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Abstract. We introduce a mean field model for spin glasses that is

obtained by “iterating” the definition of the perceptron model of [SG] and we

prove the validity of the replica-symmetric solution under a condition of the

type “high temperature”. The replica-symmetric equations involve 6 different

parameters. This model illustrates on the one hand that we now have efficient

tools to deal with such systems, and on the other hand that it is probably

unreasonable to hope for abstract theorems independent of the specific type

of the system.

1. Introduction

One of the main motivations for the mathematical study of mean field
models for spin glasses is that apparently some new laws of nature (or, at
least, of probability) are at work there. A general fact seems to be that
“at high temperatures the replica-symmetric solution is correct”. This is
proved in [2] for the main models considered by the physicists, and it would
be very nice to have a general statement to that effect. One of the models
considered in [2] is (a suitable abstract version) of the Perceptron model,
which is defined as follows.

For σ = (σi)i≤N ∈ {−1, 1}N , consider

(1.1) Sk = Sk(σ) =
1√
N

∑
i≤N

gi,kσi,

where gi,k, i, k ≥ 1, are independent standard normal r.v. (The normaliza-
tion is chosen so that Sk is typically of order 1.) Then the Hamiltonian is
given by

(1.2) −H =
∑
k≤M

u(Sk),

when u : R → R is a function. It helps to think of u as being of order
1 and of M as being a proportion of N . In [2] a lot of technical work is
devoted to the study of this Hamiltonian under weak regularity conditions
on u. However, when one assumes stronger conditions, such as

(1.3) ∀�, 0 ≤ � ≤ 10, |u(�)| ≤ D,

where D is a parameter, the Hamiltonian (1.2) is already of interest, and
its study is technically much easier. (It will be sketched in this case in
Section 2.) One of the striking features of the Hamiltonian (1.2) is that

1Work partially supported by an NSF grant

1



2

(under a suitable condition of the nature of a high-temperature condition),
not only is the replica symmetric solution correct, by the quantities Sk (and
u(Sk)) themselves display certain properties of spins (they “decorrelate”).
This raises the possibility that it might be of interest to iterate the process
by which one goes from the spins (σi) to H . To do this, we consider the
quantities

(1.4) Tm =
1√
M

∑
k≤M

hk,mu(Sk)

where hk,m k,m ≥ 1 are independent standard normal r.v., that are inde-
pendent of the gi,k. Considering a function v : R → R we will then consider
the Hamiltonian

(1.5) −H =
∑
m≤Q

v(Tm)

and it is the purpose of this paper to investigate it. In principle “level 2
perceptrons”are important [1], but the present paper represents only a first
step in the direction of their rigorous study. Really relevant results remain
far away. As the reader will soon realize, the Hamiltonian (1.5) is quite more
complicated to study than the Hamiltonian (1.2). Thereby it is legitimate
in a first stage to study it under the strongest regularity conditions where
it is of interest. We will assume that for a certain number D, we have

(1.6) ∀�, 0 ≤ � ≤ 10, |u(�)| ≤ D, |v(�)| ≤ D.

The following theorem involves numbers r ≥ r ≥ 0, 0 ≤ q ≤ 1, τ, ρ ≥ 0 and
τ . We consider independent standard normal r.v. z, η, ξ and ξ�, � ≥ 1. We
consider the r.v.

(1.7) θ = z
√
q + ξ

√
1 − q; θ� = z

√
q + ξ�

√
1 − q; γ = z

√
r+ ξ

√
r − r.

We denote by Eξ expectation in ξ, ξ� only.
Throughout the paper we denote by K a number depending on D only,

that need not be the same at each occurrence.

Theorem 1.1 There exists a number K (depending on D only) such that if

(1.8) K
Q

M
≤ 1, K

M

N
≤ 1
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there is a unique solution to the following system of equations:

r = E

(
Eξu(θ) exp(u(θ)η

√
τ + (τ − τ)u(θ)2/2)

Eξ exp(u(θ)η
√
τ + (τ − τ ′)u(θ)2/2)

)2

(1.9)

r = E
u2(θ) exp(u(θ)η

√
τ + (τ − τ)u(θ)2/2)

Eξ exp(u(θ)η
√
τ + (τ − τ ′)u(θ)2/2)

(1.10)

τ =
Q

M
E

(
Eξv

′(γ) expv(γ)
Eξ exp v(γ)

)2

(1.11)

τ =
Q

M
E

(v′′(γ) + v′(γ)2) exp v(γ)
Eξ exp v(γ)

(1.12)

ρ =
M

N

(
τ E

(
Eξu

′(θ) expu(θ)
Eξ expu(θ)

)2

+ τ2W (1, 2) + 2ττW (1, 1)(1.13)

−4τ(τ + τ)W (1, 3)− 2τ2W (3, 3) + 6τ2W (3, 4)
)
,

where, for �, �′ ≤ 4

(1.14) W (�, �′) = E
u′(θ1)u′(θ2)u(θ�)u(θ�′)E

EξE
for

E = exp
∑
�≤4

(
u(θ�)η

√
τ +

τ − τ

2
u(θ�)2

)
and

(1.15) q = Eth2(z
√
ρ) .

These formulas, and in particular (1.13), should make self-apparent that
the model is really non-trivial. In fact, we see no apparent limits to the
complexity of what could be done using further iterations of the method we
used to construct our Hamiltonian.

We denote by 〈·〉 an average for the Gibbs measure G with Hamiltonian
(1.5). We will very often consider replicas, that is powers of the configuration
space {−1, 1}N provided with the corresponding power of G. When we
consider configurations σ1, σ2, ... and write 〈f(σ1,σ2, . . . )〉 we always
assume that each configuration σ� is averaged independently for G. To
shorten notation we write

(1.16) S�
k = Sk(σ�); T �

m = Tm(σ�),

and also

(1.17) ν(f) = E〈f〉,
where E denotes expectation in the r.v. gi,k and hk,m.

Theorem 1.2 There exists a number K (depending on D only) such that if

(1.18) K
Q

M
≤ 1 K

M

N
≤ 1
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the equations (1.9)-(1.15) have a unique solution and that

ν

((
1
N

∑
i≤N

σ1
i σ

2
i − q

)2)
≤ K

M
(1.19)

ν

((
1
M

∑
k≤M

u(S1
k)u(S2

k)− r

)2)
≤ K

M
(1.20)

ν

((
1
M

∑
k≤M

u(Sk)2 − r

)2)
≤ K

M
(1.21)

ν

((
1
M

∑
m≤Q

v′(T 1
m)v′(T 2

m) − τ

)2)
≤ K

M
(1.22)

ν

((
1
M

∑
m≤Q

(v′(Tm)2 + v′′(Tm))− τ

)2)
≤ K

M
.(1.23)

Of course, these statements explain the meaning of the various parame-
ters. Our last result concerns the computation of the “pressure”.
Theorem 1.3. Under the conditions of Theorem 3 we have∣∣∣∣ 1

N
E log

∑
σ

exp(−H(σ)) − F

∣∣∣∣ ≤ K

M

where

F = log 2 +
Q

N
E logEξ exp v(z

√
r + ξ

√
r− r)

+
M

N
E logEξ exp

(
u(z

√
q + ξ

√
1 − q)η

√
z +

τ − τ

2
u2(z

√
q + ξ

√
1 − q)

)
+ E ch z

√
ρ− (1 − q)ρ

2
+
τr − τ̄ r̄

2
.

(1.24)

Since the proof of Theorem 1.1 is very simple, we give it right away.

Proof of Theorem 1.1. Let ρ′ = N
M ρ. Then equations (1.9) to (1.15) are

of the type

(1.25) r = F1(τ, τ, q); r = F2(τ, τ, q); ρ′ = F3(τ, τ, q)

(1.26) τ =
Q

M
F4(r, r); τ =

Q

M
F5(r, r); q = F6

(
M

N
ρ′
)

for certain functions F1, . . . , F6.
Substitutions of the relations (1.26) into the equations (1.25) yields equa-

tions of the type

(1.27) r = G1(r, r, ρ′); r = G2(r, r, ρ′); ρ′ = G3(r, r, ρ′),

for certain functions G1, G2, G3. It is straightforward (but tedious) to see
that all the first-order partial derivatives of G1, G2, G3 are bounded by
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K(Q/M +M/N ), where K depends on D only. Therefore when K(Q/M +
M/N ) ≤ 1, these equations have a unique solution, and this is also the case
of the equations (1.25) and (1.26). �

2. The case of the perceptron.

Not surprisingly, the methods required to handle the Hamiltonian (1.5)
are a kind of “iteration” of the methods appropriate to study the Hamil-
tonian (1.2). It therefore seems useful to start the paper by a study of the
Hamiltonian (1.2) under condition (1.3), a task that is technically very much
easier than the material of [2] (although based on the same principles).

We start by explaining the basic principle on which the entire paper relies.
We consider a non-random probability measure G on {−1, 1}N , and we de-
note by 〈·〉 an average for G or for its products G⊗n on {−1, 1}Nn, where n
is a given integer. We consider functions (ak)k≥1 on {−1, 1}N , and indepen-
dent standard normal r.v. (gk)k≥1. We consider two functions w : R → R

and W : R
n → R. We assume that

The partial derivatives of w and W of order ≤ 2 are
bounded by D,where D is a parameter.

(2.1)

We consider the random quantity V = V (σ) =
∑

k≥1 gkak(σ), and for
(σ1, . . . ,σn) ∈ {−1, 1}Nn we write V � = V (σ�). We consider independent
standard normal r.v. z, ξ and (ξ�)�≥1 and, for parameters 0 ≤ s ≤ s we write
ζ� = z

√
s+ ξ�

√
s − s and ζ = z

√
s+ ξ

√
s− s. (It is a general rule through

the paper that “variables labeled ξ should be replaced by independent copies
in different replicas”.)

We denote by Eξ expectation in ξ only, and we consider a function f =
f(σ1, . . . ,σn).

Lemma 2.1 We have

(2.2)∣∣∣∣E 〈W (V 1, . . . , V n)f〉
〈expw(V )〉n −E

W (ζ1, . . . , ζn)
(Eξ expw(ζ))n

〈f〉
∣∣∣∣ ≤ K(n,D)〈f2〉1/2

×
[〈(∑

k

a2
k(σ) − s

)2〉1/2

+
〈(∑

k

ak(σ1)ak(σ2) − s

)2〉1/2
]
,

where K(n,D) depends only on n and D.

Proof. We consider the interpolation parameter 0 < c < 1 and we define
V �

c =
√
c V � +

√
1 − c ζ�, Vc =

√
c V +

√
1− c ζ. We define

(2.3) ϕ(c) = E
〈W (V 1

c , . . . , V
n
c )f〉

(Eξ〈expw(Vc)〉)n
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and we use the bound

(2.4) |ϕ(1)− ϕ(0)| ≤ sup
c

|ϕ′(c)|.

We note that the left-hand side of (2.2) is |ϕ(1) − ϕ(0)|, so all we have to
show is that the right-hand side of (2.2) is a bound for ϕ′(c). To do this we
compute ϕ′(c) using integration by parts and the formula

EV �V �′ =
∑

k

ak(σ�)ak(σ�′).

The computation and the estimates are straightforward. �

When now G is random, but that the randomness of the gk is independent
of the randomness of G, we can assume without loss of generality that this is
also the case of the randomness of z and ξ. Using (2.2) given the randomness
of G and using the Cauchy-Schwarz inequality we then get that

(2.5)∣∣∣∣E 〈W (V 1, . . . , V n)f〉
〈expw(V )〉n −E

W (ζ1, . . . , ζn)
(Eξ expw(ζ))n

〈f〉
∣∣∣∣ ≤ K(n,D)(E〈f2〉)1/2

×
[(

E

〈(∑
k

a2
k(σ) − s

)2〉)1/2

+

(
E

〈(∑
k

ak(σ1)ak(σ2) − s

)2〉)1/2]
.

We consider an interpolation parameter 0 < t < 1 and throughout the
paper we write

(2.6) Sk,t = Sk,t(σ) =
1√
N

∑
i≤N−1

gi,kσi +

√
t

N
gN,kσN .

We consider the interpolating Hamiltonian

(2.7) −Ht =
∑
k≤M

u(Sk,t) + σN

√
1− t Y,

where Y = z
√
r, and the parameter r will be chosen later. For a function

f on {−1, 1}Nn, we denote by 〈f〉t its average for the Gibbs measure with
Hamiltonian (2.7), and we write νt(f) = E〈f〉t. For a replica σ� we write
S�

k,t = Sk,t(σ�). We write ε� = σ�
N . The following is obtained through a

straightforward computation, that is detailed in [2], Proposition 3.2.3.

Lemma 2.2 We have

(2.8) 2
d

dt
νt(f) = I + II + III

where

I =
M

N

(∑
�≤n

A� − n An+1

)
,
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for A� = νt((u′′(S�
M,t) + u′2(S�

M,t))f);

II =
M

N

(∑
��=�′

A�,�′ − 2n
∑
�≤n

A�,n+1 + n(n+ 1)An+1,n+2

)
,

for A�,�′ = νt(u′(S�
M,t)u

′(S�′
M,t)ε�ε�′f);

III = −r
(∑

��=�′
B�,�′ − 2n

∑
�≤n

B�,n+1 + n(n+ 1)Bn+1,n+2

)
,

for B�,�′ = νt(ε�ε�′f).
A very important difference between the terms I and II is that A� depends

on the function f (which does not depend on �) while A�,�′ depends on the
function ε�ε�′f .

A first observation is that, under (1.3) (and provided |r| ≤ K(D)) for
n = 2 we have

d

dt
|νt(f)| ≤ Kνt(|f |)

so that, by integration,

(2.9) f ≥ 0 ⇒ νt(f) ≤ Kν(f),

where for simplicity ν(f) = ν1(f) = E〈f〉. Let us write

R1,2 =
1
N

∑
i≤N

σ1
i σ

2
i ; R−

1,2 =
1
N

∑
i≤N−1

σ1
i σ

2
i .

Our goal is now to prove that

(2.10)
M

N
K ≤ 1 ⇒ ν((R1,2 − q)2) ≤ K

N
,

for a suitable value of q. By symmetry between the coordinates, we have

(2.11) ν((R1,2 − q)2) = ν(f),

where

(2.12) f = (ε1ε2 − q)(R1,2 − q).

Now

(2.13) ν0(f) = ν0

(
ε1ε2 − q

N
ε1ε2

)
+ ν0((ε1ε2 − q)(R−

1,2 − q)).

It is straightforward that if we assume

(2.14) q = Eth2(Y ) = Eth2(z
√
q)

then the last term of (2.13) is zero, so that

(2.15) |ν0(f)| ≤ 2
N
.

Thus

(2.16) ν((R1,2 − q)2) = ν(f) ≤ 2
N

+ sup
t

∣∣∣∣ ddtνt(f)
∣∣∣∣ .
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To bound the last term we will apply Lemma 2.1 to each term provided by
Lemma 2.2 (with n = 2 and f given by (2.12). Consider the Hamiltonian

(2.17) −H∼ =
∑

k≤M−1

u(Sk,t) + σN

√
1 − t Y,

and denote by 〈·〉∼ an average for the Gibbs measure with this Hamiltonian.
Thus, for � ≤ 3,

A� = E〈(u′′(S�
M,t) + u′2(S�

M,t))f〉t

= E
〈(u′′(S�

M,t) + u′2(S�
M,t)) exp

(∑
�′≤3 u(S

�′
M,t)

)
f〉∼

〈expu(SM,t)〉3∼
.

We use Lemma 2.1 with ai(σ) = σi/
√
N for i ≤ N − 1 and aN(σ) =

σN

√
t/N , s̄ = 1, s = q, and for G the Gibbs measure with Hamiltonian

(2.17). Thus from (2.5) we get, using the value of f in the last line,

|A� − C�E〈f〉∼|(2.18)

≤ K(E〈f2〉∼)1/2

(
1
N

+
(
E

〈(
R1,2 − q − ε1ε2(1− t)

N

)2〉
∼

)1/2)

≤ K (E〈f2〉∼)1/2

(
1
N

+ (E〈(R1,2 − q)2〉∼)1/2

)

≤ K
( 1
N

+ E〈(R1,2 − q)2〉∼
)
,

where

C� = E
(u′′(θ�) + u′2(θ�)) exp(

∑
�′≤3 u(θ

�′))
(Eξ expu(θ))3

,

for θ� = z
√
q + ξ�√1 − q, θ = z

√
q + ξ

√
1 − q. The value of C� does not

depend on �. In fact, using independence we have

Eξ(u′′(θ�) + u′2(θ�)) exp(
∑
�′≤3

u(θ�′))

= Eξ

(
(u′′(θ) + u′2(θ)) expu(θ)

)
(Eξ expu(θ))2,

and thus

C� = C := E
(u′′(θ) + u′2(θ)) expu(θ)

Eξ expu(θ)
.

It should be obvious that

E〈(R1,2 − q)2〉∼ ≤ Kνt((R1,2 − q)2).

Moreover, from (2.9) we have νt((R1,2−q)2) ≤ Kν((R1,2−q)2). Thus (2.18)
yields that for � ≤ 3 we have

|A� −CE〈f〉∼| ≤ K

(
1
N

+ ν((R1,2 − q)2)
)
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and hence

(2.19) |I| ≤ K
M

N

(
1
N

+ ν((R1,2 − q)2)
)
.

Proceeding as in (2.18) we have

(2.20) |A�,�′ − C′E〈fε�ε�′〉∼| ≤ K

(
1
N

+ ν((R1,2 − q)2)
)

where

C′ = E
u′(θ1)u′(θ2) exp(u(θ1) + u(θ2))

(Eξ expu(θ))2
= E

(
Eξu

′(θ) expu(θ)
Eξ expu(θ)

)2

.

Also, in the same manner,

|νt(fε�ε�′) − E〈fε�ε�′〉∼| ≤ K

(
1
N

+ ν((R1,2 − q)2)
)
.

We then see that it is a very good idea to ensure that

(2.21) r =
M

N
C′

because then

|II + III| ≤ M

N

(
1
N

+ ν((R1,2 − q)2)
)
.

Thus, if q and r are chosen according to (2.14) and (2.21), we see from (2.16)
that

ν((R1,2 − q)2) ≤ K

M
+K

M

N
ν((R1,2 − q)2),

which proves (2.10).
We now turn to the proof of an auxiliary result that will help us to get

the correct rate when we compute the “pressure”. We prove that

(2.22) K
M

N
≤ 1 ⇒ ν

((
1
N

∑
k≤M

u′(S1
k)u′(S2

k) − r

)2)
≤ K

N
.

To do this, we observe that, by symmetry,

ν

((
1
N

∑
k≤M

u′(S1
k)u′(S2

k) − r

)2)
(2.23)

= ν

((
M

N
u′(S1

M)u′(S2
M) − r

)(
1
N

∑
k≤M

u′(S1
k)u′(S2

k) − r

))

≤ K

N
+ ν

((
M

N
u′(S1

M)u′(S2
M) − r

)
f

)
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where f = N−1
∑

k≤M−1 u
′(S1

k)u′(S2
k) − r. We denote by 〈·〉∼ an average

for the Gibbs measure with Hamiltonian
∑

k≤M−1 u(Sk), so that

ν

((
M

N
u′(S1

M)u′(S2
M) − r

)
f

)

= E
〈(M

N u′(S1
M)u′(S2

M) − r
)
f exp(u(S1

M) + u(S2
M ))〉∼

〈expu(SM)〉2∼
,

and by using Lemma 2.1 and (2.21) we get that

ν

((
M

N
u′(S1

M)u′(S2
M) − r

)
f

)
≤ K(E〈f2〉1/2

∼ )(E〈(R1,2 − q)2〉∼)1/2

≤ K√
N
ν(f2)1/2,

(2.24)

using (2.21) and (2.10). Now by the triangle inequality we have

ν(f2)1/2 ≤ K

N
+ ν

((
1
N

∑
k≤M

u′(S1
k)u′(S2

k)− r

)2)1/2

,

and combining with (2.23) and (2.24) we get, using xy ≤ cx2 + y2/c, and if
KM ≤ N ,

ν

((
1
N

∑
k≤M

u′(S1
k)u′(S2

k)− r

)2)
≤ K

N
+

1
2
ν

((
1
N

∑
k≤M

u′(S1
k)u′(S2

k)− r

)2)

and this proves (2.22).
Let us now turn to the computation of the “pressure”. Rather than

reproducing the method of Theorem 3.4.2 of [2] we will follow the ideas of
F. Guerra and proceed by interpolation with a simpler system. We denote
by q and r the solutions of the equations (2.14) and (2.21) (that are unique
provided KM/N ≤ 1). We write θk = zk

√
q + ξk

√
1 − q where zk, ξk

are independent standard normal r.v. (and of course independent of the
variables gi,k). We consider independent standard normal r.v. (hi)i≤N . For
an interpolation parameter 0 ≤ c ≤ 1 we write

(2.25) −Hc =
∑
k≤M

u(
√
c Sk +

√
1 − c θk) +

√
r
√

1 − c
∑
i≤N

hiσi,

and we consider

ϕ(c) =
1
N

E logEξ

∑
σ

exp(−Hc(σ)),

where Eξ denotes expectation in the r.v. ξk only. Thus

ϕ(0) =
1
N

E log
(
Eξ

(
exp

∑
k≤M

u(θk)
)

2N
∏
i≤N

ch
√
r hi

)

=
M

N
E logEξ expu(θ) + E log chz

√
r + log 2.
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We write

(2.26) ϕ(1) = ϕ(0) +
∫ 1

0
ϕ′(c)dc,

and

(2.27) ϕ′(c) =
1
N

E
〈 d
dc

Hc(σ)
〉

c
,

where

〈f〉c =
∑

σ f(σ) exp(−Hc(σ))
Eξ
∑

σ exp(−Hc(σ))
,

and, more generally, for a function f(σ1, . . . ,σk),

〈f〉c =

∑
σ1,...,σk f(σ1, . . . ,σk) exp(−∑�≤k Hc(σ�))

(Eξ
∑

σ exp(−Hc(σ)))k
.

Now

(2.28)

2
d

dc
Hc(σ) =

∑
k≤M

(
Sk√
c
− θk√

1 − c

)
u′(

√
c Sk +

√
1− c θk)−

√
r√

1 − c

∑
i≤N

hiσi.

We define Sk,c =
√
c Sk +

√
1 − c θk. We denote by ξ�

k(� = 1, 2) inde-
pendent copies of ξk, and we define θ�

k = zk
√
q = ξ�

k

√
1 − q and S�

k,c =√
c S�

k +
√

1 − c θ�
k, where the superscript � in S�

k means that we replace σ

by σ�. (This is yet another occurrence of the rule that different replicas need
independent copies of ξk.) Using (2.27), (2.28) and integrating by parts, we
get

2ϕ′(0) = −E
〈

(R1,2 − q)
(

1
N

∑
k≤M

u′(S1
k,c)u

′(S2
k,c)
)〉

c

− r(1 −E〈R1,2〉c)

= −E
〈

(R1,2 − q)
(

1
N

∑
k≤M

u′(S1
k,c)u

′(S2
k,c) − r

)〉
c

− r(1− q).

(2.29)

By repeating the proofs of (2.10) and (2.22) for the more general Hamiltonian
(2.25) (very little needs to be changed) we get that

E〈(R1,2 − q)2〉c ≤ K

N
; E

〈(
1
N

∑
k≤M

u′(S1
k,c)u

′(S2
k,c) − r

)2
〉

c

≤ K

N

and thus (2.29) yields

|2ϕ′(c)− (−r(1− q))| ≤ K

N



12

and (2.26) yields

1
N

E log
∑
σ

exp(−H(σ)) =
M

N
E logEξ expu(θ) +E log ch z

√
r+ log 2

− 1
2
r(1− q) + R

(2.30)

where |R| = K/N .

3. A first level of control

The basic idea to study the Hamiltonian (1.5) is to interpolate in the last
spin as in (2.5). This interpolation uses the Hamiltonian

(3.1) −Ht =
∑
m≤q

v

(
1√
M

∑
k≤M

hk,mu(Sk,t)
)

+
√

1 − tσNZ,

where Z = η
√
ρ and ρ is as in (1.13). The formula corresponding to (2.8)

one gets in this case is quite complicated, and we will be able to use it only
after we gather some preliminary information, which we do in this section.
If we think of the quantities u(Sk) as being themselves “spins” (that replace
the original spins σi), the work of the present section resembles the proof of
(2.10). A technical difference is that, while the true spins σi satisfy σ2

i = 1,
it need not be true that u(Sk)2 is constant, and a separate effort will be
required to control this quantity.

Through the section, we think of 0 < t < 1 as being fixed, so the depen-
dence in t will often be kept implicit. Considering an interpolating parameter
0 ≤ c ≤ 1 we set

(3.2) Tm,c =
1√
M

∑
k≤M−1

hk,mu(Sk,t) +
√

c

M
hM,mu(SM,t),

and we consider the interpolating Hamiltonian
(3.3)

−Ht,c =
∑
m≤Q

v(Tm,c) +
√

1 − c u(SM,t)Y +
τ ′

2
(1− c)u(SM,t)2 + σN

√
1 − tZ,

where Y = η
√
τ , τ ′ = τ̄ − τ for the values of τ and τ̄ provided by Theorem

1.1. We write 〈·〉t,c an average for the Gibbs measure with HamiltonianHt,c.
When c = 1, we write 〈·〉t such an average. We consider the functions

U =
1
M

∑
k≤M

u(S1
k,t)u(S

2
k,t) − r(3.4)

U =
1
M

∑
k≤M

u2(Sk,t) − r̄.(3.5)

The goal of this section is to prove the following.
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Proposition 3.1 If KQ/M ≤ 1, we have

E〈U2〉t ≤ K

(
1
M

+
1
N

)
+KE〈(R1,2 − q)2〉t(3.6)

E〈U2〉t ≤ K

(
1
M

+
1
N

)
+KE〈(R1,2 − q)2〉t.(3.7)

To prove Theorem 1.2 we assume KM ≤ N , so there is no loss of gener-
ality to assume M ≤ N , and the terms K/N are then not needed in (3.6)
and (3.7).

For a (possibly random) function f on n replicas, we write νc(f) = E〈f〉t,c.
The following holds when the quantity f does not depend on the r.v. hk,m.
For simplicity we use the notation u� = u

(
S�

M,t

)
, and T �

m,c means simply
that we have replaced σ by σ�.

Lemma 3.2. We have

(3.8) 2
d

dc
νc(f) = I + II + III + IV

where

I =
Q

M

(∑
�≤n

νc(u2
� (v

′′(T �
Q,c) + v′2(T �

Q,c))f)(3.9)

−nνc(u2
n+1(v

′′(T �
Q,c) + v′2(T �

Q,c))f)
)

II = −τ
(∑

�≤n

νc(u2
�f) − nνc(u2

n+1f)
)

(3.10)

III =
Q

M

(∑
��=�′

A�,�′ − 2n
∑
�≤n

A�,n+1 + n(n + 1)An+1,n+2

)
(3.11)

for A�,�′ = νc(u�u�′v
′(T �

Q,c)v
′(T �′

Q,c)f)

(3.12) IV = −τ
(∑

��=�′
B�,�′ − 2n

∑
�≤n

B�,n+1 + n(n + 1)Bn+1,n+2

)

for B�,�′ = νc(u�u�′f).
The idea is that the choice of τ according to (1.12) ensures that the terms

of I nearly cancel out with the corresponding terms of II; while the choice
of τ according to (1.11) ensures that the terms of III nearly cancel out with
the corresponding terms of IV. This will be shown using Lemma 2.1.

Proof. By straightforward differentiation we have

2
d

dc
νc(f) = V + VI + VII
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where

VII = −τ ′
(∑

�≤n

νc(u2
�f) − nνc(u2

n+1f)
)

V =
∑
m≤Q

(∑
�≤n

νc

(
1√
cM

hM,mu�v
′(T �

m,c)f
)

−nνc

(
1√
cM

hM,mun+1v
′(T n+1

m,c )f
))

VI = − 1√
1 − c

(∑
�≤n

νc(Y u�f) − nνc(Y un+1f)
)
.

Integration by parts in Y yields that VI=IV+VIII where

VIII = −τ
(∑

�≤n

νc(u2
�f) − nνc(u2

n+1f)
)
.

Integration by parts in hM,m and symmetry between the values of m ≤ M
yield that V=I+III, and finally VII+VIII = II since τ ′ + τ = τ̄ . �

To start the proof of (3.5) we note that by symmetry between the different
values of k we have

(3.13) E〈U2〉t = E〈f〉t
where

(3.14) f = (u1u2 − r)
(

1
M

∑
k≤M

u(S1
k,t)u(S

2
k,t)− r

)
.

We write ϕ(c) = νc(f), and we use that

(3.15) |ϕ(1)| ≤ |ϕ(0)|+ sup
c

|ϕ′(c)|.

The easier part here is the study of ϕ′(c) because this is done exactly as
in Section 2. One brings out the dependence of 〈·〉t,c in TQ,c by introducing
the Hamiltonian
(3.16)

−H∼ =
∑

m≤Q−1

v(Tm,c)+
√

1 − c u(SM,t)Y +
τ ′

2
(1−c)u(SM,t)2 +σN

√
1 − tZ,

so that we have formulas such as

〈u1u2v
′(T 1

Q,c)v
′(T 2

Q,c)f〉t,c

=
〈u1u2v

′(T 1
Q,c)v

′(T 2
Q,c)f exp(v(T 1

Q,c) + v(T 2
Q,c))〉∼

〈exp v(TQ,c))〉2∼
,



15

where of course 〈·〉∼ denotes an average for the Gibbs measure with Hamil-
tonian (3.16). To estimate such a term, we will use Lemma 2.1 with

ak(σ) =
1√
M

u(Sk,t) if k ≤M − 1; ak(σ) = 0 if k > M ;

aM (σ) =
√

c

M
u(SM,t),

and s = r, s = r. We will use this lemma at a given value of all the r.v.
other than the hk,Q (and with gk = hk,Q). We observe that(∑

k≤M

a2
k(σ) − r

)2

≤ 2U2 +
K

M2
;

(∑
k≤M

ak(σ1)ak(σ2) − r

)2

≤ 2U2 +
K

M2
.

We then obtain from (2.5) that

|ϕ′(c)| ≤ K

M
+K

Q

M
(E〈f2〉∼)1/2

(
(E〈U2〉∼)1/2 + (E〈U2〉∼)1/2

)
.

Since v is bounded, for any function f ≥ 0 on 2 replicas it is obvious that
we have 〈f〉∼ ≤ Kνc(f), we get that

(3.17) |ϕ′(c)| ≤ K

M
+K

Q

M
νc(f2)1/2(νc(U2)1/2 + νc(U

2)1/2).

Now, it follows from (3.8) that for a function f ≥ 0 on 2 replicas, we have

| d
dc
νc(f)| ≤ Kνc(f),

so that by integration we have

(3.18) νc(f) ≤ Kν1(f) = E〈f〉t,
and combining with (3.17) we get

(3.19) |ϕ′(c)| ≤ K

M
+K

Q

M
(E〈f2〉t)1/2

(
(E〈U2〉t)1/2 + (E〈U2〉)1/2

)
.

We turn to the study of ϕ(0). If

f =
1
M

∑
k≤M−1

u(S1
k,t)u(S

2
k,t) − r,

we have
|f − (u1u2 − r)f | ≤ K

M
,

so that

(3.20) |ϕ(0)− A| ≤ K

M
where

(3.21) A = ν0((u1u2 − r)f).
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Consider the Hamiltonian

(3.22) −H∗ =
∑
m≤Q

v(Tm,0) + σN

√
1 − tz

and 〈·〉∗ an average for the corresponding Gibbs measure, so that

(3.23) A = E
〈(u1u2 − r)f exp((u1 + u2)Y + τ ′

2 (u2
1 + u2

2))〉∗
〈exp(u1Y + τ ′

2 u
2
1)〉2∗

.

To estimate this quantity, we use the method of Lemma 2.1. We denote
by z, ξ� independent standard normal r.v., and we set

u�,d = u(
√
d S�

M,t +
√

1 − d(z
√
q + ξ�

√
1 − q)),

where 0 < d < 1 is an interpolation parameter. We consider

(3.24) ψ(d) = E
〈(u1,du2,d − r)f exp((u1,d + u2,d)Y + τ ′

2 (u2
1,d + u2

2,d))〉∗
(Eξ〈exp(u1,dY + τ ′

2 u
2
1,d)〉∗)2

so that A = ψ(1). The choice of r according to (1.9) ensures that ψ(0) = 0.
To bound ψ′(d), we cannot proceed as simply as in Lemma 2.1 because the

denominator (3.24) is not bounded below, a difficulty that is passed through
a differential inequality. We simply notice that if B ≥ 0 is a function on
(say) 10 replicas that is independent of the r.v. gi,M and of Y , the function

ψ1(d) = E
〈B exp

∑
�≤10(u�,dY + τ ′

2 u
2
�,d)〉∗

(Eξ〈exp(u1,dY + τ ′
2 u

2
1,d)〉∗)10

satisfies |ψ′
1(d)| ≤ Kψ1(d) (as is seen by differentiation and integration by

parts, including in Y ) so that by integration ψ1(d) ≤ Kψ1(1). We then
compute ψ′(d), and we integrate by parts in the r.v. gi,M and Y , using the
fact that H∗ does not depend on these r.v. and use trivial bounds to reach
the estimate

ψ′(d) ≤ Kνt

((
R1,2 − 1 − t

N
ε1ε2 − q

)2)1/2
νt

(
f

2)1/2
,

where now (hopefully without creating confusion) we use the notation νt(f) =
E〈f〉t. Therefore we have

A ≤ supψ′(d) ≤ K

N
+Kνt((R1,2 − q)2)1/2νt

(
f

2)1/2
.

Using (3.20), we then see that

(3.25) |ϕ(0)| ≤ K

(
1
M

+
1
N

)
+Kνt((R1,2 − q)2)1/2νt

(
f

2)1/2
.
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Since νt(f
2)1/2 ≤ K/M+K/N+νt(U2)1/2, combining with (3.15) and (3.19),

we get that

νt(U2) ≤ K

(
1
M

+
1
N

)
+Kνt((R1,2 − q)2)1/2νt(U2)1/2

+K
Q

M
(νt(U2)1/2 + νt(U

2)1/2)

≤ K

(
1
M

+
1
N

)
+

1
4
νt(U2)1/2

+Kνt((R1,2 − q)2)1/2 +K
Q

M
(νt(U2)1/2 + νt(U

2)1/2).

The same proof shows that the same bound holds for νt(U
2); and this fin-

ishes the proof of Proposition 3.1. �

4. The cavity method

We will now be able, using Proposition 3.1, to exploit the information we
get when differentiating with respect to t. We write

(4.1) Tm,t =
1√
M

∑
k≤M

hk,mu(Sk,t),

so that (3.1) becomes

(4.2) −Ht =
∑
m≤Q

v(Tm,t) +
√

1 − t σNZ,

where we recall that Z = η
√
ρ. We note the formulas

dSk,t

dt
=

σN

2
√
tN

gN,k

dTm,t

dt
=

σN

2
√
tNM

∑
k≤M

hk,mgN,ku
′(Sk,t)

(4.3)

−dHt

dt
=
σN

2

∑
k≤M,m≤Q

1√
tNM

hk,mgN,ku
′(Sk,t)v′(Tm,t) − 1

2
√

1 − t
σNZ.

Also, with some abuse of notation,

∂Tm,t

∂gN,k
= σN

√
t

MN
hk,mu

′(Sk,t).(4.4)

∂Ht

∂gN,k
= σN

√
t

MN

∑
m≤Q

hk,mu
′(Sk,t)v′(Tm,t).(4.5)

For simplicity, we write u� = u(S�
M,t), u

′
� = u′(S�

M,t), etc., and v� =
v(T �

Q,t), v
′
� = v′(T �

Q,t), etc. We recall the notation νt(f) = E〈f〉t.
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Proposition 4.1. Consider a function f on n replicas, that does not depend
on the r.v. hk,m or gi,k. Then

(4.6)
d

dt
νt(f) = I + II + III + IV + V

where

I =
Q

N

√
M

(∑
�≤n

νt(hM,Qu
′′
�v

′
�f) − nνt(hM,Qu

′′
n+1v

′
n+1f)

)
(4.7)

II =
Q

N

(∑
�≤n

νt(h2
M,Qu

′
�
2v′′� f) − nνt(h2

M,Qu
′2
n+1v

′′
n+1f)

)
(4.8)

III =
1
N

(∑
�≤n

C� − nCn+1

)
(4.9)

for

C� =
∑

m,m′≤Q

νt

(
hM,mhM,m′u′2� v

′(T �
m,t)v

′(T �
m′,t)f

)
(4.10)

IV =
1
N

( ∑
��=�′≤n

A�,�′ − 2n
∑
�≤n

A�,n+1 + n(n+ 1)An+1,n+2

)
(4.11)

for

A�,�′ =
∑

m,m′≤Q

νt

(
hM,mhM,m′u′�u

′
�′v

′(T �
m,t)v

′(T �′
m′,t)ε�ε�′f

)

(4.12) V = −ρ
( ∑

��=�′≤n

B�,�′ − 2n
∑
�≤n

B�,n+1 + n(n+ 1)Bn+1,n+2

)

for B�,�′ = νt(ε�ε�′f).

Proof. We write

d

dt
νt(f) =

∑
�≤n

νt

(
− ∂Ht

∂t
(σ�)f

)
− nνt

(
− ∂Ht

∂t
(σn+1)f

)
,

we substitute the value (4.3), we integrate by parts in the r.v. gN,k and Z,
using (4.4) and (4.5) and we use symmetry between the values of k ≤ Q. �

We have stated Proposition 4.1 in a manner that makes apparent it resem-
bles Lemma 2.2. We must however face the fact that to make the formulas
usable, we will need to integrate by parts in the r.v. hM,m. It is this inte-
gration by parts that generates complicated formulas.

Using (2.10), we will apply Proposition 4.1 for f = (ε1ε2 − q)(R1,2 − q),
with n = 2. Using that Tm,0 does not depend on σN , we see from (1.15)
that |ν0(f)| ≤ 2/N (as in (2.15)). Keeping (2.16) in mind, we turn to the
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control of the quantity (4.7). Without loss of generality we assume M ≤ N .
To explain the principle of the approach, we consider the case of the term

√
Mνt(hM,Qu

′′
�v

′
�f) = νt(u′′�u�v

′′
� f) +

∑
�′≤n

νt(u′′�v
′
�u�′v

′
�′f)(4.13)

− nνt(u′′�v
′
�un+1v

′
n+1f),

by integration by parts, and assuming � ≤ n. We explain how to evaluate a
typical term, say νt(u′′1v

′
1u2v

′
2f). Consider the Hamiltonian

(4.14) −H∼ =
∑

m≤Q−1

v(Tm,t) +
√

1 − tσNZ,

so that
(4.15)

νt(u′′1v
′
1u2v

′
2f) = E

〈u′′1u2v
′(T 1

M,t)v
′(T 2

M,t) exp(v(T 1
M,t) + v(T 2

M,t))f〉∼
〈exp v(TM,t)〉2∼

,

where of course 〈·〉∼ denotes an average for the Gibbs measure with Hamil-
tonian (4.14). We use Lemma 2.1 (with ak = u(Sk,t)/

√
M , s = r, s = r),

Proposition 3.1, and the fact that |f | ≤ 2|R1,2 − q| to get

(4.16) |νt(u′′1v
′
1u2v

′
2f) − CE〈u′′1u2f〉∼| ≤ Kνt((R1,2 − q)2) +

K

M

where

(4.17) C = E

(
Eξv

′(γ) expv(γ)
Eξ exp v(γ)

)2

,

γ being as in Theorem 1.1. We also have by the same method that

|νt(u′′1u2f) − E〈u′′1u2f〉∼| ≤ Kνt((R1,2 − q)2) +
K

M

so that, from (4.16)

(4.18) |νt(u′′1v
′
1u2v

′
2f) −Cνt(u′′1u2f)| ≤ Kνt((R1,2 − q)2) +

K

M
.

We would like to use Lemma 2.1 again to evaluate the contribution of
the terms u′′1 and u2 to the quantity νt(u′′1u2f). A secondary obstacle is
that unfortunately each term Tm,t in the Hamiltonian Ht contains a term
M−1/2hm,Mu(SM,t), so that the corresponding Gibbs average 〈·〉 is not in-
dependent of the r.v. gi,M . To clear out this dependence, we recall the
interpolating Hamiltonian Hc of (3.2), and we set

ϕ(c) = νc(u′′1u2f).

Using (3.6), (3.7), (3.19) we see that (assuming Q ≤ M ≤ N without loss
of generality)

|ϕ(1)− ϕ(0)| ≤ K

M
+K

Q

M
νt((R1,2 − q)2)1/2 ≤ K

M
+Kνt((R1,2 − q)2).
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To compute ϕ(0), we use the method of Lemma 2.1, as in the computation of
the term (3.23) recalling the Gibbs’ average 〈·〉∗ for the Hamiltonian (3.22),
and we find

|ϕ(0)−DE〈f〉∗| ≤ Kνt((R1,2 − q)2)1/2,

where

D = E
Eξu

′′(θ) exp(u(θ)η
√
τ + τ ′

2 u(θ)
2)Eξu(θ) exp(u(θ)η

√
τ + τ ′

2 u(θ)
2)

(Eξ exp(u(θ)η
√
τ + τ ′

2 u(θ)
2))2

.

By the same method, on finds

|E〈f〉∗ − νt(f)| ≤ K

M
+Kνt((R1,2 − q)2),

so that , we have proved that

|νt(u′′1u2)−D| ≤ K

M
+Kνt((R1,2 − q)2).

(Thus, in the end, it did not matter that Tm depends on u(SM,t).) Combin-
ing with (4.18) we get

(4.19) |νt(u′′1v
′
1u2v

′
2f) − CDνt(f)| ≤ K

M
+Kνt((R1,2 − q)2).

We would find the same relation (with the same values of C and D)
when computing νt(u′′�v

′
�u�′v

′
�′f) for � �= �′, whatever the values of �, �′ ≤ 4.

Proceeding in this manner for all the terms we see that

|
√
Mνt(hM,Qu

′′
� v

′
�f) −Aνt(f)| ≤ K

M
+Kνt((R1,2 − q)2),

where the value of A is independent of �. This establishes the relation

(4.20) |I| ≤ K

M
+K

Q

M
νt((R1,2 − q)2).

and similarly for II and III. (In the case of II there is however no need to
integrate by parts in hM,Q). The next step is to check that we have the
same bound for |IV + V|, by showing that the terms of IV nearly cancel out
with the corresponding terms of V. Without loss of generality, we consider
the case of

(4.21)
1
N
A1,2 =

1
N

∑
m,m′≤Q

A(m,m′),

where

(4.22) A(m,m′) = νt(hM,mhM,m′v′(T 1
m,t)v

′(T 2
m′,t)f),

for f = ε1ε2u
′
1u

′
2f . We will proceed to the integration by parts in hM,m and

hM,m′ using that

(4.23)
∂T �

m,t

∂hM,m
=

1√
M
u�
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and that T �
m,t does not depend on hM,m′ if m �= m′. We see from (4.23) that

integration by parts “brings out a factor 1/
√
M”, so that it should be clear

that

(4.24) |A(m,m)− νt(v′(T 1
m,t)v

′(T 2
m,t)f)| ≤ K(n)

M
,

and we consider now the case where m �= m′. Integrating by parts first in
hM,m′ we get

√
MA(m,m′) = νt(hM,mv

′(T 1
m,t)v

′′(T 2
m′,t)u2f)(4.25)

+
∑
�′≤n

νt(hM,mv
′(T 1

m,t)v
′(T 2

m′,t)v
′(T �′

m′t)u�′f)

− nνt(hM,mv
′(T 1

m,t)v
′(T 2

m′,t)v
′(T n+1

m′,t )un+1f).

We integrate by parts in hM,m each of these terms, to get

(4.26) MA(m,m′) = VI + VII + VIII + IX + X,

where

VI = νt(v′′(T 1
m,t)v

′′(T 2
m′,t)u1u2f)(4.27)

VII =
∑
�≤n

νt(v′(T 1
m,t)v

′(T �
m,t)v

′′(T 2
m′,t)u�u2f)(4.28)

VIII = −nνt(v′(T 1
m,t)v

′(T n+1
m,t )v′′(T 2

m′,t)u2un+1f)(4.29)

IX =
∑
�′≤n

νt(v′′(T 1
m,t)v

′(T 2
m′,t)v

′(T �′
m′,t)u1u�′f)(4.30)

X = −nνt(v′′(T 1
m,t)v

′(T 2
m′,t)v

′(T n+1
m′,t )u1un+1f)(4.31)

XI =
∑

�,�′≤n

G�,�′ − n
∑
�′≤n

G�′,n+1 − n
∑

�≤n+1

G�,n+1 + n(n+ 1)Gn,n+1,(4.32)

where
G�,�′ = νt(v′(T 1

m,t)v
′(T �

m,t)v
′(T 2

m′,t)v
′(T �′

m′,t)u�u�′f).
We show how to evaluate a typical term, say

νt(v′(T 1
m,t)v

′(T �
m,t)v

′′(T 2
m′,t)u�u2f) = νt(v′(T 1

M,t)v
′(T �

M,t)v
′′(T 2

M−1,t)u�u2f ).

For specificity we assume � �= 1. We use the method of (4.18) to see that

|νt(v′(T 1
M,t)v

′(T �
M,t)v

′′(T 2
M−1,t)u�u2f) − Cνt(v′′(T 2

M−1,t)u�u2f)|
≤ K

M
+Kνt((R1,2 − q)2),

where C is given by (4.17). Now

νt(v′′(T 2
M−1,t)u�u2f ) = νt(v′′(T 2

M,t)u�u2f)

and the method of (4.18) shows that

|νt(v′′(T 2
M,t)u2u�f) −C′νt(u2u�f)| ≤ K

M
+Kν((R1,2 − q)2),
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where, using the notation of (4.17),

(4.33) C′ = E
v′′(γ) expv(γ)
Eξ exp v(γ)

.

Recalling that f = ε1ε2u
′
1u

′
2f , we use the method of proof of (4.19) to see

that

|νt(u2u�f) −W (2, �)νt(ε1ε2f)| ≤ K

M
+Kνt((R1,2 − q)2),

where W (�, �′) is given by (1.14). In this manner we see that

νt(v′(T 1
M,t)v

′(T �
m,t)v

′′(T 2
m′,t)u�u2f ) � CC′W (2, �)U,

where here and below U = νt(ε1ε2f) and where � means that the error is
at most K/M +Kνt((R1,2 − q)2).

It remains to calculate in this manner the contribution of all the terms in
(4.27) to (4.32) and carefully collect them. Consider the quantity

(4.34) C1 = E
v′(γ)2 exp v(γ)
Eξ exp v(γ)

.

By the above method we find (recalling (1.14))

VI � C′2W (1, 2)U,

VII �
(
C′C1W (1, 2) +C′CW (2, 2) + (n− 2)C′CW (2, 3)

)
U.

To obtain this formula we distinguish the cases � = 1, � = 2, � ≥ 3, and we
use that W (2, �) = W (2, 3) if � ≥ 3. In a similar manner using the relations
W (�, �) = W (3, 3) and W (1, �) = W (1, 3) for � ≥ 3 we get the relations

VIII � −nC′CW (2, 3)U

IX �
(
C′CW (1, 1) + C′C1W (1, 2) + (n− 2)C′CW (1, 3)

)
U

X � −nC′CW (1, 3)U

n(n+ 1)Gn,n+1 � n(n+ 1)C2W (3, 4)U

−n
∑

�≤n+1

G�,n+1 �
(
−nC2W (3, 3)− n(n− 2)C2W (3, 4)

−nC2W (2, 3)− nCC1W (1, 3)
)
U

−n
∑
�′≤n

G�′,n+1 �
(
−n(n − 2)C2W (3, 4)− nCC1W (2, 3)

−nC2W (1, 3)
)
U,
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and finally∑
�,�′≤n

G�,�′ �
(
CC1W (1, 1) +C2W (1, 2) + (n− 2)C2W (1, 3)

+ C2
1W (1, 2) +CC1W (2, 2) + (n− 2)CC1W (2, 3)

+ (n− 2)(CC1W (1, 3) + CC1W (2, 3) +C2W (3, 3)

+ (n− 3)C2W (3, 4))
)
U,

where the first 2 lines correspond respectively to the contributions of the
cases �′ = 1, �′ = 2, and the last 2 lines to the contributions of �′ ≥ 3.

Using (4.26) and collecting the terms, we get

MA(m,m′) �
(
W (1, 2)((C′ + C1)2 +C2) + (W (1, 1)

+W (2, 2))C(C′ +C1)− 2(W (1, 3) +W (2, 3))C(C + C′ + C1)

+ 6W (3, 4)C2 − 2W (3, 3)C2
)
U.

(4.35)

Since by (1.11) and (1.12) we have τ = QC/M and τ = Q(C′ + C1)/M , we
see that, since W (1, 1) = W (2, 2) and W (1, 3) = W (2, 3),

Q2

M
A(m,m′) = W (1, 2)(τ2 + τ2) + 2W (1, 1)ττ − 4W (1, 3)τ(τ + τ)

+ 6W (3, 4)τ2 − 2W (3, 3)τ2 + R
(4.36)

where |R| ≤ KQ2/M2 +KQ2ν((R1,2 − q)2)/M .
Taking in account that, by (4.24), we have

(4.37)
Q

M
A(m,m) = τE

(
Eξu

′(θ) expu(θ)
Eξ expu(θ)

)2

+ R,

where R is as above, and recalling (4.22) and (1.13), we see that indeed∣∣∣ 1
N
A1,2 − ρνt(ε1ε2f)

∣∣∣ ≤ K
Q2

MN
+K

Q2

NM
νt((R1,2 − q)2).

Thus, for f = (ε1ε2 − q)(R1,2 − q), we have shown that∣∣∣∣ ddtνt(f)
∣∣∣∣ ≤ KQ2

MN
+K

Q2

NM
νt((R1,2 − q)2).

It is straightforward, using (4.6) to obtain through a differential inequality
that νt(f) ≤ Kν(f) whenever f ≥ 0 is a function on 2 replicas, and we
finish the proof of (1.19) as in Section 2. The proof of (1.20) to (1.23) is
very similar to the proof of (2.22) and is left to the reader.
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5. Computing the pressure.

As in the case of the Perceptron, we proceed by interpolation. Not sur-
prisingly, there will be two stages of interpolation.

We consider independent standard Gaussian r.v. zm, ξm and γm = zm
√
r+

ξm
√
r − r. For 0 ≤ c ≤ 1, we set

(5.1) Tm,c =
√
cTm +

√
1 − c γm.

(This should not be confused with (3.1); we use another interpolation here.)
We consider the Hamiltonian

(5.2) −Hc =
∑
m≤Q

v(Tm,c)+
∑
k≤M

u(Sk)ηk

√
τ(1− c)+

τ ′(1− c)
2

∑
k≤M

u2(Sk),

where τ ′ = τ − τ and where the r.v. ηk are independent standard normal.
Consider

ϕ(c) =
1
N
E logEξ

∑
σ

exp(−Hc(σ)),

where here and below Eξ denotes expectation in ξ1, ξ2, · · · only. For a func-
tion f(σ1, . . . ,σn) we define

νc(f) = E

∑
σ1,...,σn f(σ1, . . . ,σn) exp(−∑�≤n Hc(σ�))

(Eξ
∑

σ exp(−Hc(σ)))n
,

where Hc(σ�) is obtained form Hc by replacing σ by σ� and every ξm by
and independent copy ξ�

M . Thus

ϕ′(c) =
1
N
E

∑
σ −dHc

dc (σ) exp(−Hc(σ))
Eξ
∑

σ exp(−Hc(σ))
:= νc

(
− dHc

dc
(σ)
)

and

−2
dHc

dc
=

∑
m≤Q

(
Tm√
c
− γm√

1− c

)
v′(Tm,c)

−
√

τ

1 − c

∑
k≤M

ηku(Sk) − τ ′
∑
k≤M

u2(Sk).

By integration by parts in the variables hm,k,ηk and γm we get

2ϕ′(c) =
1
N
νc

( ∑
m≤Q

(v′′(Tm,c) + v′2(Tm,c))
(

1
M

∑
k≤M

u2(Sk) − r

))

− 1
N
νc

( ∑
m≤Q

v′(T 1
m,c)v

′(T 2
m,c)

(
1
M

∑
k≤M

u(S1
k)u(S2

k) − r

))

− τ

N
νc

( ∑
k≤M

u2(Sk)
)

+
τ

N
νc

( ∑
k≤M

u(S1
k)u(S2

k)
)

− τ ′

N
νc

( ∑
k≤M

u2(Sk)
)
.
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Using that τ ′ + τ = τ , we then get

2ϕ′(c)

=
M

N
νc

((
1
M

∑
m≤Q

(v′′(Tm,c) + v′2(Tm,c))− τ

)(
1
M

∑
k≤M

u2(Sk) − r

))

− M

N
νc

((
1
M

∑
m≤Q

v′(T 1
m,c)v

′(T 2
m,c) − τ

)(
1
M

∑
k≤M

u(S1
k)u(S2

k) − r

))

+ τr − τ r.

To handle this term, one has to generalize Theorem 1.2 to the case of the
Hamiltonian (5.2). This is done following the same method, but of course
the last two terms of the Hamiltonian (5.2) create more terms when using
the cavity method, and one has to check, through integration by parts,
that these terms give the correct contribution. Use of the Cauchy-Schwarz
inequality and of (1.20) to (1.23) shows that

∣∣∣ϕ′(c)− 1
2
(τr − τ r)

∣∣∣ ≤ K

N
,

so that

(5.3)
∣∣∣ϕ(1)− ϕ(0)− 1

2
(τr − τ r)

∣∣∣ ≤ K

N
.

A new interpolation is required to compute ϕ(0). Consider the r.v. θk =
zk
√
q+ξk

√
1− q, and, for an interpolation parameter 0 < c < 1, let us write

Sk,c =
√
c Sk +

√
1 − c θk. Let

(5.4) −H∗
c =

∑
k≤M

u(Sk,c)ηk

√
τ +

τ ′

2

∑
k≤M

u2(Sk,c) +
√

1 − c
∑
i≤N

hiσi
√
ρ,

where the r.v. hi are independent standard Gaussian. Let

ψ(c) =
1
N
E logEξ

∑
σ

exp(−H∗
c (σ)),

so that

(5.5) ϕ(0) = ψ(1) +
Q

N
E logEξ exp v(γ).
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To compute ψ′(c), we proceed as usual,

2ψ′(c)(5.6)

=
1
N
νc

( ∑
k≤M

(
1√
c
Sk − 1√

1 − c
θk

)

×
(
u′(Sk,c)ηk

√
τ + τ ′

∑
k≤M

u′(Sk,c)u(Sk,c)
))

− 1
N
νc

(√
ρ

1 − c

∑
i≤N

hiσi

)

= − 1
N
νc

(
τ
∑
k≤M

η2
ku

′(S1
k,c)u

′(S2
k,c)(R1,2 − q)

)

− 1
N
νc

(
τ ′
√
τ
∑
k≤M

ηku
′(S1

k,c)u
′(S2

k,c)u(S
1
k,c)u(S

2
k,c)(R1,2 − q)

)

− 1
N
νc

(
τ ′2

∑
k≤M

u′(S1
k,c)u

′(S2
k,c)u(S

1
k,c)u(S

2
k,c)(R1,2 − q)

)

−ρνc(1− R1,2).

To handle this quantity we have to extend the results of Section 2 to the
case of a Hamiltonian of the type (5.4), showing first that νc((R1,2 − q)2) ≤
K/N , and then that

(5.7) νc

(
B2

�,�′
) ≤ K

N
,

where

(5.8) B�,�′ =
1
N

∑
k≤M

u′(S1
k,c)u

′(S2
k,c)u(S

�
k,c)u(S

�′
k,c) −

M

N
W (�, �′),

a result similar in spirit and in proof to (1.20). Performing the integration
by parts in ηk in the first two terms on the right-hand side of (5.6), and
using the value of ρ given by (1.13), one then finds after a long computation
that

(5.9) ψ′(c) = − 1
2N

∑
n�,�′νc

(
B�,�′(R1,2 − q)

)
− (1− q)ρ

2
,

where B�,�′ is given by (5.8), where the sum is over 1 ≤ �, �′ ≤ 4 and where
n�,�′ are integers.

It of course makes sense that the value (1.13), found in a somewhat differ-
ent manner is exactly what is required to obtain (5.9), but the author must
admit that he does not fully understand why this is the case.

Using (5.7) one then gets∣∣∣ψ′(c) +
(1− q)ρ

2

∣∣∣ ≤ K

N

so that

(5.10)
∣∣∣ψ(1)− ψ(0) +

(1− q)ρ
2

∣∣∣ ≤ K

N
.
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Now,

ψ(0) = log 2 +
M

N
E logEξ exp(u(θ)η

√
τ +

τ ′

2
u2(θ)) +E log chz

√
ρ

and combining with (5.9), (5.5), (5.3), this proves (1.24) �
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