## Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.



This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/authorsrights

# On T. Bartoszynski's structure theorem for measurable filters 

Une preuve de la caractérisation par T. Bartoszynski des filtres mesurables
Michel Talagrand
Institut de Mathématiques, UMR 7586 CNRS, 4, place Jussieu, 75230 Paris cedex 05, France

## A R T I C L E I N F O

## Article history:

Received 3 April 2013
Accepted after revision 12 April 2013
Available online 7 May 2013
Presented by Michel Talagrand


#### Abstract

We give a streamlined proof of T. Bartoszynski's characterization of Lebesgue-measurable filters. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É


Nous donnons une démonstration simplifiée d'un théorème remarkable de T. Bartoszynski caractérisant les filtres qui sont Lebesgue-mesurables en tant que sous-ensembles de $\{0,1\}^{\mathbb{N}}$.
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## 1. Introduction

In this paper, we identify the collection of subsets of $\mathbb{N}$ with $\Omega:=\{0,1\}^{\mathbb{N}}$; so a subset of $\mathbb{N}$ is denoted by $x, y, z$. A (proper) filter $\mathcal{F}$ is a collection of infinite subsets of $\mathbb{N}$ such that:

$$
\begin{aligned}
& x \in \mathcal{F}, \quad x \subset y \quad \Rightarrow \quad y \in \mathcal{F}, \\
& x, y \in \mathcal{F} \quad \Rightarrow \quad x \cap y \in \mathcal{F}
\end{aligned}
$$

and $[n, \infty[\in \mathcal{F}$ for each $n$. We denote by $\lambda$ the canonical measure on $\Omega$. By the zero-one law any filter is either of measure zero (and then measurable) or of outer measure 1 (and hence non-measurable).

Given a finite subset $I$ of $\mathbb{N}$ and $x \in \Omega$, we write

$$
U(x, I)=\left\{y \in \Omega ; \forall i \in I, y_{i}=x_{i}\right\} .
$$

Then $\lambda(U(x, I))=2^{-\operatorname{card} I}$. There are exactly $2^{\text {card } I}$ sets of this type, which form a partition of $\Omega$. We say that a subset $C$ of $\Omega$ depends only on the coordinates in $I$ if $C=\bigcup_{x \in C} U(x, I)$. Then given $x, y \in \Omega$ with $x_{i}=y_{i}$ for $i \in I$, either both of them or none of them belong(s) to $C$. The main purpose of this note is to give a streamlined proof of the following remarkable result of T. Bartoszynski [1].

Theorem 1. A filter is measurable if and only if one can find disjoint finite sets $I_{k}$ and sets $C_{k}$ depending only on the coordinates in $I_{k}$ such that:

[^0]$$
\sum_{k} \lambda\left(C_{k}\right)<\infty
$$
and each element $x \in \mathcal{F}$ belongs to infinitely many sets $C_{k}$.

## 2. Proof of Theorem 1

The "if" part is trivial, and the problem is to prove the other direction. Given a compact set $K \subset \Omega$, we denote

$$
K_{n}=\left\{y \in \Omega ; \exists x \in K, \forall i<n, x_{i}=y_{i}\right\} ; \quad K^{n}=\left\{y \in \Omega ; \exists x \in K, \forall i \geqslant n, x_{i}=y_{i}\right\}
$$

Thus $K=\bigcap_{n} K_{n}$; therefore

$$
\lim _{n \rightarrow \infty} \lambda\left(K_{n} \backslash K\right)=0
$$

Moreover, it is well known that:

$$
\lambda(K)>0 \Rightarrow \lim _{n \rightarrow \infty} \lambda\left(K^{n}\right)=1
$$

Proving this property is how one may prove the zero-one law. We then denote $K_{n}^{\ell}=\left(K^{\ell}\right)_{n}$ and we observe that $K_{n}^{n}=\Omega$.
Let us set $n_{0}=0$. We then construct inductively a sequence $\left(n_{k}\right)$ growing fast enough so that:

$$
p \leqslant k \Rightarrow \lambda\left(K_{n_{k+1}}^{n_{p}} \backslash K^{n_{p}}\right) \leqslant 2^{-n_{k}-3 k-3}, \quad \lambda\left(\Omega \backslash K^{n_{k+1}}\right) \leqslant 2^{-n_{k}-3 k-3}
$$

We set

$$
A_{k}=\bigcup_{p \leqslant k}\left(K_{n_{k}}^{n_{p}} \backslash K_{n_{k+1}}^{n_{p}}\right)
$$

Since $A_{k} \subset\left(\Omega \backslash K^{n_{k}}\right) \cup \bigcup_{p<k}\left(K_{n_{k}}^{n_{p}} \backslash K^{n_{p}}\right)$, we have $\lambda\left(A_{k}\right) \leqslant 2^{-n_{k-1}-2 k}$. Moreover, the set $A_{k}$ depends only on the coordinates of rank $<n_{k+1}$. We consider the disjoint intervals $I_{k}=\left[n_{k}, n_{k+1}[\right.$ and the sets

$$
B_{k}^{1}=\left\{x \in \Omega ; \lambda\left(U\left(I_{k}, x\right) \cap A_{k+1}\right) \geqslant 2^{-n_{k}-k} \lambda\left(U\left(I_{k}, x\right)\right)\right\}
$$

The set $B_{k}^{1}$ depends only on the coordinates in $I_{k}$. It is the union of some of the sets of the type $U\left(x, I_{k}\right)$ and thus $\lambda\left(B_{k}^{1} \cap A_{k+1}\right) \geqslant 2^{-n_{k}-k} \lambda\left(B_{k}^{1}\right)$ and, in particular, $\lambda\left(B_{k}^{1}\right) \leqslant 2^{n_{k}+k} \lambda\left(A_{k+1}\right) \leqslant 2^{-k}$. We further define

$$
B_{k}^{2}=\left\{x \in \Omega ; \lambda\left(U\left(I_{k}, x\right) \cap A_{k}\right) \geqslant 2^{-n_{k-1}-k} \lambda\left(U\left(I_{k}, x\right)\right)\right\}
$$

and, similarly $\lambda\left(B_{k}^{2}\right) \leqslant 2^{-k}$. We set $B_{k}=B_{k}^{1} \cup B_{k}^{2}$ so that $\lambda\left(B_{k}\right) \leqslant 2^{-k-1}$. Thus $\sum_{k} \lambda\left(B_{k}\right)<\infty$ and the set $B_{k}$ depends only on the coordinates in $I_{k}$.

If it is the case where each $x \in \mathcal{F}$ belongs to infinitely many sets $B_{k}$, the proof is finished. So we may assume that this is not the case, and we fix $x \in \mathcal{F}$ and $k_{0}$ such that $x \notin B_{k}$ for $k \geqslant k_{0}$. We then define $C_{k}=C_{k}^{1} \cup C_{k}^{2}$ where

$$
\begin{aligned}
& C_{k}^{1}=\left\{y \in \Omega ; U\left(I_{k}, y\right) \cap U\left(I_{k+1}, x\right) \cap A_{k+1} \neq \emptyset\right\} \\
& C_{k}^{2}=\left\{y \in \Omega ; U\left(I_{k}, y\right) \cap U\left(I_{k-1}, x\right) \cap A_{k} \neq \emptyset\right\}
\end{aligned}
$$

Since the set $A_{k+1}$ depends only on the coordinates $<n_{k+2}$, we have

$$
y \in C_{k}^{1} \Rightarrow \lambda\left(U\left(I_{k}, y\right) \cap U\left(I_{k+1}, x\right) \cap A_{k+1}\right) \geqslant 2^{-n_{k+2}}=2^{-n_{k}} \lambda\left(U\left(I_{k}, y\right)\right) \lambda\left(U\left(I_{k+1}, x\right)\right)
$$

so that summation over the disjoint sets of the type $U\left(I_{k}, y\right) \subset C_{k}^{1}$ yields

$$
\lambda\left(C_{k}^{1} \cap U\left(I_{k+1}, x\right) \cap A_{k+1}\right) \geqslant 2^{-n_{k}} \lambda\left(C_{k}^{1}\right) \lambda\left(U\left(I_{k+1}, x\right)\right)
$$

For $k>k_{0}$, we have $x \notin B_{k+1}^{2}$ and thus $\lambda\left(U\left(I_{k+1}, x\right) \cap A_{k+1}\right) \leqslant 2^{-n_{k}-k} \lambda\left(U\left(I_{k+1}, x\right)\right)$. Consequently, $\lambda\left(C_{k}^{1}\right) \leqslant 2^{-k}$. By a similar argument, we see that $\lambda\left(C_{k}^{2}\right) \leqslant 2^{-k}$. Thus if $C_{k}=C_{k}^{1} \cup C_{k}^{2}$ we have $\sum_{k} \lambda\left(C_{k}\right)<\infty$.

To conclude the proof, we show that any $z \in \mathcal{F}$ belongs to infinitely many sets $C_{k}$. Consider $y \in \Omega$ given by $y_{i}=z_{i}$ if $i$ belong to an interval $I_{k}$ for $k$ even, and $y_{i}=x_{i}$ otherwise. Then $y \in \mathcal{F}$ because $x, z \in \mathcal{F}$ and $x \cap z \subset y$. Note also by construction that $y \in U\left(I_{k}, x\right)$ when $k$ is odd. Consider $q \geqslant k_{0}+1$ arbitrarily large. Then $y \in K_{n_{q}}^{n_{q}}=\Omega$ while $y \notin K^{n_{q}}$. Thus there is largest $p \geqslant q$ such that $y \in K_{n_{p}}^{n_{q}}$. Then $y \in K_{n_{p}}^{n_{q}} \backslash K_{n_{p+1}}^{n_{q}} \subset A_{p}$. Assume first that $p$ is odd. Then $y \in U\left(I_{p}, x\right), y \in$ $U\left(I_{p-1}, y\right)$, so that it is obvious that $y \in C_{p-1}^{1} \subset C_{p-1}$. Assume next that $p$ is even. Then $p-1$ is odd, so that $y \in U\left(I_{p-1}, x\right)$, $y \in U\left(I_{p}, y\right)$ and it is now obvious that $y \in C_{p}^{2} \subset C_{p}$.

## 3. Remarks on measurable filters

For $0<p<1$ let us now denote by $\lambda_{p}$ the product measure that gives weight $p$ to 1 , so that $\lambda=\lambda_{1 / 2}$. The author proved in [2] that if a filter $\mathcal{F}$ satisfies $\lambda_{p}(\mathcal{F})=0$ for one $0<p<1$, then this is also the case for each $0<p<1$. Unfortunately, Theorem 1 does not make this result obvious.

Following an idea of T. Bartoszynski, for a number $0<p<1$, let us say that a filter $\mathcal{F}$ satisfies property $1_{p}$ if there exists a sequence ( $I_{k}$ ) of finite sets such that:

$$
\sum_{k} p^{\operatorname{card} I_{k}}<\infty
$$

and such that each element of $\mathcal{F}$ contains infinitely many sets $I_{k}$. (Here we do not require that the sets $I_{k}$ be disjoint.) Obviously, if $\mathcal{F}$ satisfies property $1_{p}$, then $\lambda_{p}(\mathcal{F})=0$, so that $\mathcal{F}$ is measurable. T. Bartoszynski's initial idea was that any measurable filter might have property $1_{1 / 2}$. Theorem 6 below shows that this is not true, but this concept nonetheless raises a number of natural problems, which might be connected to potentially difficult problems in combinatorics [3].

Problem 2. If a filter satisfies property $1_{p}$ for one $0<p<1$, does it satisfy property $1_{p}$ for each $0<p<1$ ?
The difficulty is that given sets $I_{k}$ which witness that $\mathcal{F}$ has property $1_{1 / 2}$, to prove property $1_{p}$ for $p>1 / 2$ one has to find "much larger" sets than the sets $I_{k}$ (or maybe a very small subcollection of these sets) such that any element of the filter contains infinitely many of these.

There is a related notion which is more adapted to the change of value of $p$. Let us say that a filter satisfies property $2_{p}$ if for each finite set $I$ one can find a number $c_{I} \geqslant 0$ such that:

$$
\sum_{I} c_{I} p^{\operatorname{card} I}<\infty
$$

and such that for every element $x$ of $\mathcal{F}$ one has $\sum_{I \subset x} c_{I}=\infty$. Property $1_{p}$ is stronger than property $2_{p}$ as can be seen by taking $c_{I}=1$ if $I$ is one of the sets $I_{k}$ and $c_{I}=0$ otherwise.

Proposition 3. If a filter has property $2_{p}$ for one $0<p<1$ it has this property for each $0<p<1$.
Proof. Since property $2_{p}$ becomes stronger as $p$ increases, it suffices to prove that if a filter $\mathcal{F}$ has property $2_{p}$, then it has property $2_{\sqrt{p}}$. So, consider the numbers $c_{I}$ which witness that $\mathcal{F}$ has property $2_{p}$. If it happens that for each $x$ in $\mathcal{F}$ we have $\sum_{I \subset x} c_{I} p^{\text {card } I / 2}=\infty$, then, since the numbers $d_{I}=c_{I} p^{\text {card } I / 2}$ satisfy $\sum_{I} d_{I} p^{\text {card } I / 2}=\sum_{I} c_{I} p^{\text {card } I}<\infty$, then $\mathcal{F}$ has property $2_{\sqrt{p}}$. Otherwise, there exists $x$ in $\mathcal{F}$ such that $\sum_{I \in X} c_{I} p^{\text {card } I / 2}<\infty$. Let us then define $d_{I}=c_{I}$ if $I \subset x$ and $d_{I}=0$ otherwise. Then $\sum_{I} d_{I} p^{\text {card } I / 2}<\infty$ and for each $y$ in $\mathcal{F}$ we have $x \cap y \in \mathcal{F}$ so that:

$$
\sum_{I \in y} d_{I} \geqslant \sum_{I \in x \cap y} c_{I}=\infty
$$

and thus $\mathcal{F}$ has property $2_{\sqrt{p}}$.
Problem 4. If a filter has property $2_{p}$ for all $0<p<1$ does it have property $1_{p}$ for all $p$, or at least for $p$ small enough?
The author proved in [2] that the intersection of countably many non-measurable filters is non-measurable. This raises the following question.

Problem 5. If the intersection of countably many filters has property $2_{p}$, does one of them have property $2 p$ ?
Theorem 6. Assuming Continuum Hypothesis, there exists a measurable filter which fails property $2_{p}$ for each $p$.
Considering disjoint finite sets $J_{k, \ell}, k, \ell \geqslant 1$ with card $J_{k, \ell}=k$, we can even arrange that every element $x$ of the filter satisfies $\lim _{k \rightarrow \infty} \min _{\ell \geqslant 1} \operatorname{card}\left(x \cap J_{k, \ell}\right)=\infty$. The proof is similar to that of Theorem 2.8 of [1]. The combinatorics can be taken care of by the following proposition.

Proposition 7. Consider numbers $c_{I}$ with $\sum_{I} c_{I} p^{\text {card } I}<\infty$. Consider a set $x$ with

$$
\lim _{k \rightarrow \infty} \min _{\ell \geqslant 1} \operatorname{card}\left(x \cap J_{k, \ell}\right)=\infty
$$

Then there is a subset $y$ of $x$ such that $\lim _{k \rightarrow \infty} \min _{\ell \geqslant 1} \operatorname{card}\left(y \cap J_{k, \ell}\right)=\infty$ for which $\sum_{I \subset y} c_{I}<\infty$.

To prove this we find as many disjoint sets of cardinality $\geqslant 1 / p$ inside each set $x \cap I_{k, \ell}$, and we apply the following.
Lemma 8. Consider numbers $c_{I}$ with $\sum_{I} c_{I} p^{\operatorname{card} I}<\infty$. Consider disjoint sets $J_{k}$ of $\mathbb{N}$, each of cardinality $\geqslant 1 / p$. Then there is a set $y$ which meets all of the $J_{k}$ but for which $\sum_{I \subset y} c_{I}<\infty$.

Proof. The collection of sets $J \subset \bigcup_{k} J_{k}$ which meet each set $J_{k}$ in exactly one point is endowed with a natural probability measure P . Given any finite set $I$, one has $\mathrm{P}(I \subset J) \leqslant p^{\text {card } J}$. (Actually this probability is zero unless $I \subset \bigcup_{k} J_{k}$ and $\operatorname{card}\left(I \cap J_{k}\right) \leqslant 1$ for each $k$.) Thus the expected value of $\sum_{I \subset J} c_{I}$ is finite.

## References

[1] T. Bartoszynski, On the structure of measurable filters on a countable set, Real Anal. Exch. 17 (2) (1992) 681-701.
[2] M. Talagrand, Mesurabilité, rapidité, propriété de Baire, Stud. Math. LXXIV (1982) 283-291.
[3] M. Talagrand, Are many small sets explicitly small?, in: STOC'10. Proceedings of the 2010 ACM International Symposium on Theory of Computing, ACM, New York, 2010, pp. 13-35.


[^0]:    E-mail address: talagran@math.jussieu.fr.
    1631-073X/\$ - see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
    http://dx.doi.org/10.1016/j.crma.2013.04.009

