x∗ ∈ X∗1} ⊂ R
N . (19.88)

Setting

|T |p := {(|ti |p)i≤N ; t ∈ T } ⊂ R
N ,

we may rewrite (19.87) as

‖UJ ‖p = sup
t∈|T |p

∑

i≤N
δiti . (19.89)

This brings forward the essential point: To control E‖UJ ‖p, we need information
on the set |T |p. However, information we might gather from the properties of X
as a Banach space is likely to bear on T rather than |T |p. The link between the
properties of T and |T |p is provided in Theorem 19.3.2 below, which transfers a
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certain “smallness” property of T (reflected by (19.96) below) into an appropriate
smallness property of |T |p (witnessed by (19.99) below).

Let us start with an obvious observation: Interchanging the supremum and the
expectation yields

E‖UJ ‖p ≥ sup
t∈T

E
(∑

i≤N
δi |ti |p

)
= δ sup

t∈T

∑

i≤N
|ti |p . (19.90)

This demonstrates the relevance of the quantity

sup
t∈T

∑

i≤N
|ti |p = sup

‖x∗‖≤1

∑

i≤N
|x∗(xi)|p . (19.91)

We can think of this quantity as an obstacle to making E‖UJ ‖p small. It might be
sometimes to our advantage to change the norm (as little as we can) to decrease this
obstacle (of a somewhat uninteresting nature). For this, given a number C > 0, we
denote by ‖ · ‖C the norm on X such that the unit ball of the dual norm is (bearing
in mind that ‖x∗‖ is the dual norm of x∗)

X∗1,C =
{
x∗ ∈ X∗ ; ‖x∗‖ ≤ 1 ,

∑

i≤N
|x∗(xi)|p ≤ C

}
, (19.92)

and we denote by ‖U‖C the operator norm of U when X is provided with the norm
‖ · ‖C . This definition is tailored so that for the norm ‖ · ‖C , the quantity (19.91) is
now ≤ C. Another very nice feature is that the set

TC = {(x∗(xi))i≤N ; x∗ ∈ X∗1,C} ⊂ R
N (19.93)

of (19.88) corresponding to the new norm is a subset of the set T =
{(x∗(xi))i≤N ; x∗ ∈ X∗1} corresponding to the original norm. We will then be
able to prove that TC is small in the sense of (19.96) below simply because T is
already small in this sense. This will be done by using the geometric properties
of the original norm, and we shall not have to be concerned with the geometric
properties of the norm ‖ · ‖C .

We are now ready to bound the operator norm of a random restriction UJ of U .

Theorem 19.3.1 Consider 1 < q ≤ 2 and its conjugate exponent p ≥ 2.
Consider a Banach space X such that X∗ is p-convex (see Definition 4.1.2). Then
there exists a number K(p, η) depending only on p and on the constant η in
Definition 4.1.2 with the following property. Consider elements x1, . . . , xN of X,
and S = maxi≤N ‖xi‖. Denote by U the operator �qN → X such that U(ei) = xi .
Consider a number C and define B = max(K(p, η)Sp logN,C). Assume that for
some ε > 0

δ ≤ Sp

BεNε
≤ 1 . (19.94)
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Consider r.v.s (δi)i≤N as in (19.86) and J = {i ≤ N; δi = 1}. Then

E‖UJ ‖pC ≤ K(p, η)
Sp

ε
. (19.95)

It is remarkable that the right-hand side of (19.95) does not depend on ‖U‖C
but only on S = maxi≤N ‖U(ei)‖. In the situations of interest, S will be much
smaller than ‖U‖C so that (19.95) brings information. The condition (19.94) is not
very intuitive at first, but the reader will find in Lemma 19.3.9 below two specific
examples of application.

There are three steps in the proof.

• We use geometry to show that the set T of (19.88) “is not too large”. This is
Theorem 19.3.4 below.

• We transfer this control of T to |T |p. This is Theorem 19.3.2 below.
• The structure result obtained for |T |p in the previous step is perfectly adapted

to obtain a statement of the same nature as Theorem 19.3.1 and Theorem 19.3.3
below.

We first perform the second of the previous steps, which is closely related to
Theorem 19.2.10. We recall from (19.75) that for a subset I of {1, . . . , N} and for
a > 0, we write

B∞(I, a) = {(ti )i≤N ; i �∈ I ⇒ ti = 0 , ∀i ∈ I , |ti | ≤ a
} ⊂ R

N .

Theorem 19.3.2 Consider a subset T of RN with 0 ∈ T . Assume that for a certain
number A > 0, there exists an admissible sequence (Bn) of T such that10

∀t ∈ T ,
∑

n≥0

2nΔ(Bn(t), d∞)p ≤ A (19.96)

and let

B = max

(

A, sup
t∈T

∑

i≤N
|ti |p

)

. (19.97)

Then we can find a sequence (Ik)k≥1 of subsets of {1, . . . , N} with

card Ik ≤ LB

A
log(k + 1) , (19.98)

10 In the language of the functionals γα,β of (4.5), the following condition basically states that
γp,p(T , d∞)p ≤ A.



634 19 Applications to Banach Space Theory

and

|T |p ⊂ K(p)A conv
⋃

k≥1

B∞
(
Ik,

1

log(k + 1)

)
. (19.99)

Proof The proof is self-contained. However, your task will be much easier if you
study first Theorems 19.2.4 and 19.2.10 which have nearly the same proof.

The set |T |p is a subset of the ball of L1(μ) of center 0 and radius B, where μ is
the counting measure on {1, . . . , N}. The first step of the proof is to take advantage
of this through Theorem 19.2.1. Consider the largest integer τ for which 2τ ≤ B/A.
Since B ≥ A, we have τ ≥ 0, and 2−τ < 2A/B. Recalling that for a subset I of
{1, . . . , N} we have μ(I) = card I , homogeneity and Theorem 19.2.1 provide us
with an admissible sequence of partitions (Dn) of |T |p and for each D ∈ Dn an
integer �∗(D) ∈ Z, such that if for t ∈ |T |p, we set11

�∗(t, n) = �∗(Dn(t)) (19.100)

then (according to (19.49) and (19.48), respectively)

∀t ∈ |T |p , card{i ≤ N ; ti ≥ 2−�∗(t,n)} ≤ 2n+τ ≤ 2nB

A
(19.101)

∀t ∈ |T |p ,
∑

n≥0

2n−�∗(t,n) ≤ 18 · 2−τB ≤ LA . (19.102)

The second step of the proof is to bring back to T the information we just
gathered about |T |p. This is done in the most straightforward manner. We consider
the canonical map ϕ : T → |T |p given by ϕ((ti)i≤N) = (|ti |p)i≤N . We consider on
T the admissible sequence of partitions (Cn) where Cn consists of the sets ϕ−1(D)

whereD ∈ Dn. For t ∈ T , we define �(t, n) = �∗(ϕ(t), n), and this number depends
only on Cn(t) because �∗(ϕ(t), n) depends only on Dn(ϕ(t)). Moreover, we deduce
from (19.101) and (19.102), respectively, that

∀t ∈ T , card{i ≤ N ; |ti |p ≥ 2−�(t,n)} ≤ 2nB

A
(19.103)

∀t ∈ T ,
∑

n≥0

2n−�(t,n) ≤ LA . (19.104)

The obvious move now is to combine this information with the information provided
by (19.96). Denoting by An the partition generated by Bn and Cn, the sequence (An)

11 As ususal, Dn(t) is the element of Dn containing t .
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is increasing and cardAn ≤ Nn+1. Moreover since An(t) ⊂ Bn(t), (19.96) implies

∀t ∈ T ,
∑

n≥0

2nΔ(An(t), d∞)p ≤ A , (19.105)

and furthermore, the integer �(t, n) depends only on An(t).
After these preparations, we start the main construction. For D ∈ An , n ≥ 0, let

us choose in an arbitrary manner vn(D) ∈ D, and set πn(t) = vn(An(t)). We write
πn(t) = (πn,i(t))i≤N , and we define

I0(t) = {i ≤ N ; |π0,i(t)|p ≥ 2−�(t,0)} . (19.106)

For n ≥ 1, we further define

In(t) =
{
i ≤ N ; |πn,i(t)|p ≥ 2−�(t,n) , 0 ≤ k < n⇒ |πk,i(t)|p < 2−�(t,k)

}
.

It is important that In(t) depends only on An(t) so that there are at most cardAn ≤
Nn+1 sets of this type. Next, since |ti − πn,i(t)| ≤ Δ(An(t), d∞) ≤ Δ(Bn(t), d∞),
we have limn→∞ |ti − πn,i(t)| = 0 and thus

{i ≤ N ; |ti | �= 0} ⊂
⋃

n≥0

In(t) . (19.107)

Finally, we note from (19.103) that

card In(t) ≤ 2nB

A
. (19.108)

The definition of In(t) shows that for n ≥ 1 and i ∈ In(t), we have |πn−1,i(t)|p <

2−�(t,n−1) so that

|ti | ≤ |ti − πn−1,i(t)| + |πn−1,i(t)| ≤ Δ(An−1(t), d∞)+ 2−�(t,n−1)/p

and hence

|ti |p ≤ K(p)(Δ(An−1(t), d∞)p + 2−�(t,n−1)) := c(t, n) . (19.109)

Let us define c(t, 0) = Δ(T , d∞)p. Since 0 ∈ T , (19.109) remains true for n = 0.
We have then

n ≥ 0 , i ∈ In(t)⇒ |ti |p ≤ c(t, n) . (19.110)

Moreover (19.105) and (19.104) imply

∀t ∈ T ,
∑

n≥0

2nc(t, n) ≤ K(p)A . (19.111)
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We consider the family F of all pairs (In(t), 2−n) for t ∈ T and n ≥ 0, and we
prove that

|T |p ⊂ K(p)A conv
⋃

(I,a)∈F
B∞(I, a) . (19.112)

We recall the notation (19.67). For n ≥ 0, we define un by 2nc(n, t)un = |t|p1In(t)
so that, using (19.110),

un = 1

2nc(n, t)
|t|p1In(t) ∈ B∞(In(t), 2−n) . (19.113)

We then have, using (19.107) in the first equality,

|t|p =
∑

n≥0

|t|p1In(t) =
∑

n≥0

2nc(n, t)un . (19.114)

Together with (19.111) and (19.113), the relation 19.114 proves that |t|p ∈
K(p)A conv∪(I,a)∈FB∞(I, a) and (19.112). (The reason why we can take a convex
hull rather than the closure of a convex hull is that there is only a finite number of
possibilities for the sets In(t).)

It remains now to deduce (19.99) from (19.112). This requires a careful enumer-
ation of the pairs (I, a) ∈ F for which we basically copy the argument given at the
end of the proof of Theorem 19.2.4. Consider the set In consisting of all the sets of
the type In(t) for t ∈ T so that cardIn ≤ Nn+1. We find a sequence (Ik)k≥1 of sets
such that Ik = ∅ for k < N2 and that for n ≥ 0, In = {Ik;Nk+1 ≤ k < Nk+2}. This
is possible because card In ≤ Nn+1 ≤ Nn+2 −Nn+1.

Then any (I, a) ∈ F is such that for some n ≥ 0, we have I ∈ In and a = 2−n.
Thus, I = Ik where Nn+1 ≤ k < Nn+2 so that k + 1 ≤ Nn+2 and consequently
2−n ≤ 4/ log(k + 1). Thus (19.99) follows from (19.112). Furthermore, since k ≥
Nn+1, we have 2n ≤ L log k, and (19.108) implies (19.98). �

The smallness criterion provided by (19.99) is perfectly adapted to the control of
E‖UJ ‖p.

Theorem 19.3.3 Consider the set T = {(x∗(ei))i≤N ; x∗ ∈ X∗1} of (19.88).
Assume (19.96) and let B as in (19.97). Consider ε > 0 and δ ≤ 1 such that

δ ≤ A

BεNε logN
. (19.115)

Then if the r.v.s (δi)i≤N are as in (19.86) and J = {i ≤ N; δi = 1}, for v ≥ 6, we
have

P
(

‖UJ ‖p ≥ vK(p)
A

ε logN

)

≤ L exp
(
− v

L

)
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and in particular

E‖UJ ‖p ≤ K(p)
A

ε logN
. (19.116)

Proof The magic is that

sup
t∈B∞(I,a)

∑

i≤N
δiti = sup

t∈B∞(I,a)

∑

i∈I
δi ti ≤ a

∑

i∈I
δi ,

so that (19.99) implies

sup
t∈|T |p

∑

i≤N
δiti ≤ K(p)A sup

k≥1

1

log(k + 1)

∑

i∈Ik
δi . (19.117)

We will control the right-hand side using the union bound. For k ≥ 1, we have
card Ik ≤ L0 log(k + 1)B/A by (19.98), so that

δ card Ik ≤ L0 log(k + 1)

εNε logN
.

We recall the inequality (11.70): If u ≥ 6δ card I ,

P
(∑

i∈I
δi ≥ u

)
≤ exp

(
− u

2
log

u

2δ card I

)
.

Considering v ≥ 6, we use this inequality for u = L0v log(k + 1)/(ε logN) ≥
6δNε card Ik ≥ 6δ card Ik to obtain

P
(∑

i∈Ik
δi ≥ L0v log(k + 1)

ε logN

)

≤ exp
(
− L0v log(k + 1)

2ε logN
log(Nε)

)

= exp
(
− L0v log(k + 1)

2

)
. (19.118)

Thus, if we define the event

Ω(v) : ∀k ≥ 1 ,
∑

i∈Ik
δi ≤ L0v log(k + 1)

ε logN
,
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we obtain from (19.118) that P(Ω(v)c) ≤ L exp(−v/L). When Ω(v) occurs, for
k ≥ 1, we have

1

log(k + 1)

∑

i∈Ik
δi ≤ L0v

ε logN
.

Then (19.117) and (19.89) imply ‖UJ ‖p ≤ K(p)vA/(ε logN). �
We finally come to the control of T . We recall the functionals γα,β of (4.5).

Theorem 19.3.4 Under the conditions of Theorem 19.3.1, the set T of (19.88)
satisfies

γp,p(T , d∞) ≤ K(p, η)S(logN)1/p . (19.119)

Before the proof, we consider the (quasi) distance d∞ on X∗1 defined by

d∗∞(x∗, y∗) = max
i≤N |x

∗(xi)− y∗(xi)| .

The map ψ : X∗1 → T given by ψ(x∗) = (x∗(xi))i≤N satisfies

d∞(ψ(x∗), ψ(y∗)) = d∗∞(x∗, y∗) . (19.120)

Lemma 19.3.5 We have

ek(X
∗
1 , d

∗∞) ≤ K(p, η)S2−k/p(logN)1/p (19.121)

or, equivalently, for ε > 0,

logN(X∗1 , d∗∞, ε) ≤ K(p, η)
(S

ε

)p
logN . (19.122)

Here, X∗1 is the unit ball of X∗ for the original dual norm, N(X∗1 , d∞, ε) is the
smallest number of balls for d∞ of radius ε needed to cover X∗1 , and ek is defined
in (2.36).

It would be nice to have a simple proof of this statement. The only proof we know
is somewhat indirect. It involves geometric ideas. First, one proves a “duality” result,
namely, that if W denotes the convex hull of the points (±xi)i≤N , to prove (19.122),
it suffices to show that

logN(W, ‖ · ‖, ε) ≤ K(p, η)
(S

ε

)p
logN . (19.123)

This duality result is proved in [24], Proposition 2, (ii). We do not reproduce the
simple and very nice argument, which is not related to the ideas of this work. The
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proof of (19.123) also involves geometrical ideas. Briefly, since X∗ is p-convex, it
is classical that “X is of type p, with a type p constant depending only on p and
η” as proved in [57], and then the conclusion follows from a beautiful probabilistic
argument of Maurey, which is reproduced, for example, in [120], Lemma 3.2. �
Exercise 19.3.6 Deduce (19.121) from (19.123) and Proposition 2, (ii) of [24].

Proof of Theorem 19.3.4. Recalling that we assume that the dual norm of X is p-
convex, we combine (19.121) with Theorem 4.1.4 (used for α = p). �
Proof of Theorem 19.3.1. We reformulate (19.119) as follows: There exists an
admissible sequence (Bn) on X∗1 for which

∀x∗ ∈ X∗1 ,
∑

n≥0

2nΔ(Bn(x
∗), d∗∞)p ≤ K(p, η)Sp logN := A . (19.124)

It follows from (19.124) and (19.120) that the set T of (19.88) satisfies (19.96).
Thus, this is also the case of the smaller set TC of (19.93). Since

∑
i≤N |ti |p ≤ C

for t ∈ TC , this set also satisfies (19.97) for B = max(A,C). We then conclude
with Theorem 19.3.3. �

To conclude this section, we describe an example showing that Theorem 19.3.1
is very close to being optimal in certain situations. Consider two integers r,m and
set N = rm. We divide {1, . . . , N} into m disjoint subsets I1, . . . , Im of cardinality
r . Consider 1 < q ≤ 2 and the canonical bases (ei)i≤N, (ej )j≤m of �qN and �

q
m,

respectively. Consider the operator U : �
q
N → �

q
m = X such that U(ei) = ej

where j is such that i ∈ Ij . Thus, S = 1. It is classical [57] that X∗ = �
p
m is

p-convex. Consider δ with δr = 1/m. Then

P(∃j ≤ m ; ∀i ∈ Ij , δi = 1) = 1−
(

1− 1

m

)m ≥ 1

L
,

and when this event occurs, we have ‖UJ ‖ ≥ r1/p since ‖∑i∈Ij ei‖ = r1/q and
‖UJ (

∑
i∈Ij ei)‖ = r‖ej‖ = r . Thus,

E‖UJ ‖p ≥ r

L
. (19.125)

Let us now try to apply Theorem 19.3.1 to this situation so that xi = ej for
i ∈ Ij . Then we must take C large enough such that ‖ · ‖C = ‖ · ‖, that is, C =
sup‖x∗‖≤1

∑
i≤N |x∗(xi)|p. Since there are r values of i for which si = ej , we get

∑

i≤N
|x∗(xi)|p = r

∑

j≤m
|x∗(ej )|p .
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This can be as large as r for ‖x∗‖ ≤ 1, so one has to take C = r . Then B = r

whenever K(q) logN ≤ r . Let us choose ε = 1/(2r) so that for large m

δ = 1

m1/r
≤ Sp

BεNε
= 1

rεNε
= 1

rεmεrε
.

Thus (19.125) shows that (19.95) gives the exact order of ‖UJ ‖ in this case.

19.3.2 The Λ(p)-Problem

We denote by λ the uniform measure on [0, 1]. Consider functions (xi)i≤N on [0, 1]
satisfying the following two conditions:

∀i ≤ N , ‖xi‖∞ ≤ 1 , (19.126)

The sequence (xi)i≤N is orthogonal in L2 = L2(λ) . (19.127)

For a number p ≥ 1, we denote by ‖ · ‖p the norm in Lp(λ). Thus, if p ≥ 2 for all
numbers (αi)i≤N , we have

∥
∥
∑

i≤N
αixi

∥
∥

2 ≤
∥
∥
∑

i≤N
αixi

∥
∥
p
.

J. Bourgain [22] proved the remarkable fact that we can find a set J , with card J ≥
N2/p, for which we have an estimate in the reverse direction:12

∀(αi)i∈J ,
∥
∥
∑

i∈J
αixi

∥
∥
p
≤ K(p)

(∑

i∈J
α2
i

)1/2
. (19.128)

Bourgain’s argument is probabilistic, showing in fact that a random choice of J

works with positive probability. The most interesting application of this theorem
is the case of the trigonometric system, say xi(t) = cos 2πkit where the integers
(ki)i∈I are all different. Even in that case, no simpler proof is known.

We consider r.v.s δi as in (19.86) with δ = N2/p−1 and we set J = {i ≤ N ; δi =
1}.
Theorem 19.3.7 There is a r.v. W ≥ 0 with EW ≤ K such that for any numbers
(αi)i∈J , we have

∀(αi)i∈J ,
∥
∥
∑

i∈J
αixi

∥
∥
p
≤ W

(∑

i∈J
α2
i

)1/2
. (19.129)

12 Proving this is (a version of) what was known as the Λp problem.
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Here, as well as in the rest of this section, K denotes a number depending only on
p, that need not be the same on each occurrence. Since P(card J ≥ N2/p) ≥ 1/K ,13

recalling that EW ≤ K and using Markov’s inequality, with positive probability, we
have both card J ≥ N2/p and W ≤ K , and in this case, we obtain (19.128). It
is possible with minimum additional effort to prove a slightly stronger statement
than (19.129), where the Lp norm on the left is replaced by a stronger norm.14

We refer the reader to [132] for this. In the present presentation, we have chosen
the simplest possible result. I am grateful to Donggeun Ryou for a significant
simplification of the argument.15

Theorem 19.3.7 is mostly a consequence of the following special case of
Theorem 19.3.1, which we state again to avoid confusion of notation. We recall
the Definition 4.1.2 of a 2-convex Banach space and the corresponding constant η.
Given a number C > 0, we denote by ‖ · ‖C the norm on X such that the unit ball
of the dual norm is the set

X∗1,C = {x∗ ∈ X∗; ‖x∗‖C ≤ 1} =
{
x∗ ∈ X∗ ; ‖x∗‖ ≤ 1 ,

∑

i≤N
x∗(xi)2 ≤ C

}
.

(19.130)

Theorem 19.3.8 Consider a Banach space X such that X∗ is 2-convex with
corresponding constant η. Then there exists a number K(η) depending only on η

with the following property. Consider elements x1, . . . , xN of X with ‖xi‖ ≤ 1.
Denote by U the operator �2

N → X such that U(ei) = xi . Consider a number
C > 0 and define B = max(C,K(η) logN). Consider a number δ > 0 and assume
that for some ε > 0

δ ≤ 1

BεNε
≤ 1 . (19.131)

Consider r.v.s (δi)i≤N as in (19.86) and J = {i ≤ N; δi = 1}. Then the restriction
UJ of U to the span of the vectors (ei)i∈J satisfies

E‖UJ ‖2
C ≤

K(η)

ε
, (19.132)

where ‖UJ ‖C is the operator norm of UJ when X is provided with the norm ‖ · ‖C .

Despite the fact that Bourgain’s result is tight, there is some room in the proof
of Theorem 19.3.7. Some of the choices we make are simply convenient and by no
means canonical. We fix p > 2 once and for all, and we set p1 = 3p/2. Denoting

13 Note that this is obvious for large N by the Central Limit Theorem.
14 More specifically, the so-called Lp,1 norm.
15 And in particular for observing that there is no need of a special argument to control the large
values of the function f in the proof below.



642 19 Applications to Banach Space Theory

q1 the conjugate exponent of p1, the dual Lq1 of X = Lp1 is 2-convex [57], and the
corresponding constant η depends on p only.16 For a number C > 0, we consider
on X = Lp1 the norm ‖ · ‖C constructed before the statement of Theorem 19.3.8.
From now on, δ = N2/p−1.

Lemma 19.3.9 Setting C1 = N1/2−1/p and C2 = e−1N1−2/p logN , we have

E‖UJ ‖C1 ≤ K ; E‖UJ ‖C2 ≤ K
√

logN .

Proof We apply Theorem 19.3.8 to the case X = Lp1 , whose dual Lq1 is 2-convex,
and we note that it suffices to prove the result for N large enough.

We choose first C = C1 (= N1/2−1/p) and ε = 1/2− 1/p. For N large enough
B = max(C,K logN) = N1/2−1/p so that BNε = N1−2/p = δ−1. Since ε <

1, (19.131) holds. Since 1/ε ≤ K , (19.132) then proves that E‖UJ ‖2
C1
≤ K.

Next, we choose C = C2 (= e−1N1−2/p logN) and ε = 1/ logN . Thus, Nε =
e, and for N large enough B = max(C,K logN) = C, so that Bε = e−1N1−2/p

and BεNε = N1−2/p = δ−1. Thus (19.131) holds again, and (19.132) proves now
that E‖UJ ‖2

C2
≤ K logN . �

Lemma 19.3.10 Consider a measurable function f . Assume that ‖f ‖C1 ≤ 1 and
‖f ‖C2 ≤

√
logN . Then ‖f ‖p ≤ K .

Proof of Theorem 19.3.7. Let

V = ‖UJ ‖C1 +
1√

logN
‖UJ ‖C2 ,

so that EV ≤ K by Lemma 19.3.9. Consider numbers (αi)i∈J and y :=∑
i∈J αiei . For j = 1, 2, we have ‖UJ (y)‖Cj ≤ ‖UJ ‖Cj ‖y‖2. The function f =

(V ‖y‖2)
−1UJ (y) satisfies the hypotheses of Lemma 19.3.10 so that ‖f ‖p ≤ K .

That is, ‖UJ (y)‖p ≤ KV ‖y‖2, that is, ‖∑i∈J αixi‖p ≤ KV (
∑

i∈J α2
i )

1/2. �
Before we prove Lemma 19.3.10, we need to learn to use information on ‖f ‖Cj .

This is through duality in the form of the following lemma, which is a consequence
of the Hahn-Banach theorem:

Lemma 19.3.11 If f ∈ Lp1 satisfies ‖f ‖C ≤ 1, then f ∈ C := conv(C1 ∪ C2)

where C1 = {g; ‖g‖p1 ≤ 1} and C2 = {∑i≤N βixi;∑i≤N β2
i ≤ C−1} .

Proof The set C2 is closed and finite dimensional, so it is compact. The set C1 is
closed so that the set C is closed and obviously convex. If f �∈ C, by the Hahn-
Banach theorem, there exists x∗ ∈ Lq1 such that x∗(f ) > 1 but x∗(g) ≤ 1 for
g ∈ C. That x∗(g) ≤ 1 for g ∈ C1 implies that ‖x∗‖q1 ≤ 1. That x∗(g) ≤ 1 for

16 So that when we will apply Theorem 19.3.8 to X, the corresponding constant K(η) depends
only on p.
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∈ C2 implies that
∑

i≤N x∗(xi)2 ≤ C. Thus, ‖x∗‖C ≤ 1 by definition of the norm
‖x∗‖C . Since x∗(f ) > 1 from (19.1), we have ‖f ‖C > 1. �
Proof of Lemma 19.3.10. The proof is based on the formula

‖f ‖pp = p

∫ ∞

0
tp−1λ({|f | ≥ t})dt , (19.133)

where λ is Lebesgue’s measure on [0, 1] and suitable bounds for the integrand. The
method to bound λ({|f | ≥ t}) differs depending on the value of t . For a certain
quantity D (depending on N), we will distinguish three cases. For t ≤ 1, we will
use that λ({|f | ≥ t}) ≤ 1 so that

∫ 1
0 tp−1λ({|f | ≥ t})dt ≤ K . For 1 ≤ t ≤ D, we

will use the hypothesis that ‖f ‖C1 ≤ 1. For t ≥ D, we will use the hypothesis that
‖f ‖C2 ≤

√
logN .

Since ‖f ‖C1 ≤ 1, by Lemma 19.3.11 (used for C = C1 = N1/2−1/p), we
may write f as a convex combination17 f = τ1u1 + τ2u2 where ‖u1‖p1 ≤ 1 and
u2 = ∑i≤N βixi with

∑
i≤N β2

i ≤ N1/p−1/2. By (19.126) and (19.127), we have
‖u2‖2

2 ≤ N1/p−1/2. Markov’s inequality implies that for each s ≥ 1

λ({|u| ≥ t}) ≤ ‖u‖ss
ts

, (19.134)

and we combine (19.134) with the obvious inequality

λ({|f | ≥ t}) ≤ λ({|u1| ≥ t})+ λ({|u2| ≥ t}) (19.135)

to obtain

λ({|f | ≥ t}) ≤ t−p1 + t−2N1/p−1/2 . (19.136)

Recalling that p > 2, let us define α > 0 by the relation α(p1 − 2) = 1/2 −
1/p, and let us set D = Nα . Then for t ≤ D, we have t−p1 + t−2N1/p−1/2 =
t−p1 + t−2N−α(p1−2) ≤ 2t−p1 . Since p1 = 3p/2, we get

∫ D
1 tp−1λ({|f | ≥ t})dt ≤

2
∫∞

1 t−1−p/2dt ≤ K . It remains only to control
∫∞
D

tp−1λ({|f | ≥ t})dt .
Since ‖f ‖C2 ≤

√
logN , by Lemma 19.3.11 again (used now for C = C2 =

e−1N1−2/p logN), we may write f as a convex combination f = τ1v1+τ2v2 where
‖v1‖p1 ≤

√
logN and v2 = ∑i≤N βixi , with

∑
i≤N β2

i ≤ logNC−1
2 = eN2/p−1.

Thus, ‖v2‖2
2 ≤ eN2/p−1, and since ‖xi‖∞ ≤ 1, we also have ‖v2‖∞ ≤∑i≤N βi ≤√

N

√∑
i≤N β2

i ≤ 2N1/p. Just as in (19.136), we then obtain

λ({|f | ≥ t}) ≤ λ({|v1| ≥ t})+ λ({|v2| ≥ t}) ≤ (logN)p1/2t−p1 + λ({|v2| ≥ t}) ,

17 That is, τ1, τ2 ≥ 0, τ1 + τ2 = 1.
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so that
∫∞
D tp−1λ({|f | ≥ t})dt ≤ (logN)p1/2I1 + I2 where I1 =

∫∞
D tp−p1−1dt

and I2 =
∫∞
D

tp−1λ({|v2| ≥ t})dt . Now I1 ≤ KDp−p1 = KD−p/2 = KN−αp/2.
Since ‖v2‖2

2 ≤ eN2/p−1, we have λ({|v2| ≥ t}) ≤ eN2/p−1t−2 by (19.134), and
also λ({|v2| ≥ t}) = 0 for t ≥ 2N1/p ≥ ‖v2‖∞, so that

I2 ≤
∫ 2N1/p

0
tp−1λ({|v2| ≥ t})dt ≤ eN2/p−1

∫ 2N1/p

0
tp−3dt = K ,

and we have proved as desired that
∫∞
D

tp−1λ({|f | ≥ t})dt ≤ K . �

19.4 Sidon Sets

Let us recall that if T is a compact abelian group, a character χ is a continuous map
from T to C with |χ(t)| = 1 and χ(s+t) = χ(s)χ(t). Thus, χ(0) = 1 and χ(−s) =
χ̄(s). Throughout this section, we denote by μ the Haar probability measure on
T . We recall from Lemma 7.3.6 that two different characters are orthogonal in
L2(T , dμ). Given a set Γ of characters, we define its Sidon constant Γsi (possibly
infinite) as the smallest constant such that for each sequence of complex numbers
(αχ )χ∈Γ , only finitely many of them nonzero, we have

∑

χ∈Γ
|αχ | ≤ Γsi sup

t

∣
∣
∑

χ∈Γ
αχχ(t)

∣
∣ . (19.137)

We say that Γ is a Sidon set if Γsi < ∞. To understand this definition and the
next one, it is very instructive to consider the case where T = {−1, 1}N and Γ =
{εi, i ≤ N} where εi(t) = ti .18 Sidon sets are standard fare in harmonic analysis. In
a certain sense, the characters in a Sidon set are “independent”.19 Another measure
of independence of the elements of Γ is given by the smallest constant Γsg such that
for all p ≥ 1, we have, for all families, αχ as above

( ∫ ∣
∣
∑

χ∈Γ
αχχ

∣
∣pdμ

)1/p ≤ √pΓsg

(∑

χ∈Γ
|αχ |2

)1/2
. (19.138)

This should be compared with Khinchin’s inequality (6.3), a comparison which
supports the idea that controlling Γsg is indeed a measure of independence. The
subscript “sg” stands for “subgaussian”, as in the subgaussian inequality (6.1.1).
This is because, as is shown in Exercise 2.3.8 (which we advise the reader to

18 Here of course, the group structure on {−1, 1} is given by ordinary multiplication.
19 In a much stronger sense than just linear independence.
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carefully review now), the constant Γsg is within a universal constant20 of the
constant Γ ′

sg defined as the smallest number such that

∥
∥
∑

χ∈Γ
αχχ

∥
∥
ψ2
≤ Γ ′

sg

(∑

χ∈Γ
|αχ |2

)1/2
, (19.139)

where the norm ‖ · ‖ψ2 defined in (14.14) is for the measure μ. The reader should
also review (14.18) which explains how (19.139) is related to the subgaussian
inequality (6.1.1).

One of the main results of this section is the following classical result. It relates
the two “measures of independence” which we just considered.

Theorem 19.4.1 (W. Rudin, G. Pisier) We have

Γsg ≤ LΓsi . (19.140)

There exists a function ϕ : R+ → R
+ such that21

Γsi ≤ ϕ(Γsg) . (19.141)

Furthermore, we will prove a considerable generalization of (19.141), due also to
Gilles Pisier [89] (after contributions by J. Bourgain and M. Lewko [20]). The most
important consequence of this theorem is that Γsg <∞ if and only if Γsi <∞.

As this is a book of probability rather than analysis, we will simplify some
analytical details by assuming that T is finite. We start with the rather easy part,
the proof of (19.140).

Lemma 19.4.2 Consider complex numbers βχ for χ ∈ Γ . Then we can find a
function f on T with

‖f ‖1 ≤ Γsi sup
χ∈Γ

|βχ | (19.142)

and

∀χ ∈ Γ ;
∫

fχdμ = βχ . (19.143)

Here, the norm ‖f ‖1 is the norm in L1(dμ).

20 That is, Γsg ≤ LΓ ′
sg ≤ LΓsg.

21 The proof we give shows that Γsi ≤ L(1 + Γsg)
4. It is known that Γsi ≤ LΓ 2

sg(1 + logΓsg) but
that it is not true that Γsi ≤ LΓsg; see [88].
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Proof Let us denote by V the complex linear span of the functions χ for χ ∈
Γ . Recalling that the characters are linearly independent because they form an
orthogonal set, consider the linear functional φ on V given by φ(

∑
χ∈Γ αχχ) =∑

χ∈Γ αχβχ . Thus, if h =∑χ∈Γ αχχ then, using (19.137)

|φ(h)| ≤ sup
χ∈Γ

|βχ |
∑

χ∈Γ
|αχ | ≤ Γsi sup

χ∈Γ
|βχ |‖h‖∞ . (19.144)

Let us provide the space of functions on T and its subspaces with the supremum
norm. The content of (19.144) is that φ is of norm ≤ Γsi supχ∈Γ |βχ | on V . By the
Hahn-Banach theorem, we can extend φ to a linear functional φ̄ of the same norm on
the space of all functions on T . Since T is finite, there exists a function f on T such
that φ̄(h) = ∫ f hdμ for all functions h on T , and ‖f ‖1 = ‖ϕ̄‖ ≤ Γsi supχ∈Γ |βχ |.
In particular,

∫
fhdμ = φ(h) whenever h ∈ V . Taking h = χ implies (19.143). �

Lemma 19.4.3 Consider for χ ∈ Γ numbers εχ = ±1. Then for each p and each
sequence of numbers (αχ )χ∈Γ , we have

∫
∣
∣
∑

χ∈Γ
αχχ

∣
∣pdμ ≤ Γ

p
si

∫
∣
∣
∑

χ∈Γ
εχαχχ

∣
∣pdμ . (19.145)

Proof According to Lemma 19.4.2, we can find a function f on T such that∫
fχdμ = εχ for each χ ∈ Γ , whereas ‖f ‖1 ≤ Γsi. Let us define g(t) =∑
χ∈Γ εχαχχ(t). Thus, for t ∈ T , we have

∑

χ∈Γ
αχχ(t) =

∑

χ∈Γ
αχεχχ(t)εχ

=
∑

χ∈Γ
αχεχχ(t)

∫

f (x)χ(x)dμ(x)

=
∑

χ∈Γ
αχεχ

∫

f (x)χ(x + t)dμ(x)

=
∫

f (x)g(x + t)dμ(x) . (19.146)

If a function h satisfies
∫ |h(x)|dμ(x) = 1, we have

∣
∣
∫

h(x)g(x + t)dμ(x)
∣
∣p ≤

( ∫

|h(x)||g(x + t)|dμ(x)
)p

≤
∫

|h(x)||g(x + t)|pdμ(x) ,
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where in the second line, we use the convexity of the map x → |x|p. Using this for
the function h(x) = f (x)/‖f ‖1, we obtain

∣
∣
∫

f (x)g(x + t)dμ(x)
∣
∣p ≤ ‖f ‖p−1

1

∫

|f (x)||g(x + t)|pdμ(x) ,

and combining with (19.146), we obtain

∣
∣
∑

χ∈Γ
αχχ(t)

∣
∣p ≤ ‖f ‖p−1

1

∫

|f (x)||g(x + t)|pdμ(x) .

Integrating in t and using the translation invariance of μ yields

∫
∣
∣
∑

χ∈Γ
αχχ(t)

∣
∣pdμ(t) ≤ ‖f ‖p−1

1

∫∫

|f (x)||g(x + t)|pdμ(x)dμ(t)

= ‖f ‖p1
∫

|g(t)|pdμ(t) . �

Proof of (19.140). We average (19.145) over all choices of εχ = ±1, using
Khintchin’s inequality (6.3). �

Next, we turn to the proof of (19.141). We will deduce it from the considerably
more general recent result of [89].

Theorem 19.4.4 For j = 1, 2, consider a sequence (ϕj,n)n≤N of functions on a
probability space (Ω, dν). Assume that each of these sequences is an orthonormal
system.22 Assume that for certain numbers A,B, for j = 1, 2, and each numbers
(αn)n≤N , we have

∀n ≤ N, ‖ϕj,n‖∞ ≤ A , (19.147)

∥
∥
∑

n≤N
αnϕj,n

∥
∥
ψ2
≤ B

(∑

n≤N
|αn|2

)1/2
. (19.148)

Then for each complex numbers (αn)n≤N , we have

∑

n≤N
|αn| ≤ LA2(A+ B)4

∥
∥
∑

n≤N
αnϕ1,n ⊗ ϕ2,n

∥
∥∞ , (19.149)

where ϕ1,n ⊗ ϕ2,n is the function on Ω × Ω defined by ϕ1,n ⊗ ϕ2,n(ω1, ω2) =
ϕ1,n(ω1)ϕ2,n(ω2).

22 That is, each vector is of norm 1 and they are orthogonal.
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Proof of (19.141). Consider a set Γ = (χn)n≤N of characters. Let ϕ1,n = ϕ2,n =
χn so that (19.147) holds for A = 1 and (19.148) holds for B = Γ ′

sg ≤ LΓsg. Taking
(Ω, ν) = (T , μ), since χn(s)χn(t) = χn(s + t), (19.149) becomes

∑
n≤N |αn| ≤

L(1+ Γsg)
4‖∑n≤N αnχn‖∞, and this proves that Γsi ≤ L(1+ Γsg)

4. �
Throughout the rest of this section, we write T = {−1, 1}N and μ denotes

the Haar measure. We denote by εn the n-th coordinate function on T . The first
ingredient of the proof of Theorem 19.4.4 is the following:

Proposition 19.4.5 Under the conditions of Theorem 19.4.4, there exist operators
Uj : L1(T , μ)→ L1(Ω, ν) such that Uj(εn) = ϕj,n and ‖Uj‖ ≤ L(A+ B).

To understand the issue there, let us first prove a simple fact about operators from
�1 = �1(N) to L1(Ω, ν). Given elements u1, . . . , um of L1(Ω, ν), we define
maxk≤m |uk| pointwise, (maxk≤m |uk|)(ω) = maxk≤m |uk(ω)|. Similarly, elements
of �1 are seen as functions on N.

Lemma 19.4.6 Consider a bounded operator U : �1 → L1(Ω, ν). Then given
elements f1, . . . , fm of �1, we have

∥
∥max

k≤m |U(fk)|
∥
∥

1 ≤ ‖U‖
∥
∥max

k≤m |fk |
∥
∥

1 . (19.150)

Proof Let (en) be the canonical basis of �1 and hn = U(en) so that ‖hn‖1 ≤ ‖U‖.
Consider elements f1, . . . , fm of �1 with fk =∑n≥1 ak,nen. Then

max
k≤m |U(fk)| = max

k≤m
∣
∣
∑

n≥1

ak,nhn
∣
∣ ≤

∑

n≥1

max
k≤m |ak,n||hn|

and thus

∥
∥max

k≤m |U(fk)|
∥
∥

1 ≤
∑

n≥1

max
k≤m |ak,n|‖hn‖1 ≤ ‖U‖

∑

n≥1

max
k≤m |ak,n| .

Finally,
∑

n≥1 maxk≤m |ak,n| = ‖maxk≤m |fk|‖1. �
Mireille Lévy proved the following converse to Lemma 19.4.6. The proof does

not use probabilistic ideas but relies on the Hahn-Banach theorem, and we refer the
reader to [56] for it.

Lemma 19.4.7 Consider a subspace E of �1 and an operator V from E to
L1(Ω, ν). Assume that for a certain number C and any elements f1, . . . , fm of
E, we have

∥
∥max

k≤m |V (fk)|
∥
∥

1 ≤ C
∥
∥max

k≤m |fk|
∥
∥

1 . (19.151)
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Then there exists an operator U : �1 → L1(Ω, ν) such that ‖U‖ ≤ C and that the
restriction of U to E coincides with V .

Proof of Proposition 19.4.5. Since T is finite for each point t ∈ T , we have
μ({t}) = 1/ cardT . Thus, the space L1(T , μ) is isomorphic to a space �1. We
consider the span E of the elements εn in L1(T , μ), and fixing j ∈ {1, 2} on E, we
consider the operator V defined by V (εn) = ϕj,n. The plan is to prove (19.151) for
C = L(A+ B) and to use Lemma 19.4.7.

Let fk =∑n≤N ak,nεn. Thinking of (T , μ) as a probability space, and denoting
accordingly by E integration with respect to μ, we then have

S := ∥∥max
k≤m |fk |

∥
∥

1 = Emax
k≤m

∣
∣
∑

n≤N
ak,nεn

∣
∣ .

We recognize the supremum of a Bernoulli process. Setting a0,k = 0, for 0 ≤ k ≤
m, consider the sequence ak = (ak,n)n≤N . We can then use Theorem 6.2.8 to find a
set W ⊂ �2(N) with γ2(W) ≤ LS such that each sequence ak can be decomposed
as a1

k + a2
k where a1

k ∈ W and where
∑

n≤N |a2
k,n| ≤ LS. Since a0 = 0, we have

a1
0 + a2

0 = 0. We may then replace a1
k by a1

k − a1
0 and a2

k by a2
k − ak0. This replaces

W by W − a1
k so that now 0 ∈ W and consequently ‖a‖2 ≤ LS for a ∈ W . Since

V (εn) = ϕj,n, we then have

max
k≤m |V (fk)| = max

k≤m
∣
∣V
(∑

n≤N
ak,nεn

)∣
∣ ≤ I+ II , (19.152)

where

I = max
k≤m

∣
∣
∑

n≤N
a1
k,nϕj,n

∣
∣ ; II = max

k≤m
∣
∣
∑

n≤N
a2
k,nϕj,n

∣
∣ .

We will prove that

‖I‖1 ≤ LBS ; ‖II‖1 ≤ LAS . (19.153)

Combining with (19.152), this proves as desired that ‖maxk≤m |V (fk)|‖1 ≤ L(A+
B)‖ supk≤m |fk|‖1 and concludes the proof.

Since ‖ϕj,n‖∞ ≤ A by (19.147) and since
∑

n≤N |a2
k,n| ≤ LS, it follows that

‖II‖∞ ≤ LAS so that ‖II‖1 ≤ LAS. To control the term I, let us consider the
process Ya := ∑

anϕj,n so that ‖I‖1 ≤ E supa∈W |Ya|. Then (19.148) means that
the process Xa = Ya/(LB) satisfies the increment condition (2.4). Using (2.60)
together with the fact that E|Ya | ≤ LS because ‖a‖2 ≤ LS for a ∈ W , this implies
that ‖I‖1 ≤ LBS and finishes the proof of (19.153). �
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The next ingredient to Theorem 19.4.4 is a nearly magical observation. Recalling
that T = {−1, 1}N , for n ≤ N and j = 1, 2, we define on T × T the functions εjn
by ε

j
n(t

1, t2) = t
j
n where tj = (t

j
n )n≤N ∈ T .

Proposition 19.4.8 Given 0 < δ < 1, we can decompose the function F =∑
1≤n≤N ε1

nε
2
n as F = F1 + F2 in a way that

‖F1‖1 =
∫∫

|F1|dμ⊗ dμ ≤ 2/δ (19.154)

and such that for any two functions g1 and g2 on T , we have

∣
∣
∫∫

F2g1 ⊗ g2dμ⊗ dμ
∣
∣ ≤ δ‖g1‖2‖g2‖2 . (19.155)

Given a set I ⊂ {1, . . . , N}, we define the function εI on T by ε∅ = 1 and if I �= ∅
by εI (t) = ∏

n∈I tn. As I varies, the functions εI form an orthonormal basis of

L2(T , dμ). For j = 1, 2 and a set I ⊂ {1, . . . , N}, we define ε
j

I =
∏

n∈I ε
j
n so that

εI ⊗ εJ = ε1
I ε

2
J . As I and J vary, the functions ε1

I ε
2
J form an orthonormal basis of

L2(T × T , dμ⊗ dμ).

Lemma 19.4.9 The function τ :=∑I⊂{1,...,N} ε1
I ε

2
I δ

card I satisfies ‖τ‖1 = 1.

Proof Indeed, τ =∏n≤N(1+ δε1
nε

2
n) is ≥ 0 and of integral 1. �

Proof of Proposition 19.4.8. Define F1 = (τ − 1)/δ = ∑
card I≥1 ε

1
I ε

2
I δ

card I−1

so that ‖F1‖1 ≤ 2/δ by the previous lemma. Then F2 := F − F1 =
−∑card I≥2 δ

card I−1ε1
I ε

2
I . For j = 1, 2, let us decompose the function gj on T

in the basis (εI ): gj = ∑I gj,I εI . Then, g1 ⊗ g2 = ∑I,J g1,I g2,J ε
1
I ε

2
J and thus,

using the Cauchy-Schwarz inequality,

∣
∣
∫∫

F2g1 ⊗ g2dμ⊗ dμ
∣
∣ = ∣∣

∑

card I≥2

δcard I−1g1,I g2,I
∣
∣ ≤ δ

∑

card I≥2

|g1,I g2,I |

≤ δ
(∑

I

|g1,I |2
)1/2(∑

I

|g2,I |2
)1/2 = δ‖g1‖2‖g2‖2 . �

Lemma 19.4.10 Under the hypotheses of Theorem 19.4.4, consider numbers
(θn)n≤N with |θn| = 1. Then given any δ > 0, the function Φ := ∑n≤N θnϕ1,n ⊗
ϕ2,n can be written as Φ1 + Φ2 where ‖Φ1‖1 ≤ L(A + B)2/δ and where for any
functions g1, g2 on Ω ,

∣
∣
∫∫

Φ2g1 ⊗ g2dν ⊗ dν
∣
∣ ≤ Lδ(A+ B)2‖g1‖∞‖g2‖∞ . (19.156)



19.4 Sidon Sets 651

Proof We may assume that θn = 1 by replacing ϕ1,n by θnϕ1,n. Consider the
operators Uj as provided by Proposition 19.4.5. There exists an operator U1 ⊗U2 :
L1(T ×T ,μ⊗μ)→ L1(Ω×Ω, ν⊗ν) with the property that U1⊗U2(f1⊗f2) =
U1(f1) ⊗ U2(f2). This is obvious by considering first the functions f1, f2 which
are supported by a single point. This construction also shows that it has a norm
≤ ‖U1‖‖U2‖. Furthermore, Φ =∑n≤N ϕ1,n ⊗ ϕ2,n = U1 ⊗ U2(

∑
n≤N ε1

n ⊗ ε2
n).

Considering the functions F1 and F2 of Proposition 19.4.8, we set Φ1 =
U1 ⊗ U2(F1) and Φ2 = U1 ⊗ U2(F2) so that Φ = Φ1 + Φ2. Now, ‖Φ1‖1 ≤
L‖U1‖‖U2‖‖F1‖1 ≤ L(A + B)2/δ. It remains only to prove (19.156). Let U∗

j :
L∞(Ω, ν)→ L∞(T , μ) denote the adjoint of Uj . Given a functionH ∈ L1(T×T ),
the identity

∫∫

U1⊗U2(H)g1⊗ g2dν⊗ dν =
∫∫

HU∗
1 (g1)⊗U∗

2 (g2)dμ⊗ dμ (19.157)

holds because it holds when H is of the type H1 ⊗H2 and because the elements of
that type span L1(T × T ). Also, ‖U∗

j (gj )‖2 ≤ ‖U∗
j (gj )‖∞ ≤ L(A + B)‖gj‖∞.

Using (19.157) for H = F2 and (19.155) yields (19.156). �
Proof of Theorem 19.4.4. Let us fix the numbers αn and consider θn with |θn| = 1
and ᾱnθn = |αn|. Since the systems (ϕ1,n) and (ϕ2,n) are orthonormal, we have

∑

n≤N
|αn| =

∫∫

Ψ̄ Φdμ⊗ dμ , (19.158)

where Ψ̄ = ∑n≤N ᾱnϕ1,n ⊗ ϕ2,n and Φ = ∑n≤N θnϕ1,n ⊗ ϕ2,n. Let us then use
the decomposition Φ = Φ1 + Φ2 provided by Lemma 19.4.10. First,

∣
∣
∫∫

Ψ̄ Φ1dμ⊗ dμ
∣
∣ ≤ ‖Φ1‖1‖Ψ ‖∞ ≤ Lδ−1(A+ B)2‖Ψ ‖∞ .

Also, using (19.156), we have

∣
∣
∫∫

Ψ̄ Φ2dμ⊗ dμ
∣
∣ ≤

∑

n≤N
|αn|

∣
∣
∫∫

Φ2ϕ1,n ⊗ ϕ2,n
∣
∣ ≤ LδA2(A+ B)2

∑

n≤N
|αn| .

Then (19.158) yields

∑

n≤N
|αn| ≤ Lδ−1(A+ B)2‖Ψ ‖∞ + LδA2(A+ B)2

∑

n≤N
|αn| ,

from which (19.149) follows by taking δ = 1/(2LA2(A+ B)2). �



Appendix A
Discrepancy for Convex Sets

A.1 Introduction

The purpose of this appendix is to bring forward the following (equally beautiful)
close cousin of the Leighton-Shor theorem. We denote by λ3 the usual volume
measure and by (Xi)i≤N independent uniformly distributed points in [0, 1]3.

Theorem A.1.1 Consider the class C of convex sets in R
3. Then

1

L

√
N(logN)3/4 ≤ E sup

C∈C

∣
∣
∑

i≤N
(1C(Xi)− λ3(C))

∣
∣ ≤ L

√
N(logN)3/4 . (A.1)

The upper bound is proved in [113]. In this appendix, we sketch how to adapt
the lower bound machinery of Chap. 4 to the present case. The following exercise
highlights the parallels between Theorem A.1.1 and the Leighton-Shor theorem:

Exercise A.1.2 Convince yourself that as a consequence of the Leighton-Shor
theorem (A.1) holds when (Xi)i≤N are uniformly distributed points in [0, 1]2 and C
is the class of sets which are the interior of a closed curve of length ≤ 1.

Consider independent uniformly distributed points (Xi)i≤N in [0, 1]k, C a class
of subsets of [0, 1]k and define SN := E supC∈C |

∑
i≤N(1C(Xi) − λk(C))|. This

quantity is of interest when there is some constraint on the size of C. Interestingly,
the constraint in dimension k = 3 that the elements of C are convex or in dimension
k = 2 that they are the interiors of curves of length ≤ 1 yield the same rate of
growth for SN .
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A.2 Elements of Proof of the Upper Bound

Unfortunately, a complete proof of the upper bound in (A.1) requires considerable
work, not all of which is very exciting, so we will give only a very short outline
of it. The understanding of subgraphs1 of convex functions is closely related to
the understanding of convex sets. In fact, it is rather elementary to show that the
boundary of a convex set in R

3 can be broken into six pieces which are graphs of
convex 1-Lipschitz functions (defined on a subset of R2.)

It is time to recall that a twice differentiable function g on [0, 1]2 is convex if and
only if at each point we have ∂2g/∂x2 ≥ 0 and

( ∂2g

∂x∂y

)2 ≤ ∂2g

∂x2

∂2g

∂y2
. (A.2)

We denote by λ2 the two-dimensional Lebesgue measure on [0, 1]2.

Lemma A.2.1 A convex differentiable 1-Lipschitz function g on [0, 1]2 satisfies

∫
∂2g

∂x2 dλ2 ≤ 2 ;
∫

∂2g

∂y2 dλ2 ≤ 2 ;
∫ ∣
∣
∣
∂2g

∂x∂y

∣
∣
∣dλ2 ≤ 2 . (A.3)

Proof We write
∫ 1

0 ∂2g/∂x2(x, y)dx = ∂g/∂x(1, y) − ∂g/∂x(0, y) ≤ 2, and we
integrate over y ∈ [0, 1] to obtain the first part of (A.3). The second part is similar,
and the third follows from the first two parts using (A.2) and the Cauchy-Schwarz
inequality. �
An important step in the proof of Theorem A.1.1 is as follows:

Theorem A.2.2 The class C for functions [0, 1]2 → [0, 1] which satisfy (A.3) is
such that γ1,2(C) <∞.

To understand why this theorem can be true, consider first the smaller class C∗
consisting of functions which are zero on the boundary of [0, 1]2 and which satisfy
the stronger conditions ‖∂2g/∂x2‖2 ≤ L and ‖∂2g/∂y2‖2 ≤ L. Then the use of
Fourier transform shows that C∗ is isometric to a subset of the ellipsoid

∑
n,m(1 +

n4 + m4)|xnm|2 ≤ L, and Corollary 4.1.7 proves that γ1,2(C∗) < ∞. Surely, the
assumption that the function is zero on the boundary of [0, 1]2 brings only lower-
order effects. The fact that for a function in C we require only integrability of
the partial derivatives as is (A.3) (rather than square integrability for a function
of C∗) is a far more serious problem. It is solved in [113] following the same
approach as in Sect. 17.3: One shows that a function f ∈ C can be written as a sum∑

k≥0 fk where fk ∈ Ck, the class of functions g which satisfy ‖∂2g/∂x2‖∞ ≤ 2k ,
‖∂2g/∂y2‖∞ ≤ 2k and moreover λ2({g �= 0}) ≤ L2−k . One main step of the

1 Look at (4.118) if you forgot what is the subgraph of a function.
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proof is to show that the sequence (γ1,2(Ck)) decreases geometrically (in fact,
γ1,2(Ck) ≤ Lk2−k/2).

A.3 The Lower Bound

Our strategy to construct convex functions is based on the following elementary
lemma:

Lemma A.3.1 Consider a function h : [0, 1]2 → R and assume the following:

h(0, 0) = 0 = ∂h

∂x
(0, 0) = ∂h

∂y
(0, 0) , (A.4)

∥
∥
∥
∂2h

∂x2

∥
∥
∥∞ ≤ 1

16
;
∥
∥
∥
∂2h

∂y2

∥
∥
∥∞ ≤ 1

16
;
∥
∥
∥
∂2h

∂x∂y

∥
∥
∥∞ ≤ 1

16
. (A.5)

Then the function g given by

g(x, y) = 1

2
+ 1

8
(x2 + y2)+ h(x, y) (A.6)

is valued in [0, 1], and is convex.

Proof It is elementary to prove that |h(x, y)| ≤ 1/4 so that g is valued in [0, 1].
Moreover for each x, y ∈ [0, 1], we have

∂2g

∂x2 (x, y) =
1

4
+ ∂2h

∂x2 ≥
1

8

and similarly ∂2g/∂y2(x, y) ≥ 1/8, |∂2g/∂x∂y(x, y)| ≤ 1/16 so that (A.2) is
satisfied and thus g is convex. �

Thus, to construct large families of convex functions, it will suffice to construct
large families of functions satisfying (A.4) and (A.5). We will do this using a
variation on the method of Sects. 4.6 and 4.8. The control of the mixed partial
derivatives requires a more clever choice of our basic function, to which we turn
now.

Let us consider the function f on R given by f (x) = 0 unless 0 ≤ x ≤ 1,
f (0) = f ′(0) = 0, f ′′(x) ∈ {−1, 1}, f ′′(x) = 1 if 1/8 ≤ x < 3/8, 4/8 ≤ x < 5/8
or 7/8 ≤ x ≤ 1 and f ′′(x) = −1 otherwise (Fig. A.1).

We observe that f ′′(1−x) = −f ′′(x), f ′(1−x) = f ′(x), and f (1−x) = −f (x)
and also that

∫

f ′′dλ =
∫

f ′dλ =
∫

f dλ = 0 . (A.7)
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0 1

Fig. A.1 The graph of f ′

For q ≥ 1 and 1 ≤ � ≤ 2q , let us define fq,� by fq,�(x) = 2−2qf (2q(x − (� −
1)2−q)). We note right away that

fq,�(x) �= 0 ⇒ (�− 1)2−q ≤ x ≤ �2−q , (A.8)

so that at a given q , the functions fq,� have disjoint supports. Let us list some
elementary properties of these functions. We denote by λ the Lebesgue measure on
[0, 1]. The following lemma resembles Lemma 4.6.2, but the nontrivial new piece
of information is (A.17).

Lemma A.3.2 We have the following:

‖f ′′q,�‖∞ = 1 . (A.9)

‖f ′′q,�‖2
2 = 2−q . (A.10)

‖f ′q,�‖∞ ≤ 2−q−3 . (A.11)

‖f ′q,�‖2
2 = 2−3q−6/3 . (A.12)

‖fq,�‖∞ ≤ 2−2q−6 . (A.13)

‖fq,�‖2
2 ≤ 2−5q−12 . (A.14)

‖fq,�‖1 ≥ 2−q/L . (A.15)

q ′ ≥ q + 3, � ≤ 2q, �′ ≤ 2q
′ ⇒

∫

f ′′q,�f ′′q ′,�′dλ = 0 . (A.16)

q ′ ≥ q + 3, � ≤ 2q, �′ ≤ 2q
′ ⇒

∫

f ′q,�f ′q ′,�′dλ = 0 . (A.17)

Proof Only (A.16) and (A.17) are not obvious. To prove (A.16), we observe that
on the support of f ′′

q ′,�′ the function f ′′q,� is constant, so the result follows from the

obvious fact that
∫
f ′′dλ = 0. To prove (A.17), we observe that on the support of
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f ′
q ′,�′ , the function f ′q,� is affine, of the type a + bx. Since

∫
f ′dλ = 0, it suffices

to check that
∫
f ′(x)(x − 1/2)dλ(x) = 0 which follows by making the change of

variables x → 1− x and since f ′(x) = f ′(1− x). �
We consider a number r with r � logN/100. Given two functions f, g on [0, 1],

we write a usual f ⊗ g the function on [0, 1]2 given by f ⊗ g(x, y) = f (x)g(y).
We consider an integer c ≥ 3 which is designed to give us some room (just as the
integer c of Sect. 4.8). It is a universal constant which will be determined later. We
will be interested in functions of the type2

fk = 22ck−5
√
r

∑

�,�′≤2ck

zk,�,�′fck,� ⊗ fck,�′ , (A.18)

where zk,�,�′ ∈ {0, 1}.
Lemma A.3.3 Given functions fk as above for ck ≤ r and setting f =∑ck≤r fk ,
we have

∥
∥
∥
∂2f

∂x2

∥
∥
∥

2

2
≤ 2−22 ;

∥
∥
∥
∂2f

∂y2

∥
∥
∥

2

2
≤ 2−22 . (A.19)

∥
∥
∥
∂2f

∂x∂y

∥
∥
∥

2

2
≤ 2−22 . (A.20)

Proof According to (A.16), and since at a given k the functions f ′′ck,� have disjoint
supports, the functions f ′′ck,� form an orthogonal system. Thus, given any y, we have

∫ ( ∑

ck≤r

∑

�,�′≤2ck

zk,�,�′
22ck

√
r
f ′′ck,�(x)fck,�′(y)

)2
dx

=
∑

ck≤r

∑

�,�′≤2ck

z2
k,�,�′

24ck

r
‖f ′′ck,�‖2

2fck,�′(y)
2 ≤

∑

ck≤r

∑

�′≤2ck

24ck

r
fck,�′(y)

2 .

where we have used that (
∑

�′≤2ck zk,�,�′fck,�′(y))
2 = ∑

�′≤2ck z
2
k,�,�′fck,�′(y)

2

because the functions (fck,�′(y))�′≤2ck have disjoint supports, that z2
k,�,�′ ≤ 1,

and that ‖f ′′ck,�‖2
2 = 2−ck . Integrating in y and using (A.14) proves the first part

of (A.19), and the second part is identical. The proof of (A.20) is similar, using
now (A.17) and (A.12). �
To prove the lower bound, we construct numbers zq,�,�′ ∈ {0, 1} by induction over
q , for cq ≤ r . Defining fk by (A.18), our goal is that the function h = ∑cq≤r fq

2 The coefficient 2−5 is just there to ensure there is plenty of room.
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satisfies (A.4) and (A.5) while for the corresponding (convex!) function (A.6), there
is an excess of points under the graph of this function. After we construct fq , we
define a dangerous square as a c(q + 1)-square which contains a point where one of
the second-order partial derivatives of f has an absolute value≥ 1/32. Using a bit of
technical work in the spirit of Lemma 4.6.7 (which does not use any tight estimate),
it automatically follows from Lemma A.3.3 that at most, 1/2 of the c(q+1)-squares
are dangerous. It is also crucial to observe that the family of dangerous squares is
entirely determined by fq . We ensure that the function hq =∑k≤q fk satisfies (A.4)
and (A.5) as follows: When choosing zq+1,�,�′ , we take this quantity to be 0 if the
corresponding c(q + 1)-square is dangerous. If it is not, we choose zq+1,�,�′ = 1 if
and only if by doing so we increase the number of points Xi in the subgraph of the
function gq := 1/2+ (x2+y2)/8+hq , and otherwise, we choose zq+1,�,�′ = 0. Let
us estimate this increase. Denoting by S(g) the subgraph of a function g, consider
the regions A+ = S(gq + h̃) \ S(gq) and A− = S(gq) \ S(gq + h̃) where h̃ =
afc(q+1),� ⊗ fc(q+1),�′ for a = 22c(q+1)−5/

√
r . Let N± = card{i ≤ N;Xi ∈ A±}.

Thus, by choosing zq+1,�,�′ = 1, we increase the number of points in the subgraph
by N+ − N−. Now since h̃ is of average zero, we have λ3(A+) = λ3(A−), and
this volume is ≥ V := 2−4c(q+1)/(L

√
r). We can then expect that with probability

≥ 1/4, we will have N+−N− ≥
√
NV /L ≥ √N2−2c(q+1)/(Lr1/4). The key point

is to show that this will happen for at least a fixed proportion of the possible choices
of � and �′ because if this is the case at each step of the construction, we increase the
number of points Xi in the subgraph of gq by at least

√
N/(Lr1/4), and in r/c steps,

we reach the required excess number r3/4
√
N/L of points Xi in this subgraph.

Let us detail the crucial step, showing that with high probability, a fixed
proportion of the possible choices works. Let us say that a c(q + 1)-square is
safe if it is not dangerous and is favorable if (with the notation above) we have
N+ − N− ≥ √

NV /L ≥ √
N2−2c(q+1)/(Lr1/4). Our goal is to show that with

probability close to 1, a proportion at least 1/16 of the c(q + 1)-squares are both
safe and favorable.3 The argument for doing this is a refinement of the arguments
given at the end of Sect. 4.8. For each k ≤ q , there are 22ck numbers zk,�,�′ to

choose, for a number 222ck
of possible choices. As k ≤ q varies, this gives a

total number of at most 2
∑

k≤q 22ck
choices for the function fq and therefore for

the family of safe c(q + 1) squares. Using poissonization, given any family of
c(q + 1)-squares of cardinality M , the probability that less than M/8 are favorable
is ≤ exp(−βM), where β is a universal constant (see (4.98)). The family of
safe c(q + 1)-squares has cardinality M ≥ 22(q+1)c−1 so that for this family,
this probability is ≤ exp(−βM) ≤ exp(−β22(q+1)c−1). The probability that this
happens for at least one of the at most 2L2cq possible families of safe c(q + 1)-
squares is then at most 22cq(L−β22c−1). Choosing the constant c such that β22c−1

is large enough, it is almost certain that for each of the possible families of safe
c(q+1)-squares, at least a proportion of 1/8 of its c(q+1)-squares will be favorable.

3 One difficulty being that the previous steps of the construction as well as the set of dangerous
c(q + 1)-squares depend on the Xi .



Appendix B
Some Deterministic Arguments

B.1 Hall’s Matching Theorem

Proof of Proposition 4.3.2. Let us denote by a the quantity sup
∑

i≤N(wi + w′i ),
where the supremum is taken over the families (wi)i≤N , (w′i )i≤N which sat-
isfy (4.28), that is, wi + w′j ≤ cij for all i, j ≤ N . For families (wi)i≤N , (w′i )i≤N
satisfying (4.28), then for any permutation π of {1, . . . , N}, we have

∑

i≤N
ciπ(i) ≥

∑

i≤N
(wi +w′i )

and taking the supremum over the values of wi and w′i , we get

∑

i≤N
ciπ(i) ≥ a ,

so that M(C) ≥ a.
The converse relies on the Hahn-Banach theorem. Consider the subset C of

R
N×N that consists of the vectors (xij )i,j≤N for which there exists numbers

(wi)i≤N and (w′i )i≤N such that

∑

i≤N
(wi + w′i ) > a (B.1)

∀i, j ≤ N , xij ≥ wi +w′j . (B.2)
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Then by definition of a, we have (cij )i,j≤N �∈ C. It is obvious that C is an open
convex subset of RN×N . Thus, we can separate the point (cij )i,j≤N from C by a
linear functional, that is, we can find numbers (pij )i,j≤N such that

∀(xij ) ∈ C ,
∑

i,j≤N
pij cij <

∑

i,j≤N
pij xij . (B.3)

By definition of C, it is obvious that if (xij ) ∈ C and yij ≥ 0, then (xij +yij ) ∈ C.
In particular (B.2) remains true when one replaces xij by xij + yij . This implies
that pij ≥ 0 for each i, j . Furthermore, because of the strict inequality in (B.3),
not all the numbers pij are 0. Thus, there is no loss of generality to assume that∑

i,j≤N pij = N . Consider families (wi)i≤N , (w′i )i≤N that satisfy (B.1). Then if
xij = wi +w′j , the point (xij )i,j≤N belongs to C, and using (B.3) for this point, we
obtain

∑

i,j≤N
pij cij <

∑

i,j≤N
pij (wi + w′j ) . (B.4)

This holds whenever the numbers (wi) and (w′i ) satisfy (B.1). Considering numbers
(yi)i≤N with

∑
i≤N yi = 0, the numbers (wi + yi) and (w′i ) satisfy (B.1), and

from (B.4), we have

∑

i,j≤N
pij cij <

∑

i,j≤N
pij (wi + yi +w′j )

=
∑

i,j≤N
pij (wi +w′j )+

∑

i≤N
yi
(∑

j≤N
pij

)
. (B.5)

This inequality holds whenever
∑

i≤N yi = 0 so that replacing yi by λyi for λ ∈ R,
the previous inequality remains true. Therefore, the last term in (B.5) must be 0. We
have shown that

∑

i≤N
yi = 0 ⇒

∑

i≤N
yi
(∑

j≤N
pij

) = 0 ,

and this forces in turn all the sums
∑

j≤N pij to be equal. Since
∑

i,j≤N pij = N ,
we have

∑
j≤N pij = 1, for all i. Similarly, we have

∑
i≤N pij = 1 for all j , that

is, the matrix (pij )i,j≤N is bistochastic. Thus (B.4) becomes

∑

i,j≤N
pij cij ≤

∑

i≤N
(wi +w′i )

so that
∑

i,j≤N pij cij ≤ a. The set of bistochastic matrices is a convex set, so the
infimum of

∑
i,j≤N pij cij over this convex set is obtained at an extreme point. The

extreme points are of the type pij = 1{π(i)=j} for a permutation π of {1, . . . , N} (a
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classical result known as Birkhoff’s theorem) so that we can find such a permutation
with

∑
i≤N ciπ(i) ≤ a. �

Proof of Hall’s Marriage Lemma We set cij = 0 if j ∈ A(i) and cij = 1
otherwise. Using the notations of Proposition 4.3.2, we aim to prove that M(C) = 0.
Using (4.27), it suffices to show that given numbers ui(= −wi) , vi(= w′i ), we have

∀i,∀j ∈ A(i) , vj ≤ ui ⇒
∑

i≤N
vi ≤

∑

i≤N
ui . (B.6)

Adding a suitable constant, we may assume vi ≥ 0 and ui ≥ 0 for all i, and thus

∑

i≤N
ui =

∫ ∞

0
card{i ≤ N ; ui ≥ t}dt (B.7)

∑

i≤N
vi =

∫ ∞

0
card{i ≤ N ; vi ≥ t}dt . (B.8)

Given t , using (4.33) for I = {i ≤ N ; ui < t} and since vj ≤ ui if j ∈ A(i),
we obtain

card{j ≤ N ; vj < t} ≥ card{i ≤ N ; ui < t}

and thus

card{i ≤ N ; ui ≥ t} ≤ card{i ≤ N ; vi ≥ t} .

Combining with (B.7) and (B.8), this proves (B.6). �

B.2 Proof of Lemma 4.7.11

Consider the subset L∗ of L consisting of the functions f for which f (1/2) = 0.
To f ∈ L∗, we associate the curve W(f ) traced out by the map

u �→
(
τ 1 + 2k+1f

(u

2

)
, τ 2 + 2k+1f

(u+ 1

2

))
,

where (τ 1, τ 2) = τ . A curve in C(τ, k) can be parameterized, starting at τ and
moving at speed 1 along each successive edges so that it is the range of a map
of the type t �→ τ + ϕ(t) where ϕ is a 1-Lipschitz map from [0, 2k] to R

2 with
ϕ(0) = 0 = ϕ(2k). Denoting by g0 and g1 the components of ϕ, the curve is
therefore the range of a map of the type t �→ (τ 1 + g0(t), τ

2 + g1(t)) where g0
and g1 are 1-Lipschitz maps from [0, 2k] to R with g0(0) = g1(0) = g0(2k) =
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g1(2k) = 0. Considering the function f on [0, 1] given by f (u) = 2−k−1g0(2k+1u)

for u ≤ 1/2 and f (u) = 2−k−1g1(2k+1(u − 1/2)) for 1/2 ≤ u ≤ 1 proves that
C(τ, k) ⊂ W(L∗). We set T = W−1(C(τ, k)). Consider f0 and f1 in T and the map
h : [0, 1]2 → [0, 1]2 given by

h(u, v) =
(

τ 1 +2k+1
(
vf0
(u

2

)+ (1− v)f1
(u

2

))
,

τ 2 +2k+1
(
vf0
(1+ u

2

)+ (1− v)f1
(1+ u

2

))
)

.

The area of h([0, 1]2) is at most
∫∫
[0,1]2 |Jh(u, v)|dudv, where Jh is the Jacobian

of h, and a straightforward computation gives

Jh(u, v) = 22k+1
((

vf ′0
(u

2

)+ (1− v)f ′1
(u

2
)
)(

f0
(1+ u

2

)− f1
(1+ u

2

))

−
(
vf ′0
(1+ u

2

)+ (1− v)f ′1
(1+ u

2

))(
f0
(u

2

)− f1
(u

2

))
)

,

so that since |f ′0| ≤ 1 , |f ′1| ≤ 1,

|Jh(u, v)| ≤ 22k+1
(∣
∣
∣f0
(u

2

)− f1
(u

2

)∣∣
∣+
∣
∣
∣f0
(1+ u

2

)− f1
(1+ u

2

)∣∣
∣

)

.

The Cauchy-Schwarz inequality implies

∫ ∫

|Jh(u, v)|dudv ≤ L22k‖f0 − f1‖2 . (B.9)

If x does not belong to the range of h, both curves W(f0) and W(f1) “turn the
same number of times around x”. This is because “the number of times the closed
curve u �→ h(u, v) turns around x” is then a continuous function of v, and since
it is integer valued, it is constant. In particular, it takes the same value for v = 0

and v = 1. Consequently, either x ∈ o

W(f0) ∩
o

W(f1) or x �∈ o

W(f0) ∪
o

W(f1).

Thus, the range of h contains the symmetric difference
o

W(f0)�
o

W(f1), and (B.9)
implies (4.115). �

B.3 The Shor-Leighton Grid Matching Theorem

Let us say that a simple curve C traced on G is a chord if it is the range of [0, 1]
by a continuous map ϕ where ϕ(0) and ϕ(1) belong to the boundary of [0, 1]2. If C
is a chord, ]0, 1[2\C is the union of two regions R1 and R2, and (assuming without
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loss of generality that no point Xi belongs to G),

∑

i≤N

(
1R1(Xi)− λ(R1)

) = −
∑

i≤N

(
1R2(Xi)− λ(R2)

)
.

We define

D(C) = ∣∣
∑

i≤N
(1R1(Xi)− λ(R1))

∣
∣ = ∣∣

∑

i≤N
(1R2(Xi)− λ(R2))

∣
∣ .

If C is a chord, “completing C by following the boundary of [0, 1]2” produces a

closed simple curve C′ on G such that either R1 =
o

C′ or R2 =
o

C′. The length we
add along each side of the boundary is less or equal than the length of the chord itself
so that �(C′) ≤ 3�(C). Thus, the following is a consequence of Theorem 4.7.2:

Theorem B.3.1 With probability at least 1−L exp(−(logN)3/2/L), for each chord
C, we have

D(C) ≤ L�(C)
√
N(logN)3/4 . (B.10)

Proof of Theorem 4.7.1. Consider a number �2 < �1 to be determined later, and the
grid G′ ⊂ G of mesh width 2−�2 . (This is the slightly coarser grid we mentioned on
page 153.)

A union of squares of G′ is called a domain. Given a domain R, we denote by R′
the union of the squares of G′ such that at least one of the four edges that form their
boundary is entirely contained in R (recall that squares include their boundaries).
The main argument is to establish that if (4.103) and (B.10) hold, and provided �2
has been chosen appropriately, then for any choice of R, we have

Nλ(R′) ≥ card{i ≤ N ; Xi ∈ R} . (B.11)

We will then conclude with Hall’s Marriage Lemma. The basic idea to prove (B.11)
is to reduce to the case where R is the closure of the interior of a simple closed
curve minus a number of “holes” which are themselves the interiors of simple closed
curves.

Let us say that a domain R is decomposable if R = R1∪R2 where R1 and R2 are
non-empty unions of squares of G′ and when every square of G′ included in R1 has
at most one vertex belonging to R2. (Equivalently, R1 ∩ R2 is finite.) We can write
R = R1 ∪ . . . ∪Rk where each Rj is undecomposable (i.e., not decomposable) and
where any two of these sets have a finite intersection. This is obvious by writing R as
the union of as many domains as possible, under the condition that the intersection
of any of two of these domains is finite. Then each of them must be undecomposable.
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We claim that

1

4

∑

�≤k
λ(R′�\R�) ≤ λ(R′\R) . (B.12)

To see this, let us set S� = R′�\R� so that by definition of R′�, S� is the union
of the squares D of G′ that have at least one of the edges that form their boundary
contained in R� but are not themselves contained in R�. Obviously, we have S� ⊂
R′. When � �= �′, the sets R� and R�′ have a finite intersection so that a square D
contained in S� cannot be contained in R�′ , since it has an entire edge contained in
R�. Since D is not contained in R� either, it is not contained in R. Thus, the interior
of D is contained in R′\R, and since this is true for any square D of S� and any
� ≤ k, we have

λ
(⋃

�≤k
S�

)
≤ λ(R′\R) .

Moreover, a given square D of G′ can be contained in a set S� for at most four
values of � (one for each of the edges of D) so that

∑

�≤k
λ(R′� \ R�) =

∑

�≤k
λ(S�) ≤ 4λ

(⋃

�≤k
S�

)
.

This proves (B.12).
To prove that (B.11) holds for any domain R, it suffices to prove that when R is

an undecomposable domain, we have (pessimistically)

N

4
λ(R′\R) ≥ card{i ≤ N ; Xi ∈ R} −Nλ(R) . (B.13)

Indeed, writing (B.13) for R = R�, summing over � ≤ k and using (B.12)
implies (B.11).

We turn to the proof of (B.13) when R is an undecomposable domain. The
boundary S of R is a subset of G′. Inspection of the cases shows that:

If a vertex τ of G′ belongs to S, either 2 or 4 of (B.14)

the edges of G′ incident to τ are contained in S.

Next, we show that any subset S of G′ that satisfies (B.14) is a union of closed
simple curves, any two of them intersecting only at vertices of G′. (This is simply the
decomposition into cycles of Eulerian graphs.) To see this, it suffices to construct a
closed simple curve C contained in S, to remove C from S and to iterate, since S\C
still satisfies (B.14). The construction goes as follows. Starting with an edge τ1τ2 in
S, we find successively edges τ2τ3, τ3τ4, . . . with τk �= τk−2, and we continue the
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construction until the first time τk = τ� for some � ≤ k−2 (in fact � ≤ k−3). Then
the edges τ�τ�+1, τ�+1τ�+2, . . . , τk−1τk define a closed simple curve contained in S.

Thus, the boundary of an undecomposable domain R is a union of closed simple
curves C1, . . . , CK , any two of them having at most a finite intersection.

We next show that for each �, the set R is either contained in the closure C∗� of
o

C�

(so that C� is then the “outer boundary” of R) or else
o

C�∩R = ∅ (in which case
o

C�

is “a hole” in R). Let us fix � and assume otherwise that
o

C� ∩ R �= ∅ and R �⊂ C∗� .
We will show that this contradicts the fact that R is undecomposable. Consider the
domain R1 which is the union of the squares of G′ that are contained in R but not
in C∗� so that R1 is not empty by hypothesis. Consider also the domain R2 that is

the union of the squares of G′ contained in R whose interiors are contained in
o

C�.

Then R2 is not empty either. Given a square of G′, and since
o

C� is the interior of

C∗� , either its interior is contained in
o

C� or else the square is not contained in C∗� .
This proves that R = R1 ∪ R2. Next, we show that the domains R1 and R2 cannot
have an edge of the grid G′ in common. Assuming for contradiction that such an
edge exists, it is an edge of exactly two squares A and B of G′. One of these squares
is a subset of R1, and the other is a subset of R2. Thus, the edge must belong to C�

for otherwise A and B would be “on the same side of C�”, and they would both be
subsets of R1 or both subsets of R2. Next, we observe that this edge cannot be on
the boundary of R because both A and B are subsets of R. This contradicts the fact
that C� is contained in the boundary of R, therefore proving that R1 and R2 cannot
have an edge in common. Since R = R1 ∪ R2, this in turn would imply that R is
decomposable, contradicting our assumption.

If C� is an outer boundary of R, then R ⊂ C∗� , and consequently for each �′,
we have C∗

�′ ⊂ C∗� . Thus, C�′ is an outer boundary of R, then C∗� = C∗� , so that
C� = C�′ , contradicting the fact that these two curves have a finite intersection.

Thus, without loss of generality, we may assume that C1 is the only outer

boundary of R, and that for 2 ≤ � ≤ K , we have R ∩ o

C� = ∅. The goal now
is to prove that

R = C∗1\
⋃

2≤�≤k

o

C� . (B.15)

It is obvious that R ⊂ C∗1\
⋃

2≤�≤k
o

C� so that we have to show that D :=
(C∗1\

⋃
2≤�≤k

o

C�) \ R is empty. We assume for contradiction that D is not empty.
Consider a square A of G′ which is contained in D, and a square A′ of G′ which
has an edge in common with A. First, we claim that A′ ⊂ C∗1 . Otherwise, A and
A′ would have to be on different sides of C1, which means that their common edge
has to belong to C1 and hence to the boundary of R. This is impossible because
neither A nor A′ is then a subset of R. Indeed in the case of A′, this is because we
assume that A′ �⊂ C∗1 , and in the case of A, this is because we assume that A ⊂ D.
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Exactly, the same argument shows that the interior of A′ cannot be contained in
o

C�

for 2 ≤ � ≤ k. Indeed then, A and A′ would be on different sides of C� so that
their common edge would belong to C� and hence to the boundary of R, which is
impossible since neither A nor A′ is a subset of R. We have now shown that A and
A′ lie on the same side of each curve C� so that their common edge cannot belong
to the boundary of R, and since A is not contained in R, this is not the case of A′
either. Consequently, the definition of D shows that A′ ⊂ D, but since A was an
arbitrary square contained in D, this is absurd and completes the proof that D = ∅
and of (B.15).

Let R∼� be the union of the squares of G′ that have at least one edge contained in
C�. Thus, as in (B.12), we have

∑

�≤k
λ(R∼� \R) ≤ 4λ(R′\R)

and to prove (B.13), it suffices (recalling that we assume that no point Xi belongs
to G) to show that for each 1 ≤ � ≤ k, we have

∣
∣ card

{
i ≤ N ; Xi ∈

o

C�

}− λ(
o

C�)
∣
∣ ≤ N2−4λ(R∼� \R) . (B.16)

For � ≥ 2 , C� does not intersect the boundary of [0, 1]2. Each edge contained
in C� is in the boundary of R. One of the two squares of G′ that contain this edge
is included in R∼� \R and the other in R. Since a given square contained in R∼� \R
must arise in this manner from one of its four edges, we have

λ(R∼� \R) ≥
1

4
2−�2�(C�) . (B.17)

On the other hand, (4.103) implies

∣
∣ card

{
i ≤ N ; Xi ∈

o

C�

}− λ(
o

C�)
∣
∣ ≤ L�(C�)

√
N(logN)3/4 . (B.18)

Assuming

2−�2 ≥ 26L√
N
(logN)3/4 , (B.19)

where L is the constant of (B.18), we have, using (B.17) in the last inequality,

L�(C�)
√
N(logN)3/4 ≤ 2−�2−6N�(C�) ≤ N2−4λ(R∼� \R)

and (B.16) follows.
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When � = 1, (B.17) need not be true because parts of C1 might be traced on the
boundary of [0, 1]2. In that case, we simply decompose C1 into a disjoint union of
chords and of parts of the boundary of [0, 1]2 to deduce (B.16) from (B.10).

Thus, we have proved that (4.103) and (B.10) imply (B.11) provided that (B.19)
holds. Next, for a domain R, we denote by R∗ the set of points which are within
distance 2−�2 of R′, and we show that, provided

2−�2 ≥ 20√
N

(B.20)

we have

card{i ≤ N ; Yi ∈ R∗} ≥ Nλ(R′) . (B.21)

This is simply because since the sequence Yi is evenly spread, the points Yi are
centers of disjoint rectangles of area 1/N and diameter ≤ 20/

√
N . There are at

least Nλ(R′) points Yi such that the corresponding rectangle intersects R′ (because
the union of these rectangles cover R′) and (B.20) implies that these little rectangles
are entirely contained in R∗. Therefore (B.11) and (B.21) imply

card{i ≤ N ; Yi ∈ R∗} ≥ card{i ≤ N ; Xi ∈ R} . (B.22)

Next, consider a subset I of {1, . . . , N} and let R be the domain that is the union
of the squares of G′ that contain at least a point Xi , i ∈ I . Then, using (B.22),

card I ≤ card{i ≤ N ; Xi ∈ R} ≤ card{i ≤ N ; Yi ∈ R∗} . (B.23)

A point of R′ is within distance 2−�2 of a point of R. A point of R∗ is within distance
2−�2+1 of a point of R. A point of R is within distance

√
2 · 2−�2 ≤ 2−�2+1 of a

point Xi with i ∈ I . Consequently, each point of R∗ is within distance ≤ 2−�2+2 of
a point Xi with i ∈ I . Therefore, if we define

A(i) = {j ≤ N ; d(Xi, Yj ) ≤ 2−�2+2} ,

we have proved that {j ≤ N; Yj ∈ R∗} ⊂ ⋃i∈I A(i), and combining with (B.23)
that

card
⋃

i∈I
A(i) ≥ card I .

Hall’s Marriage Lemma (Corollary 4.3.5) then shows that we can find a matching
π for which π(i) ∈ A(i) for any i ≤ N so that by definition of A(i)

sup
i≤N

d(Xi, Yπ(i)) ≤ 2−�2+2 ≤ L√
N
(logN)3/4 ,
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by taking for �2 the largest integer that satisfies (B.19) and (B.20). Since this is true
whenever (4.103) and (B.10) occur, the proof of (4.101) is complete. �

B.4 End of Proof of Theorem 17.2.1

The most difficult point is to ensure that the functions h1R satisfy (17.47). In fact,
rather than (17.47), we shall prove that

∀(k, �) ∈ R , |h(k, �)| ≤ L(k2 − k1) , (B.24)

which suffices by homogeneity.
For j ≤ q ≤ p, we consider the partition D(q) of G consisting of all the sets of

the type

{a2q + 1, . . . , (a + 1)2q} × {b2q−j + 1, . . . , (b + 1)2q−j } , (B.25)

where a and b are integers with 0 ≤ a < 2p−q and 0 ≤ b < 2p−q+j . For 3 ≤ q ≤ j ,
we define D(q) as the partition consisting of all the sets of the type

{a2q + 1, . . . , (a + 1)2q} × {b} (B.26)

where 0 ≤ a < 2p−q and 1 ≤ b ≤ 2p.
We observe that if q ′ > q , R′ ∈ D(q ′) and R ∈ D(q), then either R ⊂ R′ or

R ∩ R′ = ∅.
Fixing a function h ∈ Hj (22p−j ), we consider the set C = {(k, �); h(k, �) �= 0}

so cardC ≤ 22p−j . We proceed to the following construction. Keeping in mind
that the sequence (D(q)) of partitions increases so that D(p) consists of the largest
rectangles, we first consider the set U(p) that is the union of all rectanglesR ∈ D(p)

such that

card(R ∩ C) ≥ 1

8
cardR . (B.27)

Then we consider the union U(p − 1) of all the rectangles R ∈ D(p − 1) that are
not contained in U(p) and that satisfy (B.27), and we continue in this manner until
we construct U(3). Since the sets U(p) , . . . , U(3) are disjoint and each is a union
of disjoint sets satisfying (B.27), we get

∑

3≤q≤p
cardU(q) ≤ 8 cardC ≤ 22p−j+3 . (B.28)
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Moreover

C ⊂
⋃

1≤q≤p
U(q) . (B.29)

This is simply because if (k, �) ∈ C and (k, �) ∈ R ∈ D(3), then if (k, �) �∈⋃
q≥4 U(q), we have R ⊂ U(3) since (B.27) holds because card R = 8. We also

note that

R ∈ D(q) , q ≤ p − 1 , R ⊂ U(q)⇒ card(R ∩ C) ≤ 1

2
cardR . (B.30)

Indeed, if R′ ⊃ R and R′ ∈ D(q + 1), then cardR′ ≤ 4 cardR. Since R ⊂ U(q),
we have R′ �⊂ U(q + 1) so that

card(R ∩ C) ≤ card(R′ ∩ C) ≤ 1

8
card R′ ≤ 1

2
cardR .

Now (B.29) implies

h =
∑

h1R , (B.31)

where the summation is over 3 ≤ q ≤ p , R ∈ D(q) and R ⊂ U(q). Writing R =
{k1, . . . , k2}×{�1, . . . , �2} as in Proposition 17.3.2, we observe by construction that,
first, (17.43) holds for q ≥ j and that the function h1R satisfies (17.44) to (17.46);
second, that (17.49) holds for 3 ≤ q ≤ j , and the function h1R then satisfies (17.50)
to (17.52).

We turn to the proof of (B.24). We start with the typical case, R ∈ D(q) , 3 ≤
q < p. Then (B.30) implies that there exists (k0, �0) ∈ R with h(k0, �0) = 0,
and (17.39) implies, using also (17.43),

|h(k, �)| = |h(k, �)− h(k0, �0)| ≤ |h(k, �)− h(k, �0)| + |h(k, �0)− h(k0, �0)|
≤ 2j |�− �0| + |k − k0| ≤ 2(k2 − k1) ,

and this proves (B.24).
Next, we consider the case q = p so that R ∈ D(p) and R = {1, . . . , 2p} ×

{b2p−j + 1, . . . , (b + 1)2p−j }. Given an integer r , define

R̃ = G ∩ ({1, . . . , 2p} × {b2p−j + 1− r, . . . , (b + 1)2p−j + r}) .

Then, for r ≤ 2p, we have

card({b2p−j + 1− r, . . . , (b + 1)2p−j + r} ∩ {1, . . . , 2p}) ≥ r/2 .
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Thus card R̃ ≥ 2pr/2 so that if 2pr > 22p−j+1, then card R̃ > 22p−j , and therefore,
R̃ contains a point (k, �′) with h(k, �′) = 0. Then R contains a point (k, �) with
|�− �′| ≤ r so that the second part of (17.39) implies

|h(k, �)| ≤ r2j .

Assuming that we choose r as small as possible with 2pr > 22p−j+1, we then have

|h(k, �)| ≤ L22p−j2−p2j ≤ L2p ,

and (17.39) shows that this remains true for each point (k, �) of R, completing the
proof of (B.24).

Consequently for R ∈ D(q), R ⊂ U(q) and j ≤ q ≤ p, we can use (17.48),
which implies

∣
∣
∣
∑

i≤N
(h1R(Ui)−

∫

h1Rdμ)
∣
∣
∣ ≤ L

√
pm0 2j/2 cardR . (B.32)

Moreover for 3 ≤ q ≤ j , this inequality remains true from (17.53). Recall-
ing (B.31), summation of these inequalities over R ∈ D(q) , R ⊂ U(q)

yields (17.55) and completes the proof. �

B.5 Proof of Proposition 17.3.1

In this section, we prove Proposition 17.3.1. We will denote by I an interval of
{1, . . . , 2p}, that is a set of the type

I = {k ; k1 ≤ k ≤ k2} .

Lemma B.5.1 Consider a map f : {1, . . . , 2p} → R
+, a number a > 0 and

A =
{
� ; ∃I , � ∈ I ,

∑

�′∈I
f (�′) ≥ a card I

}
.

Then

cardA ≤ L

a

∑

�∈A
f (�) .
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Proof This uses a discrete version of the classical Vitali covering theorem (with the
same proof). Namely, a family I of intervals contains a disjoint family I ′ such that

card
⋃

I∈I
I ≤ L card

⋃

I∈I ′
I = L

∑

I∈I ′
card I .

We use this for I = {I ;∑�′∈I f (�′) ≥ a card I } so that A =⋃I∈I I and cardA ≤
L
∑

I∈I ′ card I . Since
∑

�′∈I f (�′) ≥ a card I for I ∈ I ′, and since the intervals of
I ′ are disjoint and contained in A, we have a

∑
I∈I ′ card I ≤∑�′∈A f (�′). �

Proof of Proposition 17.3.1. We consider h ∈ H, and for j ≥ 2, we define

B(j) =
{
(k, �) ∈ G ; ∃I , � ∈ I ,

∑

�′∈I
|h(k, �′ + 1)− h(k, �′)| ≥ 2j card I

}
.

We claim that when r, s, � ≤ 2p, then

(r, s) �∈ B(j)⇒ |h(r, �)− h(r, s)| ≤ 2j |�− s| . (B.33)

To see this, assuming for specificity that s < �, we note that

|h(r, �)− h(r, s)| ≤
∑

�′∈I
|h(r, �′ + 1)− h(r, �′)| < 2j card I

where I = {s, s + 1, . . . , �− 1}, and where the last inequality follows from the fact
that s ∈ I and (r, s) �∈ B(j).

Now we use Lemma B.5.1 for each k, for the function fk(�) = |h(k, � + 1) −
h(k, �)| and for a = 2j . Summing over k, we obtain

cardB(j) ≤ L

2j
∑

(k,�)∈B(j)
|h(k, �+ 1)− h(k, �)| .

Now (17.14) implies
∑

k,� |h(k, �+ 1)− h(k, �)| ≤ 22p, and therefore, we get

cardB(j) ≤ L122p−j . (B.34)

We consider the smallest integer j0 such that L12−j0 < 1/4 so that L1 ≤ 2j0−2, and
hence for j ≥ j0, we have

cardB(j) ≤ 22p−j+j0−2 , (B.35)

and in particular B(j) �= G. For j ≥ j0, we define

gj (k, �) = min
{
h(r, s) + |k − r| + 2j |�− s| ; (r, s) �∈ B(j)

}
.
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The idea here is that gj is a regularization of h. The larger the j , the better the gj
approximates h, but this comes at the price that the larger the j , the less regular the
gj is. We will simply use these approximations to write

h = gj0 + (gj0+1 − gj0)+ · · ·

to obtain the desired decomposition (17.41).
It is obvious that for (k, �) �∈ B(j), we have gj (k, �) ≤ h(k, �) and that

|gj (k + 1, �)− gj (k, �)| ≤ 1 (B.36)

|gj (k, �+ 1)− gj (k, �)| ≤ 2j , (B.37)

since gj is the minimum over (s, t) �∈ B(j) of the functions (k, �) �→ h(r, s)+ |k−
r| + 2j |�− s| that satisfy the same properties. Consider (r, s) �∈ B(j). Then (B.33)
yields

|h(r, �)− h(r, s)| ≤ 2j |�− s| ,

while the first part of (17.39) yields

|h(r, �)− h(k, �)| ≤ |k − r| ,

and thus, we have proved that

(r, s) �∈ B(j)⇒ |h(k, �)− h(r, s)| ≤ |k − r| + 2j |�− s| . (B.38)

This implies that gj (k, �) ≥ h(k, �) for all (k, �) ∈ G. Consequently, since we
already observed that gj (k, �) ≤ h(k, �) for (k, �) �∈ B(j), we have proved that

(k, �) �∈ B(j)⇒ gj (k, �) = h(k, �) . (B.39)

We define h1 = gj0 so that h1 ∈ LH1 by (B.36) and (B.37). For j > 1, we define
hj = gj+j0−2 − gj+j0−1. By (B.39), and since B(j + j0 − 1) ⊂ B(j + j0 − 2), for
(k, �) �∈ B(j + j0 − 2), we have gj+j0−2(k, �) = h(k, �) = gj+j0−1(k, �) so that
hj (k, �) = 0. Consequently,

hj (k, �) �= 0 ⇒ (k, �) ∈ B(j + j0 − 2) ,

and thus, from (B.35) that

card{(k, �) ; hj (k, �) �= 0} ≤ 22p−j .

Combining with (B.36) and (B.37), we obtain hj ∈ LHj (22p−j ).
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Now for j > 2p, we have B(j) = ∅ (since for each k and �, we have |h(k, � +
1) − h(k, �)| ≤ 22p by (17.14)) so that then gj = h from (B.39). Consequently,
hj = 0 for large j and thus h =∑j≥1 hj . �

B.6 Proof of Proposition 17.2.4

The next lemmas prepare for the proof of Proposition 17.2.4.

Lemma B.6.1 Consider numbers (vk)k≤2p and (v′k)k≤2p . We define

g(k) = inf
{
vr + |k − r | ; 1 ≤ r ≤ 2p

} ; g′(k) = inf
{
v′r + |k − r | ; 1 ≤ r ≤ 2p

}
.

(B.40)

Then

∑

k≤2p
|g(k)− g′(k)| ≤

∑

k≤2p

(
vk + v′k − g(k)− g′(k)+ |vk − v′k |

)
. (B.41)

Proof Obviously, g(k) ≤ vk and g′(k) ≤ v′k . If g′(k) ≥ g(k), then

g′(k)− g(k) ≤ v′k − g(k) = v′k − vk + vk − g(k)

≤ |v′k − vk| + vk − g(k)+ v′k − g′(k) .

A similar argument when g(k) ≥ g′(k) and summation finish the proof. �
We consider numbers u(k, �) for (k, �) ∈ G, and h(k, �) as in (17.31). We set

v(k, �) = min{u(k, s) ; |�− s| ≤ 1} , (B.42)

so that

h(k, �) = inf
{
v(r, �)+ |k − r| ; 1 ≤ r ≤ 2p

}
. (B.43)

We observe that v(k, �) ≤ u(k, �). We lighten notation by writing n(k, �) for n(τ)
when τ = (k, �).

Lemma B.6.2 We have

m0

∑

k≤2p,�<2p
|v(k, �+ 1)− v(k, �)| ≤ 10

∑

k,�≤2p
n(k, �)(u(k, �)− v(k, �)) .

(B.44)
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Proof We observe that |a − b| = a + b − 2 min(a, b) and that

v(k, �) ≤ min(u(k, �+ 1), u(k, �))

v(k, � + 1) ≤ min(u(k, �+ 1), u(k, �)) .

Thus

|u(k, �+ 1)− u(k, �)| = u(k, �)+ u(k, �+ 1)− 2 min(u(k, �+ 1) , u(k, �))

≤ u(k, �)− v(k, �)+ u(k, �+ 1)− v(k, �+ 1) .

By summation, we get

∑

k≤2p,�<2p
|u(k, �+ 1)− u(k, �)| ≤ 2

∑

k,�≤2p
(u(k, �)− v(k, �))

and since m0 ≤ n(k, �) for (k, �) ∈ G by (17.9)

m0

∑

k≤2p,�<2p
|u(k, �+1)−u(k, �)| ≤ 2

∑

k,�≤2p
n(k, �)(u(k, �)−v(k, �)) . (B.45)

Now

|v(k, �)− u(k, �)| ≤ |u(k, �+ 1)− u(k, �)| + |u(k, �− 1)− u(k, �)|

so that

|v(k, �+ 1)− v(k, �)| ≤ |v(k, �+ 1)− u(k, �+ 1)| + |u(k, �+ 1)− u(k, �)|
+ |u(k, �)− v(k, �)|
≤ |u(k, �− 1)− u(k, �)| + 3|u(k, �+ 1)− u(k, �)|
+ |u(k, �+ 2)− u(k, �+ 1)| . (B.46)

Plugging (B.46) in the left-hand side of (B.44) and using (B.45) prove (B.44), the
factor 10 being 2(1+3+1). �
Proof of Proposition 17.2.4. Given 1 ≤ � < 2p, we use Lemma B.6.1 for vk =
v(k, �), and v′k = v(k, �+1), where v(k, �) is given by (B.42). Thus, g(k) = h(k, �)

and g′(k) = h(k, �+ 1). Summing the inequalities (B.41) for 1 ≤ k ≤ 2p, we get

∑

k≤2p,�<2p
|h(k, �+ 1)− h(k, �)| ≤ 2

∑

k,�

(v(k, �)− h(k, �))

+
∑

k,�

|v(k, �)− v(k, �+ 1)| .
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Using (B.44) and since m0 ≤ n(k, �), we get

m0

∑

k≤2p,�<2p
|h(k, �+ 1)− h(k, �)| ≤ 2

∑

k,�

n(k, �)(v(k, �)− h(k, �))

+ 10
∑

k,�

n(k, �)(u(k, �)− v(k, �))

≤ 10
∑

k,�

n(k, �)(u(k, �)− h(k, �)) ,

using that h(k, �) ≤ v(k, �) ≤ u(k, �) in the last line. This proves (17.33),
and (17.32) is obvious. �



Appendix C
Classical View of Infinitely Divisible
Processes

In this appendix, we explain the classical view of infinitely divisible processes and
why it coincides with our direct definition of Sect. 12.2.

C.1 Infinitely Divisible Random Variables

Definition C.1.1 We say that a r.v. X is positive infinitely divisible if there exists a
positive measure ν on R

+ such that

∫

(β ∧ 1)dν(β) <∞ , (C.1)

∀α ∈ R , E exp iαX = exp
(
−
∫

(1− exp(iαβ))dν(β)
)
. (C.2)

The use of (C.1) is to ensure that the integral in the right-hand side of (C.2) makes
sense. To motivate this definition, let us recall the definition (12.1) of Poisson r.v.s.
Consider finitely many independent Poisson r.v.s Xk with EXk = ak and numbers
βk ≥ 0. Then, by independence, (12.3) implies

E exp
(
iα
∑

k

βkXk

)
= exp

(
−
∑

k

ak(1− exp(iαβk))
)

= exp
(
−
∫

(1− exp(iαβ))dν(β)
)
, (C.3)
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where ν is the discrete positive measure on R
+ such that for each β ∈ R

+, we have
ν({β}) =∑{ak; βk = β}. Let us observe the formula

E
∑

k

βkXk =
∑

k

βkak =
∫

βdν(β) .

It is appropriate to think of a positive infinitely divisible r.v. X as a (continuous)
sum of independent r.v.s of the type βY where Y is a Poisson r.v. and β ≥ 0. This is
a sum of quantities that are ≥ 0, and there is no cancellation in this sum. The r.v. X
has an expectation if and only if

∫
βdν(β) < ∞ (and the value of this expectation

is then
∫
βdν(β)).

Definition C.1.2 We say that a r.v.X is infinitely divisible (real, symmetric, without
Gaussian component) if there exists a positive measure ν on R

+ such that

∫

(β2 ∧ 1)dν(β) <∞ , (C.4)

∀α ∈ R , E exp iαX = exp
(
−
∫

(1− cos(αβ))dν(β)
)
. (C.5)

The use of (C.4) is to ensure the existence of the integral in the right-hand side
of (C.5). We shall prove the existence of X in Sect. C.3. To motivate this definition,
consider again a Poisson r.v. Y of expectation a and an independent copy Y ′ of Y .
Then (12.3) implies

E exp iα(Y − Y ′) = exp(−2a(1− cos(α)) . (C.6)

Thus, when a r.v. X is a sum of independent terms βk(Yk − Y ′k) where Yk and Y ′k
are independent Poisson r.v.s of expectation ak and βk ≥ 0, it satisfies (C.5), where
now ν is the discrete positive measure on R

+ such that ν({β}) = 2
∑{ak; βk = β}

for each β ∈ R
+.

It is appropriate to think of an infinitely divisible r.v. X as a continuous sum of
independent r.v.s of the type β(Y−Y ′) where Y and Y ′ are independent Poisson r.v.s
with the same expectation. These r.v.s are symmetric rather than positive, and there
is a lot of cancellation when one adds them. This is why the formula (C.5) makes
sense under the condition (C.4) rather than the much stronger condition (C.1).1

1 This dichotomy no cancellation versus cancellation is a leitmotiv of the book.
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C.2 Infinitely Divisible Processes

Consider a finite set T and let us denote by β = (β(t))t∈T a generic point of RT . A
stochastic process (Xt)t∈T is called (real, symmetric, without Gaussian component)
infinitely divisible if there exists a positive measure ν on R

T such that
∫
RT (β(t)

2 ∧
1)dν(β) < ∞ for all t in T , and such that for all families (αt )t∈T of real numbers,
we have

E exp i
∑

t∈T
αtXt = exp

(
−
∫

RT

(
1− cos

(∑

t∈T
αtβ(t)

))
dν(β)

)
. (C.7)

The positive measure ν is called the Lévy measure of the process.2 Each of the linear
combinations

∑
t∈T αtXt is an infinitely divisible r.v.

Exercise C.2.1 Assume that for t ∈ T , the r.v.s Xt is infinitely divisible and that
these r.v.s are independent. Prove that (Xt)t∈T is an infinitely divisible process.

As an example of infinitely divisible process, assume that ν consists of a mass a at
a point β ∈ R

T . Then, in distribution, (Xt)t∈T = (β(t)(Y − Y ′))t∈T where Y and
Y ′ are independent Poisson r.v.s of expectation a/2. One can view the formula (C.7)
as saying that the general case is obtained by taking a (kind of continuous) sum of
independent processes of the previous type. Lots of cancellations occur when taking
such sums.

For the purpose of studying the supremum of a process, our definition of
infinitely divisible processes is the most general one: It is essentially not a restriction
to consider only the symmetric case (using the familiar symmetrization procedure
which replaces the process (Xt ) by the process (Xt − X′t ) where (X′t ) is an
independent copy of the process (Xt )), and it is not a real restriction to exclude
Gaussian components which are very well understood.

When T is infinite, we still say that the process (Xt)t∈T is infinitely divisible
if (C.7) holds for each family (αt )t∈T such that only finitely many coefficients are
not 0.3 An infinitely divisible process indexed by T is thus parameterized by a σ -
finite measure on R

T (with the sole restriction that
∫
(β(t)2 ∧ 1)dν(β) < ∞ for

each t ∈ T ). Only some extremely special subclasses have yet been studied in
any detail. The best known such subclass is that of infinitely divisible processes
with stationary increments. Then T = R

+ and ν is the image of μ ⊗ λ under
the map (x, u) �→ (x1{t≥u})t∈R+ , where μ is a positive measure on R such that∫
(x2 ∧ 1)dμ(x) <∞ and where λ is Lebesgue measure.

2 Assuming without loss of generality that ν({0}) = 0, it is unique.
3 One then considers the Lévy measure as a “cylindrical measure” that is known through its
projections on R

S for S a finite subset of T , projections that are positive measures and satisfy
the obvious compatibility conditions on how these projections relate to each other. It is sometimes
necessary to go beyond this naive point of view. The final word on how to define the Lévy measure
seems to be [93], but we are not really concerned with these matters here.
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C.3 Representation

We show that a process as in Definition 12.2.1 is indeed “an infinitely divisible
process of Lévy measure ν” in the classical sense of (C.7). We simply have to show
that if Xt =∑j≥1 εjZj(t), then

E exp i
∑

t∈T
αtXt = exp

(
−
∫

RT

(
1− cos

(∑

t∈T
αtβ(t)

))
dν(β)

)
. (C.8)

Leaving some convergence details to the reader, we first take expectation Eε in the
r.v.s εj given the Zj to obtain, setting uj =∑t∈T αtZj (t),

Eε exp i
∑

j≥1

εjuj =
∏

j≥1

cosuj = exp
∑

j≥1

log cosuj , (C.9)

and we simply take expectation using the formula (12.8) to obtain (C.8). Conversely,
an infinitely divisible process of Lévy measure ν has the representation Xt =∑

j≥1 εjZj(t) where (Zj)j≥1 is a realization of a Poisson point process of intensity
measure ν, the Lévy measure of the process.

C.4 p-Stable Processes

Finally, we prove the claim that p-stable processes are infinitely divisible and
conditionally Gaussian. It is proved in [53], Theorem 5.2, that a p-stable process
has a spectral measure and that there exists a finite positive measure m on R

T such
that for any family (αt )t∈T we have

E exp i
∑

t∈T
αtXt = exp

(
− 1

2

∫

RT

∣
∣
∑

t∈T
αtβ(t)

∣
∣pdm(β)

)
. (C.10)

We observe the formula
∫

R+
(1− cos(ax−1/p))dλ(x) = C(p)|a|p/2 ,

which is obvious through change of variable. Let us denote by λ Lebesgue’s measure
on R

+. Consider the probability measure ν on R
T such that

C(p)ν is the image of λ⊗m under the map (x, γ ) �→ x−1/pγ . (C.11)
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Then
∫

RT

(
1− cos

(∑

t∈T
αtβ(t)

))
dν(β)

= 1

C(p)

∫

RT

∫

R+

(
1− cos

(
x−1/p

∑

t∈T
αtγ (t)

))
dλ(x)dm(γ )

= 1

2

∫

RT

∣
∣
∑

t∈T
αtγ (t)

∣
∣pdm(γ ) , (C.12)

and combining with (C.10), this shows that ν is a Lévy measure for the process
(Xt)t∈T .

To prove that a p-stable process is conditionally Gaussian, consider then a finite
positive measure m on R

T and the measure ν as in (C.11). Consider a Poisson
point process (Zj )j≥1 of intensity measure ν and independent Gaussian r.v.s (gj ).
Then one checks as previously that for α > 0, the process Xt = α

∑
j≥1 gjZj (t)

is p-stable with spectral measure αK(p)m. Consequently, if the p-stable process
(Xt)t∈T has spectral measure m, it has the same distribution as the process
(K(p)−1∑

j≥1 gjZj (t))t∈T .



Appendix D
Reading Suggestions

It has been a deliberate choice not to include results of other authors which were
proved later than the first edition of this book, as we try to present only results in
their final form. The single exception to this policy concerns the recent results of G.
Pisier in Sect. 19.4. In this appendix, we point out some directions connected to the
main ideas of this book.

D.1 Partition Schemes

The work of R. van Handel [140, 141] attempts to provide a new view on partition
schemes. The formulation of Theorem 2.9.8 is directly inspired by this work
although in a sense, this theorem is a hybrid between the methods of van Handel
and the original methods of the author.

D.2 Geometry of Metric Spaces

Let us recall that a distance δ on a T is called ultrametric if

∀ s, t, v ∈ T , δ(s, t) ≤ max(δ(s, v), δ(t, v)) .

Given A > 1, let us say that a subset S of a metric space (T , d) is an A distortion of
an ultrametric space if for some ultrametric distance δ on S we have

∀s, t ∈ S ; δ(s, t) ≤ d(s, t) ≤ Aδ(s, t) .
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One may then investigate, given a metric space, whether it contains subsets which
are A distortion of ultrametric spaces, and which are in a sense large. This question
is investigated in great detail in the papers [65] and [67]. The equivalence of the
quantity (3.13) with γ2(T , d) means that for any metric space, one may find a
subset S which is an L distortion of an ultrametric space and for which γ2(S, d) ≥
γ2(T , d)/L, and the results of [65] and [67] can be seen as far-reaching extensions
of this result. We quote here the main result of [67].

Theorem D.2.1 Given A > 1, there exists a constantK = K(A) with the following
property. Consider a metric space (T , d) and a probability measure on μ on T .
Then there is a subset S of T which is an A distortion of an ultrametric space, and
a probability measure ν on S such that for each x ∈ X and each r > 0, one has

ν(B(x, r)) ≤ μ(B(x,Kr))1−1/A .

D.3 Cover Times

Consider a connected graph with set of edges E and set of vertices V . Starting
with a given vertex v, we consider the following random walk: At each step, if the
walker is at a given vertex w, he chooses at random with equal probability to move
to one of the vertices connected to w by an edge. The cover time τv is defined as the
first time all vertices have been visited. On the other hand, let us think to the graph
as an electrical network, each edge being given conductance 1. Then the effective
resistance R(u, v) of the network between edges u and v defines a distance R on V .
The main result of [28] is very clean:

1

L
γ2(V ,

√
R)2 ≤ max

v∈V Eτv ≤ Lγ2(V ,
√
R)2 .

D.4 Matchings

Under the lead in particular of Giorgio Parisi, physicists are bringing new ideas to
the theory of matchings (see, e.g., https://arxiv.org/pdf/1402.6993.pdf), and some
of these ideas have been made rigorous; see [4]. Many other possible nontrivial
directions in the theory of matchings have not been fully explored; see [133].

https://arxiv.org/pdf/1402.6993.pdf
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D.5 Super-concentration in the Sense of S. Chatterjee

Given a Gaussian process (Xt)t∈T , we have learned in (2.10.6) that the fluctuations
of supt∈T Xt are typically not larger than σ := supt∈T (EX2

t )
1/2. However, it turns

out that in many cases, these fluctuations are of a lower order. Probably the simplest
case is that if (gi)i≤N are standard independent Gaussian r.v.s, then maxi≤N gi has
fluctuations of order 1/

√
logN (an easy exercise). A more elaborate example is as

follows. Denoting by T the unit sphere of Rn, let us set Yt = ∑i≤n tigi and Xt =∑
i,j≤n ti tj gi,j where gi, gi,j are i.i.d. standard Gaussian r.v.s. The fluctuations of

supt∈T Yt are of order 1, but the fluctuations of supt∈T Xt are known to be of order
n−1/6. In such cases, one says that one has super-concentration. Sourav Chatterjee
[25] has discovered (among many other things) that super-concentration is related
to the fact that the function t �→ Xt has typically many near maxima (which is not
the case of the function t �→ Yt ).

D.6 High-Dimensional Statistics

An important and rapidly expanding area of research is High-Dimensional Statistics,
where the goal is to study large amounts of data, living in a high-dimensional space.
Because high-dimensional data appears in important and diverse applications (e.g.,
DNA sequencing, image and speech recognition, autonomous car systems, Internet
search engines, and many more), a well-established theoretical understanding of the
area is of the utmost importance.

Chaining plays a key role in High-Dimensional Statistics: The analysis of
statistical recovery procedures often calls for the study of the supremum (or
infimum) of certain random processes, and that is where chaining methods take
center stage.

To give a flavor of the problems one encounters, consider the incredibly important
area of compressed sensing (used, e.g., in MRI imaging and remote sensing (radar)).
One wishes to recover an unknown signal (vector or function), living in a very high-
dimensional space. The signal is sparse: Its expansion with respect to some natural
basis has a few nonzero coefficients.1 One receives, as data, relatively few linear
measurements of the signal, and those may be further corrupted by noise. The goal
is to use the given data to construct a good approximation of the unknown signal.
A general introduction to this topic can be found in [34], and a recent example the
way chaining is used in [74].

The novelty in compressed sensing was the realization that under rather minimal
assumptions, a rather small number of measurements were required to generate
a good approximation of the signal—essentially scaling linearly in the degree of

1 The degree of sparsity is then the number of nonzero components.
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sparsity and only logarithmically in the dimension of the space in which the signal
lives) . Moreover, recovery can be performed in an efficient way computationally.2

A simplified way of viewing recovery procedures is as follows: If t0 is the
unknown vector, and 〈t0,X1〉, . . . , 〈t0,XN 〉 are the given linear measurements
(noise-free), a reasonable guess of an approximating vector would be some t , that
is also sparse and satisfies that (〈t, Xi〉)Ni=1 is close to the given measurements. The
success of recovery is based on the fact that if x is any sparse vector that is far
away from t0, that fact will be exhibited in the value of N−1∑N

i=1〈x − t0,Xi〉2;
to that end, one has to study the behavior of the quadratic empirical process
u → N−1∑N

i=1〈u,Xi〉2 − E〈u,Xi 〉2 on the set of sufficiently sparse vectors [73].
Related topics may be found in Sects. 14.2 and 14.3.

Empirical processes often occur when dealing with high-dimensional data.
Two generic examples of empirical processes are the centered product empiri-
cal process indexed by two classes of functions, F and H, that is, (f, h) →
N−1∑N

i=1 f (Xi)h(Xi) − Ef h, and the centered multiplier empirical process
indexed by the class F , that is, f → N−1∑N

i=1 ξif (Xi)−Eξf , with (ξi)
N
i=1 being

a random vector and (X1, . . . , XN) selected randomly according to some procedure
(e.g., independent sampling). The study of these two processes appears in diverse
applications besides sparse recovery. General references are [55, 138, 142] and [71]
are a few more interesting examples of random processes one encounters in High-
Dimensional Statistics and the chaining arguments that are used in their analysis.

2 Sparse recovery procedures do not require preliminary information on the degree of sparsity of
t0. In the very basic setup, the procedure selects t that agrees with t0 on the sample points and has
the smallest possible �1 norm. And if t0 happens to be sparse, one can show that so will be the
vector selected by this procedure (see, e.g., [139] and [91]).



Appendix E
Research Directions

It seems worthwhile to recapitulate some of the research problems we stressed in
this book. It is very risky to attempt to evaluate the potential of a research problem,
but we will try.1

E.1 The Latała-Bednorz Theorem

Find a proof that you can explain to your grandmother. It is hard to understand why
the current proof works. This is a pity. The core material of this book, the theory
presented in Chaps. 2 to 13, is rather beautiful, with the exception of that proof.
Ideally, one wishes for a new conceptual idea.

E.2 The Ultimate Matching Conjecture

It is stated in Problem 17.1.2. Possibly, it is only a hard combinatorial problem
to crack, to understand the geometry of certain classes of functions, and that the
solution would not open new horizons.

1 This author’s most notable contribution to mathematics, the discovery of new directions for
concentration inequalities, started by studying a problem of secondary importance.
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E.3 My Favorite Lifetime Problem

It is explained in Sect. 13.3. There is no telling how difficult this is and what new
horizons a positive solution would open. It is reserved for the very ambitious.

E.4 From a Set to Its Convex Hull

The general problem is to understand geometrically how the smallness of a set, in
the sense of certain γ functionals, transfers to its convex hull. The first and most
important occurrence of this problem2 is Problem 2.11.2. Further occurrences are
Problem 8.3.5 and Problem 8.3.12. But it is not certain that this is possible. Also
related are Problems 2.11.13 and 2.11.14.

2 It is while discussing this problem with Keith Ball that I invented the generic chaining.



Appendix F
Solutions of Selected Exercises

As the purpose of the exercises is to have the reader (rather than the author) work,
the solutions are sketchy and have not been worked out with the same dedication as
the rest of this book. Therefore, expect much lousiness and some plain nonsense.

Exercise 1.3.1 Considering for each (s, t), the largest k with d(s, t) ≤ 2−k yields

sup
s,t∈G

|Xs −Xt |p
d(s, t)β

≤ L
∑

k≥0

sup
s,t∈G;d(s,t)≤2−k

2kβ |Xs −Xt |p .

Since E sups,t∈G;d(s,t)≤2−k |Xs − Xt |p ≤ K(m,p, α)2k(m−α) by (1.10), taking
expectation yields (1.12) since β +m− α < 0.

Exercise 1.3.2 By Jensen’s inequality, we have ϕ(Emaxi Vi) ≤ Eϕ(maxi Vi).
Furthermore, ϕ(maxi Vi) ≤∑i ϕ(Vi) so that Eϕ(maxi Vi) ≤∑i Eϕ(Vi).

Exercise 1.3.3 It follows from (1.13) and (1.14) that the r.v. Yn of (1.5) satisfies
EYn/cn ≤ ϕ−1(K(m)2nmdn), and (1.15) follows by combining with (1.7).

Exercise 1.4.3 The distance d associated to Brownian motion is given by
d(s, t) = √|s − t| and N([0, 1], d, ε) ≤ Lε−2. The condition |s − t| ≤ δ implies

d(s, t) ≤ √δ. Dudley’s bound is then L
∫√δ

0

√
log (L/ε2)dε ≤ L

√
δ log(2/δ).

Exercise 2.2.2 Just use that |Xt | ≤ |Xt −Xt0|+ |Xt0| ≤ sups,t |Xs −Xt |+ |Xt0|.
Exercise 2.3.1 Because P(Y ≥ aEY ) ≤ 1/a by Markov’s inequality.
Exercise 2.3.3 (a) This means that given L1 > 0, there exists L2 such that

supx xy − L1x
3 ≤ y3/2/L2, which is proved by computing this supremum. (b)

Let us then assume that p(u) ≤ L1 exp(−u2/L1) for u ≥ L1. Given a parameter
A, for Au ≥ L1, we have p(Au) ≤ L1 exp(−A2u2/L1). Also, we have p(Au) ≤ 1
so that p(Au) ≤ 2 exp(−u2) for u ≤ √

log 2. Assuming that A
√

log 2 ≥ L1, it
suffices that L1 exp(−A2u2/L1) ≤ 2 exp(−u2) for u ≥ √log 2. This is true as soon
as L1 ≤ 2 exp(u2(A/L1 − 1)) for u ≥ √

log 2 and in particular as soon as A is
large enough that L1 ≤ 2 exp(log 2(A2/L1 − 1)). (c) Taking logarithms, it suffices
to prove that for x ≥ 0 and a constant L1, one has L1x − x3/2/L1 ≤ L2 − x3/2/L2
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for a certain constant L2. Assuming first L2 ≥ 2L1, it suffices to find L2 for which
L1 − x3/2/(2L1) ≤ L2 which is obvious.

Exercise 2.3.5 (a) Since the relation P(supk≤N |gk| ≥ u) ≤ 2N exp(−u2/2)
does not require the r.v.s to be Gaussian. (c) Consider sets Ωk with P(Ωk) = 1/N ,
which we split into two sets Ωk,1 and Ωk,2 of probability 1/(2N). The centered
r.v.s gk = √

logN(1Ωk,1 − 1Ωk,2) satisfy P(|gk| ≥ u) ≤ exp(−u2) because the
left-hand side is 0 for u >

√
logN and 1/N for u ≤ √

logN . When the sets
Ωk are disjoint, supk≤N gk = √

logN on
⋃

k≤N Ωk,1 and is zero elsewhere. Thus,
E(supk≤N gk) = √

logNP(
⋃

k≤N Ωk) = √
logN/2. (c) When the sets Ωk,1 are

independent, it is still true that supk≤N gk = √
logN on

⋃
k≤N Ωk,1, and by (2.18),

this union has probability≥ 1/L. Next, supk≤N gk ≥ 0 except on the set
⋂

k≤N Ωk,2

where this supremum is −√logN , and this set has probability ≤ 1/(2N). Thus,
E supk≤N gk ≥ √logN(1/L− 1/(2N)).

Exercise 2.3.6 P(∪k≤NAk) = 1−∏k≤N(1− P(Ak)) and 1− x ≤ exp(−x) for
x > 0.

Exercise 2.3.7 Use (b) for u such that P(g1 ≥ u) = 1/N so that u is about√
logN .
Exercise 2.3.8 (a) We have E exp(Y/(2B)) = ∫∞

0 P(exp(Y/2B) ≥ u)du =
1 + ∫∞1 P(Y ≥ 2B logu)du ≤ 1 + 2

∫∞
1 u−2du = 3. Calculus shows that (x/a)a

takes its maximum at a = x/e so (x/p)p ≤ exp(x/e). Using this for x = Y/B

and taking expectations yield the result. The rest is obvious. (b) follow by using (a)
for the variable Y 2. (c) If EYp ≤ ppBp , Markov’s inequality yields P(Y ≥ u) ≤
(Bp/u)p , and for u ≥ Be, one takes p = u/(Be) to get a bound exp(−u/(Be)).

Exercise 2.3.9 Given any value of x ≥ 0, we have (E|g|p)1/p ≥ xP(|g| ≥ x)1/p,
and for x = √p, one has P(|g| ≥ p)1/p ≥ 1/L.

Exercise 2.4.1 We have d(t1, Tn) = 0 for each n. For k ≥ 2, let n(k) be
the smallest integer with Nn(k) ≥ k so that Nn(k)−1 < k and thus 2n(k) ≤
L log k. Furthermore, d(tk, Tn) ≤ d(tk, t1) for n < n(k) and d(tk, Tn) = 0 for
n ≥ n(k) since then tk ∈ Tn. Thus,

∑
n≥0 2n/2d(tk, Tn) ≤ L2n(k)/2d(tk, t1) ≤

L2n(k)/2/
√

log k ≤ L.
Exercise 2.5.3 Take T = {−1, 0, 1},U = {−1, 1}, d(x, y) = |x−y|, so e0(T ) =

1, e0(U) = 2.
Exercise 2.5.4 For ε > e0(T ), we have N(T , d, ε) = 1. For ε > en(T ), we have

N(T , d, ε) ≤ Nn. Consequently,

∫ ∞

0

√
logN(T , d, ε) dε =

∑

n≥0

∫ en(T )

en+1(T )

√
logN(T , d, ε) dε

≤
∑

n≥0

en(T )
√

logNn+1

and the result holds since logNn+1 ≤ 2n+1.
Exercise 2.5.5 If (A/εn)

α = logNn, then en(T ) ≤ εn.
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Exercise 2.5.6 Indeed if n0 is the smallest integer with card T ≤ Nn0 , then∑
n≥0 2n/2en(T ) = ∑

n≤n0
2n/2en(T ), and there are about log log cardT terms

in this sum. Furthermore, we control each term of the sum: For each k, we have
supt∈T

∑
n≥0 2n/2d(t, Tn) ≥ 2k/2 supt∈T d(t, Tk) ≥ 2k/2ek(T ).

Exercise 2.5.8 Consider a subset W of T maximal with respect to the property
that s, t ∈ W ⇒ d(s, t) > 2ε. Since the balls of radius ε centered at the points of
W are disjoint, each of measure ≥ a, we have cardW ≤ 1/a, and the balls centered
at the points of W and of radius 2ε cover U by Lemma 2.5.7.

Exercise 2.5.9 (a) Consider a subset W of T which is maximum with respect to
the property that any two of its points are at a distance ≥ ε. Then the balls centered
on W of radius ε cover T . Furthermore, two points within a ball of radius ε are at
mutual distance≤ 2ε. (b) If A is covered by N balls of radius ε, these balls have the
same volume Vol(εB) so Vol(A) ≤ NVol(εB). Consider W ⊂ A as in (a) but for
2ε rather than ε. The open balls of radius ε centered at the points of W are disjoint
and entirely contained in A + εB so that cardWVol(εB) ≤ Vol(A + εB). This
proves (2.45). (c) Since Vol(εB) = εkVol(B). (d) If εn is defined by (1/εn)k = Nn

and ε′n by (1 + 2/ε′n)k = Nn, then by (c) εn ≤ en(B) ≤ ε′n. Then en(B) is of
order 1 for 2n ≤ k and of order 2−2n/k for 2n ≥ k. As a result

∑
n≥1 2n/2en(B) =

∑
2n≤k 2n/2en(B) +∑2n>k 2n/2en(B) ≤ L

√
k. (e) We cover T with Nn0 balls of

radius 2en0(T ) and each of these by Nn balls of radius≤ L2−2n/ken0(T ). There are
at most Nn0Nn ≤ Nn+1 of these balls, and this proves the claim.

Exercise 2.5.10 (a) We have
(
m
�

) = (� + 1)/(m − �)
(

m
�+1

)
, and for � ≤ k − 1,

we have (� + 1)/(m − �) ≤ 2k/m. Iteration of this relation shows that for � ≤ k,
we have

(
m
�

) ≤ (2k/m)k−�
(
m
k

)
. When k ≤ m/4, we have 2k/m ≤ 1/2, and thus,

∑
0≤�≤k/2(2k/m)k−� ≤ 2(2k/m)k/2. This proves (2.48). (b) We have cardI = (m

k

)
.

On I, consider the distance d(I, J ) := card(I � J ) where I � J is the symmetric
difference (I \ J ) ∪ (J \ I). We bound from above the cardinality of a ball of I of
radius k/2. Given I ∈ I, a set J is entirely determined by I � J . Thus, the number
of sets in I for which card(I � J ) ≤ k/2 is bounded by

∑
0≤�≤k/2

(
m
�

)
. Thus (2.48)

shows that μ(B(I, k/2)) ≤ 2(2k/m)k/2μ(I) and N(I, d, k/2) ≥ (m/(2k))k/2/2
are the desired result.

Exercise 2.5.11 Consider an integer k with k/m ≤ 1/4. It follows from
Exercise 2.5.10 that N(Tk, d, 1/

√
2k) ≥ (m/(2k))k/2/2. In particular for 1 ≤ k ≤√

m, we have logN(T , d, 1/L
√
k) ≥ (k/L) logm so that for m−1/4/L ≤ ε ≤ 1/L,

we have
√

logN(T , d, ε) ≥ (1/Lε)
√

logm, from which it readily follows that the
right-hand side of (2.41) is ≥ (logm)3/2/L.

Exercise 2.7.5 Consider the smallest integer n0 with cardT ≤ Nn0 so that
2n0/α ≤ K(log card T )1/α. Take An = {T } for n ≤ n0 and An consisting of the
sets {t} for t ∈ T when n ≥ n0.

Exercise 2.7.6 (a) We enumerate Bn as (B�)�≤Nn . The sets Cj = Bj \ ∪�<jB�

then provide a partition Cn of T of cardinality≤ Nn, and Cj ⊂ Bj ∈ Bn. We define
A0 = {T } and/or n ≥ 1 define An as the partition generated by An−1 and Cn−1 so
that cardCn ≤ N2

n−1 = Nn, and for n ≥ 1, each element A of An is contained is an
element of Cn−1 and thus in an element of Bn. (b) We can cover T by Nn balls of
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radius ≤ 2en(T ). We use these balls as covering Bn. Then each element of An has
diameter ≤ 2en−1(T ).

Exercise 2.7.7 We set A0 = {T } and for n ≥ 1 An consists of the sets of the type
B ∩ C for B ∈ Bn−1 and C ∈ Cn−1. There are at most N2

n−1 ≤ Nn such sets.
Exercise 2.7.8 (a) Consider an admissible sequence (An) with

sup
t∈T

∑

k≥0

2k/2Δ(Ak(t)) ≤ 2γ2(T , d) .

In particular for each A ∈ An, we have Δ(A) ≤ 2−n/2+1γ2(T , d). Thus, A is
contained in a ball of radius ≤ 2−n/2+1γ2(T , d). As these sets A for A ∈ An cover
T , we have en(T ) ≤ 2−n/2+1γ2(T , d). (b) Consider ε > 0 with N(T , d, ε) > 1,
and the smallest n with N(T , d, ε) ≤ Nn so that

√
logN(T , d, ε) ≤ L2n/2. By

definition of n, we have Nn−1 < N(T , d, ε) so that by definition of en−1(T ), we
have ε ≤ en−1(T ), and ε

√
logN(T , d, ε) ≤ L2n/2en−1(T ) ≤ Lγ2(T , d).

Exercise 2.7.9 Consider the smallest integer n0 such that 2n0 ≥ m. By
Exercise 2.5.9 (e) for n ≥ n0, we have en+1(T ) ≤ L2−2n/men0(T ) so that∑

n≥n0
2n/2en(T ) ≤ L2n0/2en0(T ). Then

∑

n≥0

2n/2en(T ) ≤ L
∑

n≤n0

2n/2en(T ) ≤ L log(m+ 1)γ2(T , d)

because each term of the middle summation is at most Lγ2(T , d), and there are
n0 + 1 ≤ L log(m+ 1) terms.

Exercise 2.7.10 It was already shown in Exercise 2.5.11 that the estimate (2.58)
is optimal, but the present construction is easier to visualize. According to (2.45) in
R
M , there exists a set of cardinality 2M in the unit ball consisting of points at mutual

distance ≥ 1/2. Denote by n0 the largest integer with 2n0 ≤ M . Thus, for n ≤ n0,
there exists a set Tn of cardinality Nn consisting of points within distance 2−n/2+1 of
the origin but at mutual distances≥ 2−n/2. Set T = ∪n≤n0Tn so that for n ≤ n0, we
have en(T ) ≥ en(Tn) ≥ 2−n/2. Consequently,

∑
n≥0 2n/2en(T ) ≥ n0 ≥ (logM)/L.

One can prove that γ2(T , d) ≤ L by proceeding as in Exercise 2.4.1.
Exercise 2.7.12 The inequality (2.33) never used that the process is centered, so

it remains true, and combining it with (2.6) implies E supt∈T |Xt −Xt0 | ≤ LS, and
the result.

Exercise 2.8.2 For example, T consists of a sequence of real numbers which
converges fast to 0, for example, T = {1/n!; n ≥ 1}. For each value of r , the largest
value of m such that (2.76) holds is finite.

Exercise 2.9.2 The growth condition is satisfied because m = Nn ≥ N1 = 4, and
there exist no separated family. In this case, the inequality γ2(T , d) ≤ LrF(T )/c∗
is false because the left-hand side is positive and the right-hand side is zero.

Exercise 2.10.4 Let a = minp≤m(EX2
p)

1/2 > 0 where the r.v.s (Xp)p≤m
are independent Gaussian. (Observe that it is not required that the numbers EX2

p

be all equal.) Consider a number cp such that P(Xp ≥ cp) = 1/m so that
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cp ≥ a
√

logm/L. The m sets Ωp = {Xp ≥ cp} are independent of probability 1/m
so that their union Ω is of probability 1− (1− 1/m)m ≥ 1/L. Given ω ∈ Ω , there
is p ≤ m with ω ∈ Ωp so that Xp ≥ cp and thus 1Ω maxp≤m Xp ≥ 1Ω minp≤m cp
and consequently by taking expectation E1Ω maxp≤mXp ≥ (a/L)

√
logm. On

the other hand, maxp≤m Xp ≥ −|X1|, and since we may assume without loss
of generality that EX2

1 = a2, we get E1Ωc maxp Xp ≥ −E|X1| ≥ −La.
Consequently, Emaxp≤mXp ≥ a((1/L)

√
logm− L), the desired result.

Exercise 2.10.7 Then σ = 1 and Y = supt∈T Xt =
√∑

i≤n g2
i is about

√
n.

Here, you can visualize the fluctuations of Y : EY 4 − (EY 2)2 ≤ Ln so that the
fluctuations of Y 2 are of order

√
n, and since Y 2 is of order n, the fluctuations of Y

are of order 1. (Remember that
√
A+ a −√A is of order a/

√
A.)

Exercise 2.11.7 Enumerate T ∪ {0} as a sequence (xi)i≥1 with x1 = 0 and
d(x1, xi) ≤ L/ log i.

Exercise 2.11.10 Look at the case where T consists of one single point.
Exercise 2.11.11 The first part is obvious. For the second part, simply replace

(2.134) by t =∑n≥1 πn(t)− πn−1(t) =∑n≥1 an(t)un(t).
Exercise 2.11.12 By homogeneity, we may assume that S = E supt Xt = 1.

Consider an integer n0 with 2−n0 � δ. Starting with an admissible sequence
(Bn) of T such that supt

∑
n≥0 2n/2Δ(Bn(t)) ≤ LS, we consider the admissible

sequence (An) given by An = Bn if n > n0 and An = {T } for n ≤ n0. Then
supt

∑
n≥0 2n/2Δ(An(t)) ≤ LS. We set Tn = {0} for n ≤ n0 and Un = ∅ for

n ≤ n0, and we follow the proof of Theorem 2.11.9. For n ≥ n0 and u ∈ Un, we
have ‖u‖ ≤ L2−n0 ≤ Lδ.

Exercise 2.11.15 To prove (a), we observe that

‖Uq‖ ≥ ‖U1‖ ≥ sup
{∑

i≤n
εi,1xi ;

∑

i≤n
x2
i

}
=
√∑

i≤n
ε2
i,1 =

√
n .

If ‖x‖ ≤ 1, then (2.140) implies E exp(‖Uq(x)‖2/4) ≤ Lq so that P(‖Uq(x)‖ ≥
a
√
q) ≤ exp((L − a2/4)q) by Markov’s inequality and (2.141) by homogeneity.

Consider now a sequence tk ∈ R
n such that ‖tk‖ ≤ min(δ, LA/

√
log(k + 1)). Then

for w ≥ 1,

P(‖Uq(tk)‖ ≥ Lwδ
√
q) = P(‖Uq(tk)‖ ≥ Lv‖tk‖√q) ≤ exp(−v2q)

where v = wδ/‖tk‖ ≥ w, and thus,

∑

k≥1

P(‖Uq(tk)‖ ≥ Lwδ
√
q) ≤

∑

k≥1

min(exp(−w2q), exp(−w2δ2q log(k+1)/A2)),

and when δ2q/A2 ≥ 1, this is≤ exp(−w2q/L). The result follows since we can find
such a sequence (tk) for which T ⊂ Lconv{tk, k ≥ 1} and A = E supt∈T Xt ≤ δ

√
q.
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Exercise 2.11.17 (a) The subsets of T obtained by fixing the coordinates of t
in each Tk for k ∈ I c have diameter ≤ ε, and there are

∏
k∈I c Mk such sets.

(b) Take ηk = √
logMk and use (a) to see that

√
logN(T , d, ε) ≤ S(ε). (c)

We reduce to the case
∑

k≤N εkηk = 1 by replacing εk by λεk for a suitable λ.
We set αk = εkηk , and we consider the probability μ on {1, . . . , N} such that
μ({k}) = αk . Define h(k) = εk/ηk . Then

∫
I
hdμ = ∑

k∈I ε2
k and

∫
I c

1/hdμ =
∑

k∈I c η2
k . (d) For any non-increasing function S̃ on R

+, we have
∫
R+ S̃(ε)dε ≤

∑
�∈Z 2−�S(2−�−1). (e) Thus, S̃(2−�)2 ≤ ∫Ac

�
(1/h)dμ. Setting B� = A� \A�+1, we

have S̃(2−�)2 ≤ ∑m<� cm where cm =
∫
Bm

(1/h)dμ. Thus, S̃(2−�) ≤ ∑m<�

√
cm

and
∑

� 2−�S̃(2−�) ≤ ∑� 2−�
∑

m<�

√
cm ≤ ∑m 2−m√cm. Recalling that the set

Am is of the type Am = {h ≤ tm} for a certain tm, we have Bm = {tm+1 < h ≤ tm}
and in particular cm ≤ μ(Bm)/tm+1. Now,

∫
Bm

hdμ = 2−2m−2−2(m+1) ≥ 2−2(m+1)

so that 2−2(m+1) ≤ ∫
Bm

hdμ ≤ tmμ(Bm), and changing m into m + 1, we have

2−m ≤ L
√
tm+1μ(Bm+1). Thus, 2−m√cm ≤ L

√
μ(Bm)μ(Bm+1). The Cauchy-

Schwarz inequality then shows that
∑

m 2−m√cm ≤ L as desired.
Exercise 2.11.18 (a) First note that if ε2 = ∑

k≤N ε2
k , then N(T , d, ε) ≤

∏
k≤N N(Tk, dk, εk), and then use (2.146) for fk(ε) = √

logN(T k, dk, ε). (b)
Consider a set I with

∑
k∈I θ2

k ≤ ε2. Taking εk = θk if k ∈ I and εk = 0
otherwise shows that V (ε)2 ≤ ∑

k∈I c η2
k . Thus, V (ε) ≤ S(ε). (d) First note that

∑
� 2−�θk,� ≤ L

∫∞
0 fk(ε)dε. Denoting by V̄ (ε) the quantity corresponding to V (ε)

for the family fk,�, it then suffices to prove that V (ε) ≤ LV̄ (ε). Consider a family
εk,� of numbers with

∑
k,� ε

2
k,� ≤ ε2. For k ≤ N , define ε̄k by ε̄2

k =
∑

� ε
2
k,� so

that
∑

k ε̄
2
k ≤ ε2. It suffices to prove that fk(ε̄k)2 ≤ L

∑
� fk,�(εk,�)

2. Consider

�̄ = inf{�; fk,�(εk,�) �= 0} so that fk,�̄(εk,�) = 2−�̄, and it suffices to prove that

fk(ε̄
2
k ) ≤ L2−�̄. But since ε̄k ≥ εk,� for each �, for � < �̄, we have fk,�(εk) = 0.

Thus, fk(εk) ≤∑�≥�̄ fk,�(εk) ≤
∑

�≥�̄ 2−� ≤ L2−�̄.
Exercise 2.13.3 In R

m, the sum
∑

n≥ 2n/2en(E) has to be replaced by
∑

n≤n0
where n0 is the smallest integers with 2n0 ≥ m (because as shown in Exercise 2.5.9
(e) en(E) decreases very fast for larger values of n), so n0 is of order log(m + 1).
The result is then a consequence of the Cauchy-Schwarz inequality,

∑
0≤n≤n0

bn ≤√
n0 + 1(

∑
0≤n0

b2
n)

1/2 for bn = 2n/2an. This estimate is optimal in the case where
bn is independent of n. Thus, for ellipsoids, Dudley’s entropy integral is off by a
factor at most

√
logm for ellipsoids, compared with a factor logm for general sets.

Exercise 2.15.2 For each n ≥ 0 can find a set Tn such that cardTn ≤ Nn and
d(t, Tn) ≤ 2en(T ) for each t . Then (2.172) holds for B = 2

∑
n≥m 2n/2en(T ).

Given δ > 0, consider the smallest m with em(T ) ≤ δ. Then, as we have already
seen,

∑
n≥m 2n/2en(T ) ≤ LI (δ) where I (δ) = ∫ δ

0

√
logN(T , d, ε)dε. On the

other hand, since em−1(T ) ≥ δ for ε ≤ δ, we have
√

logN(T , d, ε) ≥ 2(m−1)/2

so that 2m/2δ ≤ LI (δ). It then follows from (2.173) that with probability ≥
1 − exp(−u22m), we have supd(s,t)≤δ |Xs − Xt | ≤ LuI (δ), and in particular that
E supd(s,t)≤δ |Xs −Xt | ≤ LI (δ).
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Exercise 3.1.3 We write
∫ Δ

0 f (ε)dε = ∑
n≥0

∫ εn
εn+1

f (ε)dμ(ε). For n ≥ 1,

we have 2n < f (ε) ≤ 2n+1 for εn+1 < ε < εn so that 2n(εn − εn+1) ≤∫ εn
εn+1

f (ε)dμ(ε) ≤ 2n+1(εn − εn+1) ≤ 2n+1εn. Also, f (ε) ≤ 2 for ε > ε1 so that

the previous upper bound remains true for n = 0 and
∫ Δ

0 f (ε)dε ≤ 2
∑

n≥0 2nεn.
For the lower bound, we observe that

∑
n≥1 2nεn+1 = ∑

n≥2 2n−1εn so that∑
n≥1 2n(εn − εn+1) ≥ (1/2)

∑
n≥1 2nεn.

Exercise 3.1.6 (a) It is obvious that if ε2 = ∑
k≤n ε2

k , then Bd(t, ε) ⊃∏
k≤N Bdk (tk, εk) so that μ(Bd(t, ε)) ≥ ∏

k≤N μk(Bdk (t, εk)), and consequently,
log(1/μ(Bd(t, ε))) ≤ ∑k≤N log(1/μk(Bdk (tk, εk))) so that the desired result is a

consequence of (2.147) used for the functions fk(ε) =
√

log(1/μk(Bk(tk, ε))). (b)
should be obvious from (a) and the equivalence of (3.20) and γ2(T , d) for any metric
space.

Exercise 3.4.2 Just by considering the term n = 1 of the sum, it is obvious
that χ2(T , d) ≥ Δ(T ), so it suffices to prove the following growth condition.
Consider n ≥ 1, m = Nn a number a > 0, points t� ∈ T with d(t�, t�′) ≥
6a for � �= �′ and sets H� ⊂ B(t�, a). Then χ2(∪�≤mH�, d) ≥ a2n/2/L +
min� χ2(H�, d). Given ε > 0, consider for � ≤ m a probability measure μ�

on H� such that for each admissible sequence (Bk) of partitions of H� we have∫
H�

∑
k≥0 2k/2Δ(Bk(t))dμ�(t) ≥ χ2(H�, d)− ε. Consider the probability measure

μ = m−1∑
�≤m μ�. Our goal is to prove that for any admissible sequence (Ak) of

partitions of H = ∪�≤mH�, we have

∫

T

∑

k≥0

2k/2Δ(Ak(t))dμ(t) ≥ a2n/2/L+min
�≤m χ2(H�, d)− ε . (F.1)

For t ∈ H , let �(t) be the unique integer � ≤ m such that t ∈ H�(t). For t ∈ H , let
us define f (t) = Δ(An−1(t))−Δ(An−1(t) ∩H�(t)) so that

∫

T

∑

k≥0

2k/2Δ(Ak(t))dμ(t) ≥ 2(n−1)/2
∫

T

f (t)dμ(t)+m−1
∑

�≤m
U�

where U� =
∫
T

∑
k≥0 2k/2Δ(Ak(t) ∩H�)dμ�(t) ≥ χ2(H�, d)− ε because if A�

k =
{A∩H�;A ∈ Ak}, then the sequence (A�

k) is an admissible sequence of partitions of
H�. Thus, it suffices to prove that

∫
T
f (t)dμ(t) ≥ a/L. Let B = ∪{A ∈ An−1; ∃� ≤

m,A ⊂ H�}. Then μ(B) ≤ Nn−1/m = Nn−1/Nn ≤ 1/2 because B is the union of
≤ Nn−1 sets each of measure ≤ 1/m. Now for t �∈ B, the set An(t) meets at least
two different sets H� so that its diameter is ≥ 3a while An(t) ∩ H�(t) had diameter
≤ Δ(H�(t)) ≤ 2a so that f (t) ≥ a.

Exercise 4.1.5 (a) Find a partition Bn with cardBn ≤ Nn and Δ(B) ≤ 3en(T )
for B ∈ Bn. Define A0 = {T } and An as the partition generated by An−1 and Bn−1.
Thus, the sequence (An) is admissible, and for A ∈ An, we have Δ(A) ≤ Δ(T )

for n = 0 and Δ(A) ≤ en−1(T ) for n ≥ 1. Writing e−1(T ) = Δ(T ) for each t , we
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have
∑

n≥0(2
n/αΔ(An(t)))

p ≤ ∑n≥0(2
n/αen−1(T ))

p ≤ K
∑

n≥0(2
n/αen(T ))

p. It
is then straightforward that this sequence of partitions witnesses (4.9). (b) The key
idea is that entropy bounds “are optimal when the space is homogeneous” so one
should try to see what happens on such spaces. A good class of spaces are those of
the form T =∏i≤m Ui where Ui is a finite set of cardinality Ni . Given a decreasing
sequence bi ≥ 0, we define a distance on T as follows. For t = (ti)i≤m, then
d(s, t) = bj where j = min{i ≤ m; si �= ti}, and then one has bn ≤ en(T ) ≤ bn−1
from which one may estimate the right-hand side of (4.9). To get lower bounds on
γα,p(T , d), an efficient method is to use the uniform probability μ on T and the
appropriate version of (3.32).

Exercise 4.1.9 Even though the space T shares with the unit interval the property
that N(T , d, ε) is about 1/ε, there are far more 1-Lipschitz functions on this space
than on [0, 1]. The claim (a) is obvious from the hint. To prove (b), for � ≥ 0,
let us denote by B� the partition of T into the 2� sets of T determined by fixing
the values of t1, . . . , t�. These sets are exactly the balls of radius 2−�. Consider
the class F� of functions f� on T such that |f�(t)| = 2−�−1 for each t and that
f� is constant on each set of B�. Then each sum f = ∑

�≥0 f� where f� ∈ F�

is 1-Lipschitz. Denoting by F the class of all such functions f , it is already true
that γ1,2(F , d2) ≥

√
k/L. It is not so difficult to prove that en(F , d2) ≥ 2−n/L,

and to bound below γ1,2(F , d2) itself, again the appropriate version of (3.32) is
recommended, or an explicit construction of a tree as in Sect. 3.2.

Exercise 4.2.2 Try the functional

F(A) = 1− inf{‖u‖ ; u ∈ A} (F.2)

for A ⊂ T , and the growth condition

F(∪�≤mH�) ≥ c∗ap2np/α +min
�≤mF(H�) ,

when the sets H� are (a, r)-separated as in Definition 2.8.1.
Exercise 4.3.1 In dimension d , an hypercube of side 2−k has an excess (or deficit)

of points of about
√
N2−dk , and you (heuristically) expect to have to move these

points about 2−k to match them. Summing over the hypercubes of that side gives
a contribution of

√
N2k(d/2−1). For d = 3, it is the large values of k which matter

(i.e., the small cubes), while for d = 1, it is the small values of k.
Exercise 4.3.4 For an optimal matching, we have

∑
i d(Xi, Yπ(i)) =∑

i f (Xi) − f (Yπ(i)), and since f (Xi) − f (Yπ(i)) ≤ d(Xi, Yπ(i)) for each i,
we have f (Xi)− f (Yπ(i)) = d(Xi, Yπ(i)).

Exercise 4.5.2 For k ≤ n0 denote by Mk the number of points Xi which have
not been matched after we perform k-th step of the process. Thus, there are Mk−1−
Mk points which are matched in the k-step, and this are matched to points within
distance L2k−n0 . Thus, the cost of the matching is≤ L

∑
k≤n0

2k−n0(Mk−1−Mk) ≤
L
∑

k≤n0
2k−n0Mk . At the k-th step of the process, we match points in a given square

A of Hn0−k+1. It should be obvious that the number of points of that square A which
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are not matched after this step is completed equal the excess of the number of Xi

over the number of Yi in that square, that is, max(card{i ≤ N,Xi ∈ A} − card{i ≤
N; Yi ∈ A}, 0), so that

Mk =
∑

A∈Hn0−k+1

max
(

card{i ≤ N,Xi ∈ A} − card{i ≤ N; Yi ∈ A}, 0)
)
.

Let a = 2−n0+k−1 the length of the side of A so that the area of A is a2, and the
expected number of points Xi in A is Na2. Skipping some details about the Yi , the
excess number of points Xi in A is then of expected value ≤ L

√
Na2 = La

√
N.

As there are 1/a2 elements of Hn0−k+1, the expected value of aMk is then≤ L
√
N ,

and since in the summation
∑

k≤n0
there are about logN terms, the result follows.

Exercise 4.5.8 (a) Let us denote by C the family of 22n little squares into which
we divide [0, 1]2. For ε = (εC)C∈C ∈ {−1, 1}C , consider the function fε such that
for x ∈ C ∈ C, we have fε(x) = εcd(x, B) where B is the boundary of C. It
should be pretty obvious that ‖fε − fε′ ‖2

2 ≥ 2−4n card{C ∈ C; εC �= ε′C}. Then
Exercise 2.5.11 (a) used for m = 22n, and k = m/4 proves that N(Ĉ, d2, 2−n/L) ≥
22n/L.

Exercise 4.5.14 (a) Making the change of variable u = tp in (2.6), we obtain

EYp =
∫ ∞

0
ptp−1P(Y ≥ t)dt ≤ 2

∫ ∞

0
ptp−1(exp(−t2/A2)+ exp(−t/B))dt .

One may calculate these integrals by integration by parts, but it is simpler to use
bounds such as up−1 exp(−u2) ≤ Lp(p−1)/2 exp(−u2/2) for u = t/A for the first
term and up−1 exp(−u) ≤ (Lp)p−1 exp(−u/2) for u = t/B for the second term.
(b) We denote by Δj(A) the diameter of the set A for dj . We consider an admissible
sequence (Bn)n≥0 which satisfies 4.52 and an admissible sequence (Cn)n≥0 which
satisfies (4.53). We define the admissible sequence (An) as in the proof of
Theorem 4.5.13. It then follows from (a) that Dn(An(t)) ≤ L(2n/2Δ2(Cn−1(t)) +
2nΔ1(Bn−1(t))) and (4.52) and (4.53) and summation imply (4.54).

Exercise 4.5.17 Of course, (4.56) holds in any probability space, not only on
[0, 1]2! Then γ1(F , d∞) ≤ L logN by Exercise 2.7.5. Also, en(F , d2) ≤ N

−1/2
n

so that
∑

n≥0 2n/2en(F , d2) < ∞. Then (4.56) shows that ES ≤ L
√
N where

S = sup | card{i ≤ N ; Xi ≤ t} − Nt| for a supremum taken over all t of the type
k/M . Finally, sup0≤t≤1 | card{i ≤ N ; Xi ≤ t} − Nt| ≤ 3S + 1/N , using the fact
that an interval of length ≤ 1/N contains at most 2S + 1/N points Xi .

Exercise 4.5.20 Using Dudley’s bound in the form (2.38), in the right-hand side,
there are about logN terms of order 1.

Exercise 4.5.22 Denote by m the largest integer such that 2−m ≥ 1/N .
We find a subset T of Ĉ such that card T ≤ Nm and such that for f ∈ Ĉ,
we have d∞(f, T ) ≤ L2−m/3 ≤ LN−1/3. We then have en(T , d∞) ≤
L2−n/3 for n ≤ m and en(T , d∞) = 0 for n > m. Thus, γ1(T , d∞) ≤∑

n≥0 2nen(T , d∞) ≤ ∑
n≤m L22n/3 ≤ L22m/3 ≤ LN2/3 and γ2(T , d2) ≤
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γ2(T , d∞) ≤ ∑
n≤m 2n/2en(T , d∞) ≤ L

∑
n≤m 2n/6 ≤ LN1/6 and then

E supf∈T |
∑

i≤N(f (Xi)−
∫
f dμ)| ≤ LN2/3 by (4.56).

Exercise 4.5.23 Given n ≥ 1, consider the set C of 1-Lipschitz functions on
T which are 0 at the point (0, 0, . . . , ) and which depend only on the first n

coordinates. The estimate (4.59) used for α = 2 shows that logN(C, d2, ε) ≤
logN(C, d∞, ε) ≤ L/ε2, and thus, γ1(C, d∞) ≤ L2n/2 and γ2(C, d2) ≤ Ln.
We may then appeal to Theorem 4.5.16 to obtain that E supf∈C |

∑
i≤N(f (Xi) −∫

f dμ)| ≤ L(n
√
N + 2n/2) and the result when n is chosen with 2n � N .

Exercise 4.6.8 Consider the partition B� of T obtained by fixing the values of
t1, . . . , t� so that cardB� = 2�, and each set B in B�−1 contains two sets in B�.
Consider the class F� of functions f on T such that |f (t)| = 2−�/2 for each t and f

is constant on each set B ∈ B�. Thus, as in the case of Exercise 4.1.9, the functions
of the type

∑
�≥0 f� are 1-Lipschitz. Assuming for simplicity N = Nn for a certain

n to obtain an evenly spread family (Yi), we simply put one point Yi in each set of
B2n . For � < 2n, we construct a function f� ∈ F� as follows. Recalling that each set
B in B�−1 contains two sets in B�, the function f� equals 2−�/2 on one of these sets
and −2−�/2 on the other. Subject to this rule, we choose f� so that

∑
i≤N f�(Xi)

is as large as possible. In each set, B ∈ B�−1 are about 2−�+1N points Xi , which
typically gives rise to fluctuations of order

√
2−�N between the two halves of B,

and thus we expect
∑

Xi∈B f�(Xi) to be of order 2−�/2
√

2−�N = 2−�
√
N and

∑
i≤N f�(Xi) to be of order

√
N . The function f = ∑

�<2n f� is a 1-Lipschitz

function with
∑

i≤N f (Xi) of order 2n
√
N (which is about logN

√
N ) whereas∑

i≤N f (Yi) = 0.
Exercise 4.7.4 See Exercise 2.3.3(c).
Exercise 4.9.4 (a) Integration by parts as in the case of AKT. (b) (ap,C)p∈Z

are the Fourier coefficients of the function fC(x) = ∫
hC(t)f (x, t)dμm(t) so

that
∑

p |ap,C |2 = ∫
fC(x)

2dx. Now, fixing a point t0 in C, we have fC(x) =∫
hC(t)f (x, t)dμm(t) =

∫
hC(t)(f (x, t) − f (x, t0))dμm(t). We have |f (x, t) −

f (x, t0)| ≤ 2−n because f is 1-Lipschitz in t . Also, |hC(t)| ≤ 2n/2, and the
integration is restricted to C so that |fC(x)| ≤ 2−n × 2n/2 × 2−n = 2−3n/2 and∫
fC(x)

2dx ≤ 2−3n. The case C = ∅ is easier.
Exercise 4.9.5 (a) for each C ∈ Cn, we have

∑
p |ap,C|2 ≤ 2−3n. Summing

over C ∈ Cn and then over n ≤ m yields
∑

p∈Z
∑

0≤n≤m
∑

C∈Cn 22n|ap,C|2 ≤
m (recalling that card Cn = 2n), and the desired result follows when combining
with (4.129). (b) The ellipsoid E given by

∑
p,C α2

p,C |ap,C|2 ≤ 1 satisfies γ2(E) ≤
L

√∑
p,C α−2

p,C . We compute
∑

p,C α−2
p,C by distinguishing three sets of indices and

recalling that α−2
p,C ≤ Lmin(p−2,m2−2n). First, the set I0 consisting of the (p,∅).

Then the set I1 of indices (p,C) with C ∈ Cn, 0 ≤ n ≤ m, and |p| ≤ 2n/
√
m, in
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which case α−2
p,C ≤ Lm2−2n. Finally, the set I2 of indices (p,C) with C ∈ Cn, 0 ≤

n ≤ m for which |p| ≥ 2n/
√
m, in which case α−2

p,C ≤ Lp−2. Then
∑

I0
α−2
p,C ≤ L

and

∑

I2

p−2 =
∑

n≤m

∑

C∈Cn

∑

|p|≥2n/
√
m

p−2

≤ L
∑

n≤m

∑

C∈Cn

√
m/2n ≤ L

∑

n≤m

√
m ≤ Lm3/2,

and we proceed in a similar way to prove that the other sum is also ≤ Lm3/2.
Exercise 4.9.6 Since this section is for the experts, this solution will be suitably

concise. A function on U is a function of (x, t) ∈ [0, 1] × T . A first observation
is that a function

∑
k≤q fk is always 1/2-Lipschitz in the t variable. Problems arise

in the x variable, and the way this is solved is to set zq+1,�,C = 0 whenever the
little “square” [(� − 1)2−(q+1), �2−(q+1)[×C is “dangerous”, that is, the function
f = ∑

k≤q fk is such that at one point of this “square”, we have |∂f/∂x| ≥ 1/2.
Matters are set up in a way that at most, 1/2 of the little squares are dangerous,
exactly by the same type of arguments as we used for the AKT theorem. Next,
defining D�,C = ∑

i≤N(fq+1,�,C(Xi) −
∫
fq+1,�,Cdθ), the point is that |D�,C | is

often of order
√
N2−q−p

√
2−2q−p because if h = fq+1,�,C −

∫
fq+1,�,Cdθ , then

(
∫
h2dθ)1/2 is about 2−q−p (the typical order of the value of h on the support of

fq+1,�,C) times
√

2−2q−p (the square root of the measure of this support). Now,√
N2−q−p

√
2−2q−p = √

N2−2q−3p/2, and since there are 22q+p terms to be
summed, this gives a total contribution of order

√
N2−p/2 = √

N/r1/4 as desired.
Exercise 4.9.8 The magic relation is (Nn)

2k = 22n+k = Nn+k . By hypothesis for
n ≥ 0, there is a partition An of T such that cardAn ≤ Nn and each set of An has
diameter L2−n. Consider a subset Bn of Tm such that each element of Tm is within
distance 2−n of Bn. We can take cardBn = 2n for n ≤ m and cardBn = 2m for
n ≥ m. We classify the elements f of U by looking to which set of An the value of
each s ∈ Bn belongs. In this manner, we break U into (cardAn)

cardBn = N2n sets
(or Nn+m sets for n ≥ m). Since f is assumed to be 1-Lipschitz, the diameter of
each such set in U is ≤ L2−n. This implies that e2n(U,D) ≤ L2−n for n ≤ m and
en+m ≤ L2−n for n ≥ m, from which the last assertion readily follows.

Exercise 5.2.2 (a) is a consequence of (5.2). (b) In that case, supt∈T Xt =∑
i≤N |Yi | has expectation NE|Y1|. To show that γq(T , d) is of the same order, we

use the bound γq(T , d) ≥ 2n/qen(T ). According to Exercise 2.5.10, for 2n = N/L,
en(T ) is about the diameter N1/p of T . (c) The metric space (T , d) consists of N
points within distance at most two of each other, and the left-hand side of (5.7)
is of order (logN)1/q . However, E supt∈T Xt = Emaxi≤N Yi is ≥ N1/p/K . This
is because from (5.3) for each i ≤ N , there exists a set Ωi of probability 1/N
on which Yi ≥ N1/p/K , where K depends on p only, so that since the sets Ωi

are independent, maxi≤N Yi is at least N1/p/K on a set of probability at least
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1 − (1 − 1/N)N ≥ 1/L. Thus, Emaxi≤N Y+i ≥ N1/p/K , and it is then a simple
matter to conclude.

Exercise 5.5.1 This is just as simple as it sounds. Considering an increasing
sequence (Bn) of partitions with cardBn ≤ Mn, the sequence (Am) of partitions
such that Am = Bn for 2n ≤ m < 2n+1 satisfies cardAm ≤ Mn = N2n ≤ Nm

and
∑

m≥0 Δ(Am(t)) ≤ L
∑

n≥0 2nΔ(Bn(t). Conversely, given an admissible
sequence of partitions (Am), the sequence Bn given by Bm = A2m satisfies∑

n≥0 2nΔ(Bn(t)) ≤∑m≥0 Δ(Am(t)).
Exercise 6.2.1 (a)

EΦ(X) = E sup
f∈C

f (X) ≥ sup
f∈C

Ef (X) = sup
f∈C

f (EX) = Φ(EX) .

(b) Use Jensen’s inequality for the function Φ(y) = |x + y|p. (c) Use Jensen’s
inequality conditionally on θ and X.

Exercise 6.3.5 Write Y 2 = Y 1/2Y 3/2, and use the Cauchy-Schwarz inequality.
Take Y = |∑i≥1 tiεi |, and use that EY 3 ≤ L‖t‖3

2 by Khintchin’s inequality (6.3).
Exercise 6.4.2 If t�,i ∈ {0, b}, then

∑
i |t�,i| ≤ a2/b so that the left-hand side

of (6.21) is bounded by a2/b.
Exercise 6.6.3 An instructive example is given by T = {t1, . . . , tN } where tn =

(tn,i )i≥1, tn,i = 0 if i �= n and tn,n = 1. Then γ2(T ) is about
√

logN and γ1(T , d∞)

is about logN .
Exercise 7.1.5 Given t ∈ T , the sets B and t +B are not disjoint because μ(B ∩

(B+ t)) = 2μ(B)−μ(B ∪ (B+ t)) ≥ 2μ(B)−1 > 0, and if s ∈ B and s ∈ t+B,
that is, s = t + u with u ∈ B, then t = s − u ∈ B − B.

Exercise 7.1.8 This follows from Theorem 7.1.1 since

inf
{
ε > 0 ; μ(Bd(0, ε)) ≥ 2−2n = N−1

n

} ≤ εn .

Exercise 7.3.2 (a) Given ω, the set Aω = {t ∈ T ; dω(0, t) ≤ Δ(T , dω)/4}
satisfies μ(Aω) ≤ 1/2. Indeed, if this is not the case, then for each s ∈ T , we
have (s + Aω) ∩ Aω �= ∅, that is, T = Aω − Aω. Then given a, b ∈ T , we have
a − b = s − t for s, t ∈ Aω and

dω(a, b) = dω(a − b, 0) = dω(s − t, 0) = dω(s, t) ≤ dω(s, 0)+ dω(0, t) .

Since dω(s, 0) ≤ Δ(T , dω)/4 and dω(t, 0) ≤ Δ(T , dω)/4, by the definition of Aω,
we obtain dω(a, b) ≤ Δ(T , dω)/2 which is absurd. (b) Setting Bω = {s; dω(0, s) ≥
Δ(T , dω)/4}, then μ(Bω) ≥ 1/2. Consequently

∫

EΔ(T , dω)1{s∈Bω}dμ(s) ≥ (1/2)EΔ(T , dω)
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and thus there exists s ∈ T such that EΔ(T , dω)1{s∈Bω} ≥ (1/2)EΔ(T , dω). Now

EΔ(T , dω)1{s∈Bω} ≤ LEdω(s, 0) = Ld̄(s, 0) ≤ LΔ(T , d̄) .

Thus EΔ(T , dω) ≤ LΔ(T , d) ≤ Lγ2(T , d).
Exercise 7.3.3 Choose, for example, T = 1, . . . , N . For a subset I of T , define

the distance dI on T by dI (s, t) = 0 if s, t �∈ I and dI (s, t) = 1 otherwise (s �= t).
If card I = k, then γ2(T , dI ) is about

√
log k. On the other hand, the distance d

on T such that d2 is the average of the distances d2
I over all possible choices of I

with card I = k satisfies d(s, t)2 = (N−2
k−2

)
/
(
N
k

) = k(k − 1)/N(N − 1) ≤ k/N for
s, t ∈ T so that γ2(T , d) ≤ L

√
k/N

√
logN .

Exercise 7.3.8 Observe that E‖ξi0χi0‖ = E|ξi0 |. Use Jensen’s inequality for the
lower bound and the triangle inequality E‖∑i ξiχi‖ ≤ E‖ξi0χi0‖+E‖∑i �=i0 ξiχi‖
and (7.33) for the upper bound.

Exercise 7.3.9 The Haar measure μ is normalized so that μ(T ) = 1. If |t −
1| ≤ 2π2−2n , then d(1, t) ≤ ηn where η2

n = L
∑

i ci min(1, |i|22−2n+1
) and so that

μ(B(1, ηn)) ≥ N−1
n and thus εn ≤ ηn. It remains only to show that

∑
n≥0 2n/2ηn ≤

L
∑

n≥0 2n/2√bn. For this, we write η2
n ≤ L

∑
k<n bkN

2
k N

−2
n + L

∑
k≥n bk so that√

ηn ≤ L
∑

k<n

√
bkNkN

−1
n + L

∑
k≥n

√
bk, from which the result follows.

Exercise 7.3.10 (a) Use that As(u) = ∑
i aiχi(s)χi(u) and that the χi are

orthonormal. (b) ai0 =
∫
A(s)dμ(s). (c) From (7.36). (d) With obvious notation,

the hint implies that dAB(s, t) ≤ ‖A‖dB(s, t) + ‖B‖dA(s, t) so that (4.55) and
Exercise 2.7.4 imply that γ2(T , dAB) ≤ L‖B‖γ2(T , dA)+ L‖A‖γ2(T , dB) and the
result by (c).

Exercise 7.3.11 (a) Note that χt = χ(t)χ, so that U(χ)(t) = U(χ)t (0) =
U(χt)(0) = χ(t)U(χ)(0) = uχχ(t) where uχ = U(χ)(0). Thus, U(χ) = uχχ .
(b) Xs − Xt = U(A)s − U(A)t = U(As) − U(At) = U(As − At) so that
‖Xs − Xt‖ψ2 ≤ ‖U‖2,ψ2‖As − At‖2 = ‖U‖2,ψ2d(s, t). Then (2.60) states
that

∫
T

sups,t∈T |U(A)s(u) − U(A)t (u)|dμ(u) ≤ L‖U‖2,ψ2γ2(T , d), but the inte-
grand is independent of u and equals sups,t∈T |U(A)(s) − U(A)(t)|. Furthermore,
γ2(T , d) ≤ LN (A). (c)

|U(A)(0)−
∫

U(A)(t)|dμ(t)| ≤ sup
s,t∈T

|U(A)(s)− U(A)(t)| .

Now,
∫
U(A)(t)dμ(t) = ai0ui0 . We have seen that |ai0 | ≤ LN (A) and |ui0 | =

‖U(1)|‖2 ≤ ‖U‖2,ψ2 since ‖1‖2 = 1.
Exercise 7.4.1 The arch-typical example is when xi is the canonical basis of �∞n ,

and the example boils down to E supi≤n |εi| = 1 and E supi≤n |gi | of order
√

logn,
as follows from Exercise 2.3.7.

Exercise 7.4.3 Consider the set T of sequences (ti)i≤N with ti = ±1 and
card{i ≤ N; ti = −1} ≤ √

N . Consider the function χi on T given by χi(t) = ti .
Then for t ∈ T , we have |∑i εiχi(t)−

∑
i εi| = 2 card{i ≤ N; ti = −1} ≤ 2

√
N

so that E supt |
∑

i≤N εiχi(t)| ≤ 2
√
N . On the other hand,

∑
i≤N giχi(t) =
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∑
i≤N gi − 2

∑
i;ti=−1 gi so that E supt

∑
i≤N giχi(t) = E supI

∑
i∈I −gi where

the supremum is taken over all the sets I of cardinality≤ √N . Consider α such that
P(−g ≥ α) = 1/

√
N , where g is standard Gaussian. The events Ai = {−gi ≤ α}

are independent, each of probability 1/
√
N , so that about N/

√
N = √

N of them
occurs. This shows that supI

∑
i∈I −gi is typically of order

√
Nα, and α is about√

logN , so that E supI
∑

i∈I −gi is of order
√
N logN .

Exercise 7.4.4 (a) is an application of Theorem 6.2.8 to the set T =
{(aiχ(t))i≥1}. We write aiχ(t) = ui(t) + vi(t) where supi

∑
i |vi(t)| ≤ LS

and E
∑

t |
∑

i ui(t)gi | ≤ LS. We then have aiχi(s + t) = ui(s + t) + vi(s + t)

so that aiχi(t) = χi(−s)ui(s + t) + χi(−s)vi(s + t). Averaging over s for
the Haar measure dμ, we obtain aiχi(t) = ūi (t) + v̄i (t) where ūi (t) =∫
χi(−s)ui(s + t)dμ(s) = ∫

χi(t − s)ui(s)dμ(s) = χi(t)ūi (0). Similarly,
v̄i (t) = χi(t)v̄i (0) so that ai = ūi(0) + v̄i (0). Moreover,

∑
i |v̄i(0)| ≤ LS so

that E supt |
∑

i gi v̄i (0)χi(t)| ≤ E
∑

i |gi ||v̄i(0)| ≤ LS. Finally (easily) for each
s ∈ T , we have E supt |

∑
i giui(t)χi(−s)| ≤ LS so that E supt |

∑
i giui(t +

s)χi(−s)| ≤ LS and by averaging over s, E supt |
∑

i gi ūi(t)| ≤ LS. Finally, since
ai = ūi(0)+ v̄i (0), we have E supt |

∑
i giai(t)| ≤ LS.

Exercise 7.4.9 We will do only the easy part. Assume without loss of generality
that the sequence (|ai |) is non-increasing. Then Vn = {t ∈ T ; ∀i ≤ 2n, ti = 1} is a
neighborhood of the identity 1 of Haar measure 1/Nn, and for t ∈ Vn, we have

d(t, 1)2 ≤ 4
∑

i>2n
|ai|2 ≤ 4

∑

m≥n
2n|a2n|2

so that εn ≤ 2
∑

m≥n 2m/2|a2m| and
∑

n≥0 2nεn ≤ L
∑

m≥0 2m|a2m| ≤ L
∑

i |ai |.
Exercise 7.5.3 Since E(|a(Zi(s)−Zi(t)|∧1) ≤ P(|Zi | �= 0), we have ϕj (s, t) ≤

1 for all s, t ∈ G, and the claim is obvious.
Exercise 7.5.4 (a) Write the triangle inequality for the distance

√
ϕj and raise to

the square, using that (a + b)2 ≤ 2(a2 + b2). (b) It suffices to consider that case
of D − D. We prove first that for s ∈ D − D, we have ϕj (s, 0) ≤ 2d . For this,
we write s = a − b where a, b ∈ D so that using (a) and translation invariance
ϕj (s, 0) = ϕj (a − b, 0) = ϕj (a, b) ≤ 2(ϕj (a, 0) + ϕj (0, b)) ≤ 2d . We then use
(a) again to conclude. (c) By (7.67) for n ≥ 1, the set Dn = {s ∈ T ; ϕjn(s, 0) ≤ 2n}
satisfies μ(Dn) ≥ 1/Nn. According to Lemma 7.1.3, we can cover T by at most
Nn translates of Dn − Dn. According to Exercise 2.7.6, there exists an admissible
sequence of partitions (An) such that for A0 = {T } and that for n ≥ 1, each element
A ∈ A is included in a translate of Dn−1 − Dn−1 so that by (b) for s, t ∈ A, we
have ϕjn−1(s, t) ≤ 4 · 2n−1.

Exercise 7.5.7 When ϕj (s, t) = ∑
i |r2jai(χi(s) − χi(t))|2 ∧ 1 < 1, we have∑

i |r2jai(χi(s)−χi(t))|2 < 1. We then integrate in s with respect to μ using (7.34).
Exercise 7.5.12 Using symmetry and independence, we have E|∑i aiθi | ≤

LE
√∑

i a
2
i θ

2
i . Given u > 0, let Ωu the event defined by |aiθi | ≤ u for each

i. Then P(Ωc
u) ≤

∑
i P(|θi | ≥ u/|ai|) ≤ KS/up where S = ∑

i |ai|p. The
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trick is then to compute Ea2
i θ

2
i 1Ωu . Using (2.6) as in (7.88), one obtains that this

is ≤ Ku2−p|ai |p. Thus, E
∑

i a
2
i θ

2
i 1Ωu ≤ KSu2−p, and Markov’s inequality

proves that P(Ωu ∩ {∑i a
2
i θ

2
i ≥ u2}) ≤ KSu−p. Finally, we have proved that

P(
√∑

i a
2
i θ

2
i ≥ u) ≤ KSu−p, from which follows that E

√∑
i a

2
i θ

2
i ≤ KS1/p. To

prove that S ≤ KΔ(T , dp)
p, we consider the inequality

∑
i |ai |p|χi(s) − 1|p ≤

Δ(T , dp)
p, and we integrate in s ∈ T , using that

∫ |χi(s)− 1|pdμ(s) ≥ 1/K since∫ |χi(s)− 1|2dμ(s) = 2 and since 22−p|x|p ≥ |x|2 for |x| ≤ 2.
Exercise 7.6.5 This is a consequence of Lemma 7.6.4, setting Tω = {t ∈ T ;ω ∈

Ξt }, and using Lemma 7.6.1 to obtain the Eμ(Tω) ≥ c since p(t) = P(t ∈ Tω) =
P(Ξt ) ≥ c for each s.

Exercise 7.8.5 (b). For s, t ∈ U, s �= t since s − t �∈ B, there exists i ≤ N with
|χi(s − t) − 1| > α/2 so that |χi(s) − χi(t)| > α/2 and |χi(5s) − χi(5t)| > 2α
by (a). Now for u ∈ A, we have |χi(5s + u) − χi(5s)| = |χi(u) − 1| ≤ α. Thus,
for u, v ∈ A, we have χi(5s + u) �= χi(5t + v). (c) We can find U as in (b) with
cardU ≥ μ(A)/μ(B) because for the largest possible U , the sets s + B for s ∈ U

cover A. On the other hand, since the sets s + A for s ∈ U are disjoint, we have
μ(A) cardU ≤ 1. Thus, μ(A)2/μ(B) ≤ 1.

Exercise 7.8.17 This is Fubini’s theorem. Informally, we take expectation in the
equality μ(Dn\Bn,u) =

∫
Dn

1{s �∈Bn,u}dμ(s).
Exercise 7.8.20 Instead of integrating over all T , integrate over D0 = {s ∈

T ; ϕj0(s, 0) ≤ 1} and use that
∫
D0
|Zi(s) − Zi(0)|1 ≥ |Zi(0)|2 (as we have seen

several times).
Exercise 7.9.8 So for s ∈ Dn, we have

∑
i∈I |ai |2|χi(s) − 1|2 ≤ ε2

n, and by
integration over Dn, we get

∑
i∈Un

|ai |2 ≤ 2ε2
n. Assuming without loss of generality

that |ai | > 0 for i ∈ I , this shows that ∩nUn = ∅ and consequently that I = ∪nIn.
Using Theorem 7.8.1, this shows also that E‖∑i∈In aigiχ‖ ≤ L2n/2εn.

Exercise 7.9.9 The canonical distance d(s, t) =∑i≤N |χi(s) − χi(t)|2 satisfies
∫
D d(s, 0)2dμ(s) = 2Nμ(D)− 2Re

∫
D

∑
i≤N χi(s)dμ(s). By (7.125), we have

∫

D

∣
∣
∑

i≤N
χi(s)

∣
∣dμ(s) ≤ LC

√
Nμ(D)

√
log(2/μ(D)) ,

so that if log(2/μ(D)) ≤ N/(LC2), we have
∫
D
d(s, 0)2dμ(s) ≥ N and

supD d(s, 0)2 ≥ N . This prove that μ({s; d(s, 0) ≤ √
N)} ≤ 2 exp(−N/LC2),

from which the result follows by (7.4).
Exercise 7.10.2 (a) The series

∑
i≥1 P(|Wi | ≥ a) converges since a2P(|Wi | ≥

a) ≤ E(W 2
i ∧ a2), and so does the series

∑
i≥1 Wi1{|Wi |>a} because a.s. it has only

finitely many nonzero terms. Thus, it suffices to prove the convergence of the series∑
i≥1 Wi1{|Wi |≤a}, but symmetry and (7.197) imply that this series converges in

L2 (using Cauchy’s criterion) and hence in probability. The conclusion then follows
from Lemma 7.10.1. (b) If the series

∑
i Wi converges a.s. it has finitely many terms

which are ≥ 1 so the series
∑

i Wi1{|Wi |≤1} also converges, and we may assume
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|Wi | ≤ 1 without loss of generality. Consider a finite set I of indices and X =
(
∑

i∈I Wi)
2. Then EX = ∑i∈I EW 2

i and EX2 = ∑i1,i2,i3,i4∈I EWi1Wi2Wi3Wi4 =
2
∑

i,j∈I EW 2
i EW

2
j +

∑
i∈I EW 4

i , and since EW 4
i ≤ EW 2

i , we obtain that when

EX ≥ 1, then EX2 ≤ 3(EX)2 so that by the Paley-Zygmund inequality (6.15), we
obtain P(X ≥ EX/2) ≥ 1/L, and this should make the result obvious.

Exercise 7.10.3 If P(f ≥ δ) ≤ 1 − δ, then
∫
Ω
|f |dP ≤ δ where Ω = {|f | ≤ δ}

satisfies P(Ω) ≥ 1 − δ. Conversely, if
∫
Ω
|f |dP = α is small, then by Markov’s

inequality, P(Ω ∩ {|f | ≥ √
a}) ≤ √

α so that P(|f | ≥ √
a) ≤ √

α + P(Ωc).
Finally, if E|f |p = α is small, then P(|f | ≥ α1/(2p)) ≤ √α.

Exercise 7.12.3 Here in (7.38), one has ci = |ai |2, so the condition

∑

n≥0

2n/2(
∑

i≥Nn

|ai |2)1/2 <∞

is identical to the condition
∑

n≥0 2n/2bn <∞.
Exercise 8.2.2 You prove as usual that for |λ| ≤ 1/2, we have E expλY ≤

expLλ2 and using (2.6) that for |λ| ≥ 1/2 you have E exp |λY | ≤ exp(K|λ|q)
where 1/p + 1/q = 1 so that E expλY ≤ exp(K max(λ2, |λ|q)) for p < 2 and
E expλY ≤ exp(K min(λ2, |λ|q)) for p > 2. The rest is straightforward.

Exercise 8.2.10 We prove first that if t ∈ B(u), then the sequence t ′ = (t ′i )i≥1
where t ′i = ti1{|ti |≤4} satisfies ‖t ′‖ ≤ 4

√
u. Let us assume for contradiction that

S := ∑i≥1(t
′
i )

2 ≥ 16u. Then ai := t ′i
√
u/S satisfies |ai| ≤ 1 so that Û(ai) = a2

i

and
∑

i≥1 a
2
i = u. This, by definition of B(u), we have

∑
i≥1 aiti ≤ u. However,

this is impossible because
∑

i≥1 ait
′
i =

√
Su ≥ 4u.

Next, consider the sequence t ′′ = (t ′′i )i≥1 where t ′′i = ti1{|ti |>4}. Our goal is
to prove that

∑
i≥1 |t ′′i |q ≤ 22q−1u. Assuming that this is not the case, we may

by decreasing some ti if necessary assume that S := ∑
i≥1 |t ′′i |q = 22q−1u. Let

ai = c|t ′′i |q/p where c = (u/(2S))1/p = 4−q/4p so that |ai | ≥ 1 if ai �= 0.

Thus, Û(ai) ≤ 2|ai |p and
∑

i≥1 Û(ai) ≤ 2
∑

i≥1 |ai |p = 2Scp = u. But then,
∑

i≥1 aiti = c
∑

i≥1 |t ′′i |q/p+1 = cS = (u/2)1/pS1/q = 2u.
Exercise 8.3.6 Assume without loss of generality that N = Nτ for a certain

integer τ . For each integer p, consider the set Hp of sequences t = (ti) with the
following properties: Each 0 ≤ ti ≤ 1 is a multiple of 1/N , at most p coordinates
ti are not 0, and the corresponding i are ≤ N . Then, since there are at most Np

ways to choose the indices i where ti �= 0, by trivial bounds, one has cardHp ≤
N2p = 2p2τ+1

. Let us define Tn = {0} if n ≤ τ and Tn = Hp(n) where p(n) =
2n−τ−1 otherwise. Thus, cardTn ≤ Nn. Fix t ∈ convT , and assume without loss of
generality that the sequence (ti) is non-increasing. Now

∑
τ≤n≤2τ+1 tp(n)(p(n) −

p(n − 1)) ≤∑ ti = 1 so that
∑

τ≤n≤2τ+1 2n−τ−1tp(n) ≤ 2. Obviously, d(t, Tn) ≤
tp(n) + 1/N so that we have shown that

∑
τ≤n≤2τ+1 2nd(t, Tn) ≤ L2τ = L logN .

Now
∑

n≤τ 2nd(t, Tn) ≤ L2τ because d(t, Tn) ≤ 1 and
∑

n>2τ+1 2nd(t, Tn) can
be bounded by the usual dimensionality arguments.
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Exercise 8.3.7 First observe that γ1(T , d∞) is of order log k. On the other hand,
if xi denotes the i-th coordinate function, ‖∑i αixi‖∞ = ∑

i |αi |, from which
it follows (by considering the case where αi ∈ {0, 2/k} and

∑
i αi = 1) that

logN(convT , d∞, 1/4) is of order k, so that γ1(convT , d∞) is at least of order
k. Note that in that case, γ2(T , d2) is of order 2k/2√log k.

Exercise 9.2.3 For n ≥ 0, s, t ∈ A ∈ An, we have
∫ |2j ′n(A)(s(ω) − t (ω))|2 ∧

1dν(ω) ≤ u2n, and since
∑

n≥0 2n2−j ′n(A) ≤ 2
∑

n≥0 2nr−jn(A), Theorem 9.2.1
indeed follows from the special case r = 2.

Exercise 9.4.5 Obviously,ψj is translation invariant,ψj(t+s, t ′+s) = ψj (t, t
′).

And since it is the square of a distance, it satisfies the inequality ψj (t, t
′′) ≤

2(ψj (t, t
′) + ψj (t

′, t ′′)). As simple consequence is that for a set C = {s ∈
T ; ψj (s, 0) ≤ u} and any s ∈ T , then for t, t ′ ∈ s + C − C, we have
ψj(t, t

′) ≤ 24u. By Lemma 7.1.3, T can be covered by≤ Nn translates s+Cn−Cn

of Cn − Cn. So for each n, we have a partition Bn of T in Nn appropriately small
sets, and we construct the required admissible sequence of partitions in the usual
manner, An being the partition generated by An−1 and Bn−1.

Exercise 9.4.6 The idea is to apply Theorem 9.4.1 using the sequence of
partitions built in the previous exercise. A problem is that the sequence of partitions
lives on T , whereas Theorem 9.4.1 applies to sets of sequences, so some translation
is necessary. For this, it helps to write our finite sums

∑
i as infinite sums

∑
i≥1 with

the understanding that the terms of the sum are eventually zero. We may assume that
the sequence (jn)n≥0 is non-decreasing, simply by replacing jn by maxk≤n jk . For
s ∈ T and i ≥ 1, let us define θi(s) = ai(χi(s)−χi(0)) and θ(s) = (θi(s))i≥1 ∈ �2.
Thus,

sup
s∈T
∣
∣
∑

i≥1

εiai(χi(s)− χi(0))
∣
∣ = sup

s∈T
∣
∣
∑

i≥1

εiθi(s)
∣
∣ = sup

x∈θ(T )

∣
∣
∑

i≥1

εixi
∣
∣

and
∑

i≥1 |rj (θi(s)− θi(t))|2 ∧ 1 = ψj (s, t). We transport the admissible sequence
(An) constructed in Exercise 7.223 to T ∗ := θ(T ) to obtain an admissible sequence
(A∗

n). For A ∈ A∗
n, we set jn(A) = j ′n. It is then a simple matter to deduce (9.54)

from the application of Theorem 9.4.1 to the set T ∗, using also that for x =
(ai(χi(s) − χi(0)))i≥1 ∈ T ∗, we have |xi | ≤ 2|ai | so that

∑
i≥1 |xi |1{2|xi |≥r−j0 } ≤

2
∑

i≥1 |ai |1{4|ai |≥r−j0 }.
Exercise 10.3.5 Let us fix x > y and write a� = ϕc�,c(�+1)(x) − ϕc�,c(�+1)(y).

Thus, 0 ≤ a� ≤ c and
∑

� a� = x − y so that
∑

� a
2
� ≤ c

∑
� a� = c(x − y) and

∑
� a

2
� ≤ (

∑
� a�)

2 = (x − y)2, proving (10.39). Next, let k be the number of a�
which are �= 0. If k = 2, then (

∑
� a�)

2 ≤ 2
∑

� a
2
� . This is particularly the case

if x < y + c. Furthermore, c|x − y| = ∑
� ca� ≤ kc2 and

∑
� a

2
� ≥ (k − 2)c2

because all the a� which are not zero but 2 are equal to c. Since k ≤ 3(k − 2) for
k > 2 (10.38) follows.

Exercise 10.3.7 If b < 1, it is not possible to cover B1 by finitely many translates
of the set bB2 because given such a translate A, for n large enough, the basis unit
vector en does not belong to A. Also, εB2 + aB1 ⊂ (ε + a)B2.
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Exercise 10.3.8 According to Theorem 6.2.8, we can write T ⊂ T1 + T2 with
γ2(T1) ≤ Lb(T ) and T2 ⊂ Lb(T )B1. Then N(T1 + T2, εB2 + Lb(T )B1) ≤
N(T1, εB2) and we use Exercise 2.7.8 (c) to bound the last term.

Exercise 10.14.6 The main point is the inequality ϕj (s, t) ≤ r2jd(s, t)2, where
d is the �2 distance. Given an admissible sequence (An) of partitions, for A ∈ An,
define jn(A) as the largest integer j ∈ Z such that rjΔ(A)2 ≤ 2n/2, so that
r−jn(A) ≤ r2n/2D(A) and

∑
n≥0 2nr−jn(An(t)) ≤ r

∑
n≥0 2n/2Δ(An(t)) while

ϕjn(A)(s, t) ≤ 2n for s, t ∈ A ∈ An.
Exercise 10.15.3 Given the (εi)i∈I , we construct recursively a sequence σ1, . . . ,

σn, . . .with σn ∈ {0, 1} as follows. Assuming that σ1, . . . , σn have been constructed,
let i = (σ1, . . . σn) ∈ In, i0 = (σ1, . . . σn, 0) ∈ In+1 and i1 = (σ1, . . . σn, 1) ∈
In+1. We chose σn+1 = 0 if εi0 = 1, and otherwise, we take σn+1 = 1. It is
straightforward to show by induction that E

∑
k≤n

∑
i∈Ik εi ti =

∑
k≤n αk/2 where

for i ∈ Ik , we have ti = αk if i = (σ1, . . . , σk) and ti = 0 otherwise.
Exercise 11.6.2 The argument is given at the beginning of the proof of

Theorem 11.7.1.
Exercise 11.12.2 (a) Since δ(T ) = δ(convT ) and by Theorem 11.12.1. (b)

Taking A = γ1(T , d∞) the inequality γ2(T , d2) ≤ A/
√
δ is satisfied for δ small

enough, but γ1(convT , d∞) may be much larger than γ1(T , d∞).
Exercise 11.12.4 The use of (11.56) gives a bound of − logP(

∑
i∈I δi ≥ u) of

order min(u2/δ card I, u) which can match the bound (11.70) only when u is not
much larger than δ card I .

Exercise 12.1.2 Given M ≥ k, the probability of finding k points in A is
pM := (

n
k

)
P(A)k(1 − P(A)M−k , so the probability that card(A ∩ Π) = k is

∑
m≥k P(M = m)pm which you compute to be exp(−P(A))P(A)k/k!. As for the

property of Lemma 12.1.1, it is simply because given M and I = {i ≤ M,Yi ∈ A},
the points (Yi)i∈I are uniform i.i.d. in A, distributed according to the probability of
this lemma. When Ω is σ -finite but not finite, you break Ω into a countable disjoint
union of sets Ωn of finite measure, define independent random sets Πn in each of
them according to the previous procedure, set Π = ∪nΠn, and check that this works
by similar arguments.

Exercise 12.3.6 For the Lévy measure ν of a p-stable process, it never happens
that

∫ |β(t)| ∧ 1dν(β) < ∞ for all t ∈ T unless this Lévy measure is concentrated
at zero, because for a �= 0, the integral

∫ |ax−1/p|∧1dx is divergent. In fact, it is not
difficult to show that when

∫ |β(t)| ∧ 1dν(β) = ∞ if the sequence Zi is generated
by a Poisson point process of intensity ν, then

∑
i |Zi(t)| = ∞ a.s.

Exercise 12.3.14 Really straightforward from the hint.
Exercise 12.3.15 It is better to use the functional γ ∗(T , d) of (5.21), which in

the homogeneous case is just
∑

n≥0 en(T ) and the result by (7.5).
Exercise 12.3.16 By hypothesis, ν is the image of the measure μ⊗m on R

+×C
under the map (x, β) �→ xβ where m is supported by G, and μ has density x−p−1

with respect to Lebesgue’s measure. The result follows since β(0) = 1 for β ∈ G.
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Exercise 12.3.17 Combining Exercise 12.3.14 with Theorem 12.3.13, the only
point which is not obvious is that for p > 1, we have E supt∈T |Xt | <∞. Reducing
to the case where the Lévy measure is the measure ν1 of Theorem 12.3.11, this
follows from the fact that E|Xt | ≤ E

∑
i |Zi(0)| =

∫ |β(0)|dν1(β) < ∞ by
Exercise 12.3.16.

Exercise 12.3.18 As in the previous exercise, we reduce to the case where
the Lévy measure is the measure ν1 of Theorem 12.3.11, and we have to prove
an estimate P(

∑
i |Zi(0)| ≥ u) ≤ C/u. Consider the probability PN , the

conditional probability given the event that there are N numbers Zi , we bound
crudely PN(

∑
i |Zi(0)| ≥ u) ≤ NPN(∃i, Zi ≥ u/N) ≤ CN2/u, using both

Exercises 12.1.2 and 12.3.16, and the result follows by summation over N .
Exercise 13.2.2 Consider the subset A′ of A defined as follows: A sequence

(δi)i≤M is in A′ if and only if δi = 0 when i does not belong to any one of the sets
I� and

∑
i∈I� δi = 1 for each � ≤ r . The set A′ obviously identifies with

∏
�≤r I�.

Consider the uniform probability measure ν on A′. Consider a set I ⊂ {1, . . . ,M}.
Then A′ ∩HI = ∅ unless I ⊂ ∪�≤rI� and card I ∩I� ≤ 1 for each � ≤ r , and in that
case, ν(HI ) = k− card I (as belonging to HI amounts to fixing card I coordinates in
the product

∏
�≤r I�). Thus, ν(HI ) ≤ k− card I for each I . Hence if A ⊂ ∪I∈GHI ,

then
∑

I∈G k− card I ≥ 1.
Exercise 13.4.2 The class J consisting ofM disjoint sets of cardinality k satisfies

δ(J ) ≤ k. Fixing δ and k, Sδ(J ) is such that M(δk/Sδ(J ))Sδ(J ) ≤ 1 so that it goes
to ∞ as M →∞.

Exercise 13.4.3 Consider integers 2 � N2 � N1 and a number δ > 0 such
that S := 4δN1 = 2. Consider the class I0 of sets consisting of one single set D
of cardinality N1 and of M disjoint sets (Bi)i≤M , each of cardinality N2, where M

is the largest integer with M(N2/N1)
S ≤ 1/2 (so that M ≥ (N1/N2)

S/4). It is
straightforward that Sδ(I0) ≤ S. Consider the class I consisting of sets which are
union of two sets of I0. Then δ(I) ≤ 2δ(I0) ≤ LS. Consider now a class J of
sets such that I ⊂ J (1,m). The goal is to prove that given A > 0, for suitable
choices of N1 and N2, we have Sδ(J ) + m ≥ AS. Assume for contradiction that
Sδ(J )+m ≤ AS so that m ≤ AS and

∑

J∈J

(δ card J

AS

)AS ≤ 1 . (F.3)

In particular, card J ≤ AS/δ = 4AN1 for J ∈ J so that

card{i ≤ M; J ∩ Bi �= ∅} ≤ 4AN1 . (F.4)

Since I ⊂ J (1,m), given I ∈ I, there exists J ∈ J with card I \ J ≤ m.
In particular, given i ≤ M , there exists Ji ∈ J with card((D ∪ Bi) \ Ji) ≤ m.
Assume now N2 > AS ≥ m. When card((D ∪ Bi) \ Ji) ≤ m, since cardBi = N2,
we must have Ji ∩ Bi �= ∅. Combining with (F.3) shows that there are at least
M/(4AN1) different sets Ji . For each of these sets Ji , we have card(D \Ji) ≤ m so
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that card Ji ≥ N1/2, and since S = 4δN1, this implies δ cardJi/(AS) ≥ 1/8A. The
sum (F.4) is then at least

M

4AN1

( 1

8A

)AS ≥ 1

16AN1

(N1

N2

)S( 1

8A

)AS
,

and since S = 2, this cannot be ≤ 1 when N1 � N2. In conclusion, given a number
A, we choose N2 > 2A, N1 large enough, and then δ so that S = 4δN2 = 2, and
the previous construction provides a class I such that S(J ) + m ≥ AS whenever
I ⊂ J (1,m).

Exercise 14.1.3 Defining bn(F) = inf{ε > 0, N[ ](F , ε) ≤ Nn}, the right-hand
side of (14.8) is at least of order

∑
n≥0 2n/2bn(F), by the same argument as was

used to prove (2.40). One then proceeds exactly as in Exercise 2.7.6 to prove that
the previous quantity dominates the quantity (14.6).

Exercise 14.2.1 (a)
∫

exp(|f |/k)dμ ≤ (
∫

exp |f |dμ)1/k ≤ 2. (b) should be
obvious to you at this stage. (c) Since for x ≥ 0 we have exp x ≤ exp(1/4) exp x2 ≤
2 exp x2, when ‖f ‖ψ2 ≤ 1, we have

∫
exp(|f |)dμ ≤ 4 and (14.16) by (14.15). To

prove (14.17), assume ‖f1‖ψ2 ≤ 1, ‖f2‖ψ2 ≤ 2, and use that |f1f2| ≤ f 2
1 +

f 2
2 and the Cauchy-Schwarz inequality. (d) It is elementary that

∫
exp(g2/A2) =

A/
√
A2 − 2 for 0 < A < 2, so this norm is the positive solution of the equation

A2 = 4(A2 − 2), that is, A = √
8/3. (e) Combine the subgaussian inequality and

(b). For the rest, see the next exercise.
Exercise 14.2.3 The reader should review the proof of Theorem 6.7.2. We

consider the same chaining as in the proof a Theorem 14.2.2. Along the chains,
for we decompose each function, π(f ) − πn1(f ) as fn1 + fn,2 where fn,1 =
(πn(f ) − πn1(f ))1|π(f )−πn1 (f )|≤2−n/2

√
NΔ(An−1(f ),ψ2)

. We define F1 as the set of

sums
∑

1≤n≤n1
fn,1. By the method of Theorem 14.2.2, we then have γ2(F1, ψ2) ≤

Lγ2(F , ψ2) and γ1(F1, d∞) ≤ √
Nγ2(F , ψ2). Let F ′

2 be the sets of sums∑
1≤n≤n1

fn,2. We will show that E supf∈F ′
2

∑
i≤N |f (Xi)|. This will finish the

proof since the chaining beyondn1 involves no cancellations as is shown in the proof
of Theorem 6.7.2. This follows from Lemma 14.2.4 and the following observation:
If ‖f ‖ψ2 ≤ 1 and a ≥ 1, then ‖f 1|f |≥a‖ψ1 ≤ L/a. Thus, P(

∑
i≤N |f2,n(Xi)| ≤

u2n/2
√
NΔ(An−1(f ), ψ2)) ≤ exp(−LNu), etc.

Exercise 14.2.10 As always, we start with the relation exp x ≤ 1+x+x2 exp |x|
which is obvious on power series expansions. Thus, using Hölder’s inequality, we
get

E exp(λY ) ≤ λ2EY 2 exp |λY | ≤ λ2(EY 6)1/3(E exp 3|λY |/2)2/3 .

It then remains to prove that EY 6 ≤ LA6 and E exp 3|λY |/2 ≤ L expλ2A2 which
follows from a routine use of (2.6).
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Exercise 15.1.9 (a) Consider an admissible sequence (An) of partitions of T such
that

∀t ∈ T ,
∑

n≥0

2n/2Δ(An(t), dω) ≤ 2γ2(T , dω) . (F.5)

For n ≥ 1 set T ′n = ∪{A ∩ D ; A ∈ An;D ∈ Dn, μ(A ∩ D) ≤ 2N−1
n++2

}
. Since

T ′n is the union of ≤ N2
n = Nn+1 sets of measure ≤ 2N−1

n+2 = 2N−2
n+1, we have

μ(T ′n) ≤ 2N−1
n+1. Also, for t ∈ Tn := T \ T ′n, we have μ(An(t) ∩Dn(t)) ≥ 2N−1

n+2
so that ηn,ω(t) ≤ Δ(An(t), dω). Thus,

∫

T

2n/2ηn,ω(t) ≤ 2n/2N−1
n+1Δ(T , dω)+

∫

T

2n/2Δ(An(t), dω)dμ(t) .

Summing over n ≥ 0 and since Δ(T , dω) ≤ Lγ2(T , dω) we obtain the result, using
also (F.5). (b) It suffices to assume that εn(t) > K2n/2Δ(Dn(t), d1). By definition
of εn(t),

μ({s ∈ Dn(t) ; d(s, t) ≤ θn(t)/2}) ≤ μ({s; d(s, t) ≤ θn(t)/2}) ≤ N−1
n+2 .

If s ∈ Dn(t) and d(s, t) ≥ εn(t)/2, then d(s, t) ≥ K12n/2Δ(Dn(t), d1)/2 ≥
K12n/2d1(s, t)/2. Thus, the right-hand side of (15.23) is ≤ exp(−2n) for a suitable
choice of K1. As usual, this implies that with large probability, we have

μ({s ∈ Dn(t); d(s, t) ≤ αθn(t)/2)}) ≤ α−1 exp(−2n),

and then by Fubini theorem that with large probability μ({s ∈ Dn(t) ≤
αεn(t)/2}) ≤ 2N−1

n+2 so that ηn,ω(t) ≥ αθn(t)/2 and (15.28) is proved. Combining
the preceding, we have

∫

T

∑

n≥0

2n/2εn(t)dμ(t) ≤ K sup
t∈T

∑

n≥0

2nΔ(Dn(t), d1)+KEγ2(T , dω) .

By an appropriate choice of the Dn, we obtain
∫
T

∑
n≥0 2n/2εn(t)dμ(t) ≤

Kγ1(T , d1) + KEγ2(T , dω) and consequently
∫
T Iμ(t)dμ(t) ≤ Kγ1(T , d1) +

KEγ2(T , dω). The result follows since μ is arbitrary.
Exercise 15.1.14 First, we show that εΔ(T , d) ≤ KM . Indeed, for s, t ∈ T ,

by (15.22), we have P(dω(s, t) ≥ αd(s, t)) ≥ α so that according to (15.24), with
positive probability, we have at the same time dω(s, t) ≥ αd(s, t) and γ2(T , dω) ≤
M , and since dω(s, t) ≤ Lγ2(T , dω), we have d(s, t) ≤ KM . Thus, Δ(T , d) ≤
K1M . Consequently,N(T , d, ε) = 1 for ε ≥ K1M and thus ε

√
logN(T , d, ε) = 0.

Consider 0 < ε ≤ K1M and assume that we can find points t1, . . . , tN of
T with d(ti, tj ) ≥ ε > 0 for i �= j . Then by (15.23) for i �= j , we have
P(dω(ti , tj ) ≤ αε) ≤ (1/α) exp(−αε2/Δ(T , d1)). For ε ≥ K

√
logNΔ(T , d1),
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the right-hand side is ≤ α/2N2. According to (15.24), with positive probability,
we have at the same time dω(ti , tj ) ≥ αε for all i �= j and γ2(T , dω) ≤ M . Since
εα
√

logN ≤ Lγ2(T , dω), this proves that ε
√

logN ≤ KM . That is, we have proved
that

√
logN ≤ ε/(K2Δ(T , d1))⇒

√
logN ≤ K2M/ε , (F.6)

and without loss of generality, we may assume that K2 ≥ K1. Let us assume now
that ε/(K2Δ(T , d1)) ≥ 2K2M/ε (or, equivalently, ε ≥ K2

√
2Δ(T , d1)M). Observe

that then since ε < K1M , we have 2K2M/ε ≥ 2. Let us prove that we must have√
logN ≤ 2K2M/ε. Otherwise, we may replace N by the largest integer N ′ for

which
√

logN ′ < 2K2M/ε. Then 2K2M/ε ≤ √
log(N ′ + 1) < 2

√
logN ′, and

thus, we obtain the relations K2M/ε <
√

logN ′ ≤ 2K2M/ε ≤ ε/(K2Δ(T , d1))

which contradict (F.6). Thus,
√

logN(T , d, ε) ≤ KM/ε which concludes the proof.
The application to Proposition 15.1.13 is straightforward as (15.24) holds for M =
LS(T ).

Exercise 15.1.17 Indeed (15.44) implies logN(T , d∞, α) ≤ LS(T )2/α2. Now,
if B is a ball B∞(t, α) of T for α = ε2/L′S(T ), since Δ(B∞(t, α), d∞) ≤ 2α,
for L′ large enough, the right-hand side of (15.40) holds and this inequality
implies logN(B, d2, ε) ≤ LS(T )2/ε2. Since N(T , d2, ε) ≤ N(T , d∞, α) ×
maxt∈T N(B∞(t, α), d2, ε), combining these yields

logN(T , d2, ε) ≤ L
(S(T )4

ε4 + S(T )2

ε2

)
.

Thus, N(T , d2, ε) = 1 for ε ≥ LS(T ). For ε ≤ LS(T ), the term S(T )4/ε4

dominates, and this implies (15.43).
Exercise 15.2.2 To each tensor A, we associate the r.v. XA given by (15.55).

We deduce from (15.69) that ‖XA‖p ≤ K(d)
∑

1≤k≤d pk/2‖A‖(k) where ‖A‖(k) =∑
cardP=k ‖A‖P . To turn this inequality in a tail estimate, we use that tP(|XA| ≥

t)1/p ≤ ‖XA‖p so that

logP(|XA| ≥ t) ≤ p log
(1

t

∑

1≤k≤d
pk/2‖A‖(k)

)
.

We then take p = (1/K(d))min1≤k≤d(t/‖A‖(k))2/k to obtain a bound

P(|XA| ≥ t) ≤ K(d) exp
(
− 1

K(d)
min

1≤k≤d

( t

‖A‖(k)
)2/k)

.

Considering a set T of tensors A and dk the distance on T induced by the norm
‖ · ‖(k), we then have the bound E supA∈T XA ≤ K(d)

∑
1≤k≤d γ2/k(T , dk).

Exercise 15.2.8 Since A is symmetric, we have α(y) = sup{〈x, y〉; x ∈ A} so
that Eα(G) = E supx∈A〈x,G〉 = g(A) by definition of that quantity.
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Exercise 15.2.16 We have ‖〈A,G1〉‖{2,3} = (
∑

j,k

(∑
i ai,j,kg

1
i )

2)1/2 so that by

the Cauchy-Schwarz inequality, E‖〈A,G1〉‖{2,3} ≤ (
∑

i,j,k a
2
i,j,k)

1/2 = ‖A‖{1,2,3}.
Exercise 16.2.2 It is obvious that N(T , d, 2−n/2) ≤ Mn := card{I ∈ In ; I ∩

T �= ∅}. On the other hand, one has Mn ≤ 2N(T , d, 2−n/2). Indeed, if the intervals
I ∈ In which meet T are numbered as I1, I2 . . . from left to right, then any points
in I1, I3, I5, . . . are at mutual distances > 2−n/2. We have already proved (d) as a
consequence of 16.5. To prove (c), one simply uses the Cauchy-Schwarz inequality
to obtain

∑
I∈In

√
2−nμ(I) ≤ √2−n card{I ∈ In ; I ∩ T �= ∅}.

Exercise 16.3.4 We observe that the function x(log(2/x))2 increases for x

small. Distinguishing whether an ≥ 1/n2 or not, we get an(log(2/an))2 ≤
Lan(logn)2 + Ln−2(logn)2, and by summation, this proves that (16.16)
implies (16.21)1 Assuming now that the sequence (an) decreases, (16.21) implies
that

∑
k 2ka2k (log(2/a2k ))

2 < ∞ so that a2k ≤ C2−k and for k large enough
log(2/a2k ) ≥ k/L and thus

∑
k 2ka2k (log k)2 <∞ which implies (16.16).

Exercise 16.3.5 The recursion formula is simply

M(T ) = 1
√

2n(T )μ(In(T )(T ))
+ max

i=1,2
M(T ∩ Ii) .

Exercise 16.5.3 Take εn = 2−nΔ(T , d) and T with card Tn = N(T , d, εn) and
d(t, Tn) ≤ εn for t ∈ T .

Exercise 16.8.17 Let us follow the hint. Then given s, t , we have |Xs − Xt | =
ϕ−1(N/(2ε)) on the set Ωs ∪ Ωt of probability 2ε/N and zero elsewhere, and
thus, Eϕ(Xs − Xt) ≤ 1. The r.v. sups,t |Xs − Xt | equals ϕ−1(N/(2ε)) on the
set
⋃

t∈T Ωt of probability ε and zero elsewhere so that for A > 0, we have
‖ sups,t |Xs − Xt |‖ψ ≤ A ⇒ εψ(ϕ−1(N/(2ε))/A) ≤ 1. Since in our case the
integral in the right-hand side of (16.177) is ϕ−1(N), this inequality implies that for
all choices of N and ε, one must have εψ(ϕ−1(N/(2ε))/(Lϕ−1(N))) ≤ 1. Setting
x = Lϕ−1(N) and y = ϕ−1(N/(2ε))/x and eliminating ε and N yields the relation
ϕ(x/L)ψ(y) ≤ 2ϕ(xy) which is basically (16.170).

Exercise 16.9.2 It follows from the Cauchy-Schwarz inequality that for
any probability μ, we have 1 ≤ ∫ 1

0 μ(B(t, ε))dt
∫ 1

0 dt/μ(B(t, ε)). Now, by

Fubini theorem, denoting by λ Lebesgue’s measure on [0, 1], ∫ 1
0 μ(B(t, ε))dt =

∫
dμ(u)λ(B(t, ε)) ≤ 2ε, and thus

∫ 1
0 dt/μ(B(t, ε)) ≥ 1/(2ε). Integrating in ε

yields the result.
Exercise 16.9.3 For k ≥ 1 and t ∈ T , define the function Yk,t by Yk,t (s) = 1

if d(s, t) ≤ 2−k and Yk,t (s) = 0 otherwise. Consider Yk,t as a r.v. on the basic
probability space (T , μ) where μ is the uniform measure on T . Consider the r.v.
Xt = ∑

k≥1 Yk,t . It should be obvious that supt Xt = ∞. On the other hand,

1 This is also a consequence of Corollaries 16.3.1 and 16.3.2, but the direct proof is much clearer.
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consider s, t ∈ T with d(s, t) = 2−�. Then Yk,t = Xk,t for k ≤ �. Thus,
E|Xs −Xt | ≤∑k>� E(Yk,s + Yk,t ) =∑k>� 2−k+1 = 2−�+1 = 2δ(s, t).

Exercise 16.9.4 Simply replace the inequality (16.129) by the simpler |Xs −
Xθn(s)| ≤ d(s, θn(s))

(|Xs −Xθn(s)|/d(s, θn(s))
)
, and follow the same proof.

Exercise 18.1.4 According to (18.11) for each u ≥ 1, the convex set C(u) :=
{ψ ≤ u} is invariant by the symmetries (x1, x2, x3) �→ (±x1,±x2,±x3). Consider
the smallest box B = [−a, a] × [−b, b] × [−c, c] containing C. Then the points
(±a, 0, 0), (0,±b, 0), (0, 0,±c) belong to C(u), and thus B/3 ⊂ C(u). Given
k ≥ 0, let us define (mj (k))j≤3 as the smallest integers such that C(Nk) ⊂ B(k) :=
[−2m1(k), 2m1(k)] × [−2m2(k), 2m2(k)] × [−2m3(k), 2m3(k)]. Observe the fundamental
fact that B(k)/6 ⊂ C(Nk). According to (18.10), we have 2m1(k)+m2(k)+m3(k)+3 ≥
logNk ≥ 2k−1 so that m1(k) + m2(k) + m3(k) ≥ k − 4. Also, mj (k) ≥ 0
from (18.12). It should be clear that we can find sequences (nj (k))j≤3 such
that nj (k) ≤ mj(k + 4) which satisfy (18.2). Observe then that Sk ⊂ Bk+4.
Recalling (18.3), we consider the function ϕ given by (18.5), and we proceed to
prove that ψ(x) ≤ ϕ(Lx). Since ϕ ≥ 1, this is always the case when ψ(x) ≤ 1.
It follows from (18.12) that the set {ψ ≤ 1} contains the set D = [−1/3, 1/3]3 so
that if L is large enough S5/L ⊂ D so that ψ(x) ≥ 1 ⇒ ϕ(x) ≥ N5, and it suffices
to consider the case ψ(x) ≥ N5. Consider then the largest k such that ψ(x) > Nk ,
so k ≥ 5. Then Sk−4/6 ⊂ Bk/6 ⊂ C(Nk) and then Sk+1/L ⊂ C(Nk). Since
x �∈ C(Nk), this proves that ϕ(x/L) ≥ Nk+1 so that ϕ(x/L) ≥ ψ(x) by definition
of k.

Exercise 19.2.6 Small variation on the proof of Lemma 19.2.5.
Exercise 19.2.7 So there exists a set Un ⊂ �2 with cardUn ≤ 5card In , ‖u‖ ≤

2an and B2(In, an) ⊂ convUn. Let U = ⋃
n≥1 Un so that given a > 0, we have

Na := card{u ∈ U ; ‖u‖ ≥ a} ≤ ∑{5card In ; 2an ≥ a}. Now for 2an ≥ a,
we have n + 1 ≤ exp(4/a2), and since 5card In ≤ (n + 1)log 5, we have Na ≤
exp(L/a2). Thus, if we enumerate U as a sequence (uk) such that the sequence
(‖uk‖)k≥1 is non-increasing, we have ‖uk‖ ≤ L/

√
log(k + 1). On the other hand,

supn≥1 an(
∑

i∈In g
2
i )

1/2 ≤ supk
∑

i≥1 uk,igi .
Exercise 19.2.8 We use the following form of (2.61): P(sups,t∈Tn |Xs − Xt | ≥

L(g(Tn)+ ubn)) ≤ L exp(−u2), and by the union bound as usual

P
(∀n ≥ 1, sup

s,t∈Tn
|Xs −Xt | ≥ Lu(g2(Tn)+ bn

√
logn)

) ≤ L exp(−u2)

and hence E supn,s,t∈Tn |Xs − Xt | ≤ L supn L(g(Tn) + bn
√

log(n+ 1)) which
implies (19.61). We then apply this inequality to the case Tn = B2(In, an).

Exercise 19.2.16 Consider a set Jn ⊃ In with log(n+ 1) ≤ card Jn ≤ 2 log(n+
1). Then

‖x‖ ≤ LS sup
n≥1

(
1

log(n+ 1)

∑

i∈In
x2
i

)1/2

≤ LS sup
n≥1

(
1

cardJn

∑

i∈Jn
x2
i

)1/2

.
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Exercise 19.2.18 The set T of (19.83) satisfies T ⊂ LB1S by a simple adaptation
of Lemma 19.2.17, and it satisfies γ1(T , d∞) ≤ LS by Theorem 8.3.3. The result
follows from Theorem 19.2.10 as in the proof of Theorem 8.3.3.

Exercise 19.3.6 The result of Proposition 2, (ii) of [24] states (changing ε into
ε/5 and taking θ = 2ε) that

N(X∗1 , d∞, ε) ≤ N(X∗1 , δ∞, 2ε)N(W, ‖ · ‖, ε/K) .

Using (19.123) to bound the last term, we obtain

logN(X∗1 , d∞, ε) ≤ logN(X∗1 , δ∞, 2ε)+K(p, η)
(S

ε

)p
logN ,

through which the desired result holds using iteration.
Exercise A.1.2 When there is a matching π between the points Xi and evenly

spread points Yi with d(Xi, Yπ(i)) ≤ A, then for any set C, we have card{i ≤
N;Xi ∈ C} ≤ card{i ≤ N, d(Yi, C) ≤ A}. Any point Yi with d(Yi, C) ≤ A

is such that every point of the corresponding little rectangle is within distance ≤
A+ L/

√
N of A. When C is the interior of a curve of length ≤ 1, the set of points

within distance ε of C has area ≤ λ(C) + Lε. For A ≥ 1/
√
N , this proves that

card{i ≤ N; d(Yi, C) ≤ A} ≤ Nλ(C) + LNA. This provides an upper bound
card{i ≤ N;Xi ∈ C} ≤ Nλ(C) + LNA. The lower bound is similar.

Exercise C.2.1 This is because (C.7) is satisfied for ν =∑u∈T μu, where μu is
the image of νu under the map ϕu : R → R

T given by ϕu(x) = (β(t))t∈T where
β(u) = x and β(t) = 0 for t �= u and where νu is the measure which satisfies (C.5)
for Xu.



Appendix G
Comparison with the First Edition

This section will try to answer two questions:

• If you have some knowledge of the first edition (hereafter referred to as OE),
what can you find of interest in the present edition?

• If you bought the present edition (hereafter referred to as NE), may you find
anything of interest in OE?

The short answer to the first question is that yes, there have been some
dramatic improvements in some key mathematics (both in the proofs and the results
themselves), and to the second question, it is no, unless you are a specialist of
Banach space theory.

Generally speaking, the entire text has been revised and polished, so at every
place, NE should be better than OE. Greater attention has been paid to pedagogy,
by breaking long proofs into smaller pieces which are made to stand out on their
own. Some points, however, are a matter of taste. More variations on the theory
of “functionals” are presented in OE, although nothing essential is omitted here.
Another technical choice which is a matter of taste is as follows. In the basic
constructions of partitions in metric spaces, in OE, the size of the pieces is controlled
by the radius of these pieces, whereas in NE, it is controlled by their diameter. This
leads to slightly simpler proofs at the expense of some worse numerical constants
(whose value is anyway irrelevant).

At the level of global organization, a major decision was to present the proof of
Theorem 6.2.8 (the Latała-Bednorz theorem) at a later stage of the book, in the tenth
chapter rather than in the fifth. The author started working on this problem as soon
as he identified it, around 1989, and a significant part of the results of this book
here discovered during this effort. Whereas, strictly speaking, some of these results
are not needed to understand the proof of the Latała-Bednorz result, the underlying
ideas are part of that proof. It might require suprahuman dedication to understand
the proof of the Latała-Bednorz theorem as it is given in OE, but now we try to
prepare the reader by studying random Fourier series and families of distances first.
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Although we could not simplify the proof of the Latała-Bednorz result itself, we
tried to prepare the reader by working backward and rewriting the proofs of the
other “partition schemes” of the same general nature exactly in the same form as
will be done for this theorem. Thus, if OE frustrated your attempts to understand
this proof, you may try again, reading in order Chaps. 2, 6, 7, 9, and 10.

A major difference between OE and NE is that a number of proofs are now quite
shorter. At some places, like Chap. 18, this was simply achieved by reworking the
arguments, but at many other places, the mathematics are just better. Most of the
improvements can be traced back to a simple new idea: The method which we use
to provide lower bounds for random Fourier (the key step of which is Lemma 7.7.3)
series can be generalized to conditionally Bernoulli processes by appealing to
Theorem 10.15.1 (which makes full use of the Latała-Bednorz theorem), leading
to Lemma 11.4.1. The author then combined this idea with the idea of witnessing
measures (as in Sect. 3.4) which replace the use of the Haar measure on groups.
Then Witold Bednorz and Rafał Martynek [18] observed that in the case of infinitely
divisible processes, this method could be combined with Fernique’s convexity
argument to remove a technical condition the author was assuming. As the case of
infinitely divisible processes had been showcased by the author precisely because
it looked like an entry door to more general situations (such as those of empirical
processes), this shortly lead to a positive solution of three of the main conjectures
of OE, which are presented, respectively, in Theorems 6.8.3, 11.12.1, and 12.3.5.

We have considerably shortened Chap. 19 for the simple reason that the field
of Banach Spaces attracts much less attention than it used to do. We have kept
only the topics which are very directly related to other material in the book. This
is the one single area where the specialist may like to look at OE. We have also
deleted results and arguments which are too tedious or too specialized compared
to what they achieve. For example, we have deleted parts of the proof of Shor’s
matching theorem (Theorem 17.1.3), as the method we follow there cannot yield
an optimal result. It serves no purpose to make an exhaustive list of the deleted
results which are mentioned at the relevant places in the present text for the sake of
the (purely hypothetical) reader who really wants to master all details and go fetch
them in OE. The single simple result which we have not reproduced and which is
not too specialized is the abstract version of the Burkholder-Davis-Gundy of the
appendix A.6 of OE (while the other material of this appendix has now found its
way elsewhere).
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