An assignment problem at high temperature
by Michel Talagrand

Abstract.
Physicists have studied the stochastic assignment problem using ideas from statistical
mechanics. For a version of this problem, we give, at high enough temperature, a complete

proof of the existence of the structure they predict.

I. Introduction.
Given positive numbers (a; ;); j<n, the assignment problem is to find

(1.1) min Z Qi o (i)

i<N
where o ranges over all permutations of {1, ..., N}. In words, a; ; is the cost of assigning job
J to worker 7. We are required to assign exactly one job to each worker, and we try to do
this at the minimum possible cost. In this paper, we are interested in the stochastic version
of the problem, where the numbers a; ; are independent uniformly distributed over [0, 1].
Physicists have studied this model using ideas from statistical mechanics. The basis of

their approach is to introduce the Hamiltonian

(12) HN(U) =N Z Q5.0 (i)
i<N

and an “inverse temperature” X\ , and to provide the set of all the permutations on N with

Gibbs’ measure, a probability measure of density proportional to exp(—AHy(c)). They use
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the (non rigorous) methods they have developed for the study of “spin glasses”, and this
paper is part of the author’s program to rigorously prove (at least at high temperature)
what the physicist discovered.

The most famous prediction of the physicists [M-P1, M-P2, M-P-V] is that, for large
N, the quantity (1.1) is asymptotically 72/6. After this paper was submitted, D. Aldous
[A2] did give a rigorous (and remarkable) proof of this result, following a very different
route and taking advantage of a special feature, namely the existence of a “ limiting object
” as N — oo [Al]. This is however not the whole story, and, as a desordered system,
the present model remains of interest, in particular because it seems to differ considerably
from the other models (Sherrington-Kirkpatrick, Hopfield, K-sat, perceptron capacity) that
the author previously investigated. Being familiar with this previous work would probably
provide no help to penetrate the present paper, and the present discussion is provided only
for comparison purposes. The physicists predict that for all values of A the model is in a
“high temperature” phase, or, as they say, that the replica-symmetric solution holds. Proving
that this is the case is a problem of the type “ controling the entire high temperature region”
and currently these problems are very difficult. What one would like to prove in a first stage
is that the physicists predictions are correct if A < Ay, where )\g is a given number. This is
a “very high temperature” hypothesis, and the author could do this in the four previously
mentioned models under such an hypothesis. Unfortunately, we could not completely reach
this goal in the present case. One reason is probably that this model is very different from
the models previously considered. In fact, despite previous results on the other models, the
author stared at the present model for quite a while without being able to say anything at
all. The techniques we will use are related to the techniques used on the four previously
mentionned models only at a high level. This is why this paper can be read without any
prior knowledge.

Not being able to prove what we want, we will study a slightly different model. This
model will also exhibit a structure similar to that predicted for the original model.

We consider an integer M > N, and
(1.3) Hyy(o) =N Z @i 0 (i)

i<N

where now ¢ is a one to one map from {1,..., N} to {1,...,M}. The r.v. (a;;)i<nj<m

are of course i.i.d. uniform. We will take N — oo, M — oo, with a “fixed ratio”, that is
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M = |(1+ «)N|, where a > 0.

It is probably not apparent now to the reader why this model is easier than the case
M = N. This should become clear in Section 2. We will obtain a good description of
the model when A < Ag(«). It is very likely that the picture we provide is also true for
A < Ao (where now Ag does not depend upon «), but proving this should be very much like
considering the case N = M. (As explained, we do not know how to do this.)

Let us now describe, informally first, some of what we can prove. It is natural to
consider the following quantity (“partition function”), which is the normalizing factor in

Gibbs’ measure

(1.4) Sna =Y exp(—AHp m(0)),

where the summation is of course over all one to one maps o from {1,..., N} to {1, ..., M}.

Given ¢ < N, 5 < M we will also consider

(1.5) Sna(i5) =Y exp(=AN Y ax o(r));

k#i
where the summation is now over all one to one maps o from {1, ..., N}\{i} to {1, ..., M}\{j}.
This quantity is closely related to Gibbs’ measure. If we denote by G n ar this Gibbs’ measure,

then
Grnu({o(i) =3}) = exp(—)\Nai,j)&vls’,Mi(Z;J).

N,M

One of the basic intuitions provided by physics is that (in the high temperature region)
“the spins are nearly independent under Gibbs’ measure”. This means here that given
i1 # 12, the laws under Gibbs’ measure of the variables ¢ — o(i;) and o — o(i2) are
nearly independent. It is however not easy to find a convenient quantitative version of this
statement, and instead we will work with the quantities Sy, ar(;7)-

Central to our approach is the fact that the N x M random matrix (Sn (%, §))i<n,j< M-
“decomposes”
Snom (43 9)

1.6
(1.6) Snoa

~ zn,m (1) un, v (5)

for certain random quantities zn (%), un,pm(j). Moreover, these quantities are of the same

nature as (1.5). Namely,

S (s 0 ~ Sna(0;j
(1.7) ZN,M(Z):%(;);UN’M(]): Néﬂ,/\f,(Mj)



There,
(1.8) Snm(i:0) =Y exp(=AN Ytk o(r)),
ki

where the summation is over all one to one maps ¢ from {1,..., N} \ {i} to {1,..., M}, and

(1.9) Snm(055) = exp(=AHn,m(0)),

where the summation is now over all maps ¢ from {1,..., N} to {1,...., M} \ {j}.
Clearly (1.6) is related to the emergence of independence properties. This relation might

be more intutive if we rewrite it as

Snm(i55) _ Sn,n (05 5)
SN’M(i;Q) SM;N((D; )

The right-hand side is the Gibbs’ probability that ;7 does not belong to the range of o.

The left-hand side is the Gibbs’ probability of the same event when one has removed ¢ from
{1,---, N} and one has replaced A by X’ such that X'(N — 1) = AN.

A way to express (1.6) is that the relative variation of Sy s when we remove ¢ and
j from their respective index sets is nearly the product of the relative variations when one
removes only one of these indices. This fact can be generalized to any given number of
indices.

What about the quantities un i, zv, 1 7 We will show that there exists two probability

measures fi,, t, (depending upon A, a only) such that

1
(1.10) i > Gunai ) ~ P
i<M
1
i<N

(In particular, the left-hand sides are essentially non random). The probabilities p,,, p, will
be described as fixed points of certain operators.

Even though this might not be apparent yet, once the previous results have been
obtained, all kinds of questions can be answered, for example the computation of the “free
energy’ .

We now state our results formally



Theorem 1.1. Given o > 0, there is a number Ao(a) > 0 such that if N — oo; M =
IN(1+ a)|,A < Xo(a), for all i < N,j < M we have

— v (Dun a(5))?) < @7

((SN,M(Zvj) ~

1.12 E
(1.12) S

where K («) depends upon « only. Finaly, there exists two probability measures (i, i, such

that

. 1
(1.13) im E(A( D Gennelis 12)) =0
i<N
_ 1
(119 i, BAGE D G sty ) = 0,
J<M

where A denotes the square of Wasserstein’s distance. Moreover,

1
(1.15) lim E—log Sy = —/logmdp,u(:v) - (14 a) /logmd,uz(a:).
Nooo N ’

We hope that this theorem makes the interest and the beauty of this model apparent.
It seems to be always the case that once one has succeeded to compute the quantity (1.15),
one has also developed enough tools to have a good hold on the model, and one can describe
it in detail. This seems to be also the case here. We will not attempt to do this, but to
illustrate this fact, we will sketch how to describe some features of Gibbs’ measure.

The next natural step should be to prove Theorem 1.1 under the condition A < g
rather than A < Ag(«), but the real goal is to control the model for all values of A. We
think that this is a very interesting question. The cavity method that we develop here seems
to be currently a necessary ingredient to such a result, but it does not seem (as in all the
other models) that by itself it can lead to a control of the entire range of A\. One approach
worth trying would be to combine the cavity method with a priory estimates for the Gibbs’
measure, a strategy that works well in the case of the Hopfield model. David Aldous proved
[A1] that the optimal assignment is unique in the strong sense that near-optimal assignments
must be close to it. A quantitatively strong enough version of this result might provide the
required estimates, but this is better left for future research.

The proof of (1.12) will occupy much of Sections 2 and 3. The proof of (1.13) and (1.14)

will occupy much of Sections 4 and 5, and is rather technical. Probably the reader should
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first look at the simplest argument, the proof of (1.15), towards the end of the paper. It

provides motivation for some of the previous considerations.

2. Starting the cavity method.
Throughout the paper, we will write

(2.1) Ci7j = exp(—)\Naz"j),

so that, in particular, ¢; ; < 1.

Given a subset A of {1,..., N}, a subset B of {1,..., M}, with
N — cardA < M — cardB,

we write

(22) SNM A B ZHC’L o(i)s

where the product is over i € {1,..., N} \ A, and the summation over all one to one maps

from {1,...,N}\ A to {1,..., M}\ B. If A = {i1,12, ...}, B={j1, 2, ...}, We write
Sn.m(A; B) = Sy (31,92, -5 915 G2 ---)-

This is consistent with the notation (1.4), (1.5), (1.8), (1.9) (with Sy ,m = Sn,m(0;0)). The

following will be fundamental

Lemma 2.1. Ifi ¢ A we have
(2.3) Snm(A;B) = Snm(AU{i}; BU{t})cis.
t¢B
If j ¢ B, we have
(2.4) Snm(A; B) = Snm(ABU{G}) + Y Snm(AU{k}; BU{j})ek,;.
kZA

Proof. The proof consists in replacing Sy a(.;.) by its value and checking that indeed
the same terms occur in the left-hand side and the right-hand side. Any further comment is

more likely to be a hindrance than a help. []



Lemma 2.2. If M ¢ B we have

(2.5) Sn.m(A; BU{M}) = Sn,m—1(A4; B).
If N ¢ A, we have

(2.6) Snm(AU{N}; B) = Sn—1,m(A; B).

It is understood in (2.6) (and in similar situations below) that in the system relative to
N —1, M, the value of X has been slightly changed, into a value X’ such that N'(N—1) = AN.
Proof. These are again obvious identities . []

We recall the definitions of Section 1 :

(2.7) un,m(J) = ?;’Zgg’é;a
(2.8) enn (i) = ;’55((5 %))

There two quantities are closely related, as the following shows.

Lemma 2.3. We have

(2.9) unm (M) = 7 + Y hen Z]\ll m—1(k)cr,m
(2.10) zn,m (N) :

- ZegM un—1,m(£)ene

Proof. To prove (2.9), we use (2.4) with A = B = {) in the denominator of (2.7), with
j = M. We then use (2.5), with A = {k}, B = (). To prove (2.8), we proceed similarly, using
now (2.9) and (2.6). []

We now consider

SN (40)SN, (05 5) — S aa (05 0)Sn aa (25 )
Sn,m (0;0)2

The motivation is simply that the left-hand side of (1.12) is EAn ar(4, j) (which is indepen-

(2.11) Anvum(3,5) =

dent of 4, 7). Together with (2.11), we consider the following quantity, of a similar nature

. Sn 2 (0;0)Sn 01 (0; 4, £) — Sn.aa (05 5) S a0 (0; €
(2.12) Rym(j,6) = s )N’M(S]'Z[J\/i(@'wj)\;M( DPMED,

The basis of the method of proof of (1.12) is to relate EA% 5,(i,7) with ERY_; 3,(j,¢)
and ERY 1, (4,£) with EA% s _1(4, 5). We will then obtain (1.12) through iteration of these

relations. The “algebraic” part of the proof is the following lemma, that is of a nature similar

to Lemma 2.3 (but more complicated).



Lemma 2.4. We have

_ (ZngCk,MAN,M—l(kaj))2
(L + > k< chmzn,m—1(K))*

(2.13) Ry m (M, 5)

(ZegM,E;éj CN,!ZRN—l,M(Ea J) - CN,ju%V—l,M(j))2
(ZegM eneun—1,m (£))*

(2.14) AN (N, j) =

Proof. This is again a consequence of Lemmas 2.1, 2.2. To obtain (2.13), we simply use
in (2.12) the relations

SN (0;0) = Sy p—1(0;0) + Z ce,m SN, m—1(k; 0)
k<N

Sy (055, M) = Sy p—1(0; 5)

Snar(035) = S 103 5) + Y e Snn—1(k3 )
k<N

Snom (03 M) = Snvv—1(0;0)
(which follow from Lemmas 2.1, 2.2) and we regroup the terms in the numerator. To prove

(2.14), we substitute in (2.11) the relations
SN (N;0) = Sn—1,1(0;0)

Snm(B;5) = Sn-1,m (054, §)en e
Ly

S, (0;0) = Z Sn—1.m(0;0)en e

(<N
Sn(N;j) = Sn—1,m(0;5)

and we regroup the terms. []
In the use of (2.14), the following will be essential (as will become apparent in Section

3).

Lemma 2.5. We have

(2.15) D unm(€) =M —N.
<M
Proof. This means that
(2.16) Z Sn(0;£) = (M — N)Sy a1 (0;0).

<M

This is true because each term of S(0; ) appears M — N times on the right. []
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Lemma 2.6. We have

(2.17) Z Ry m(4,j)=—unm(j) + U?VM(J)
L< M, L#£]

Proof. Using (2.16), we have

Z Snm(0;€) = (M — N)Sn.a(0;0) — Sn, (05 5)
<M

Moreover, we have the following (similar to (2.16))

Z Sn(0;4,5) = (N — M —1)Sn, 1 (0; 7).
L<M L#£j

The result follows in a straightforward manner. []

3. Decoupling.

In this section we prove (1.12). A basic observation is that in the right-hand side of
(2.13), the quantities ¢k pr are probabilistically independent of the quantities Ay ar—1(k)
and zy am—1(k). Thus, when taking expectation, we can first take expectation in cg ar at
Anm—1(k), zn,m—1(k) given.

Rather than (2.13), we will use the following

(3.1) Ry (M, 5) < () cumAnm—1(k, 5)).
k<N

While doing this, we gain two things. First, we do not have to know anything about the
numbers zy ar—1(k). Second, the expectation will be much easier to take. On the other hand,
this bound is very crude. (It will turn out later that } ;- ck,m2n,m—1(k) is typically of
order 1/a, so that in (3.1) we lose a factor o).

We now consider an i.i.d sequence (X} ), uniform on [0, 1], and we set ¢ = exp(—AN Xj).

The following is obvious.

Lemma 3.1. We have

(3.2) Ed = ——(1—-e V)< —



Lemma 3.2. For numbers (ay), we have

(3.3) E(Z crag)® < ()\21N + ”\LN)(Z ag)-

k<N k<N

Proof. We write

EX?=(EX)’+ E(X - EX)?

and we use (3.2) for p =1, 2, so that

E(Z ckak)2 < ()\LN)z(Z ak)2 + QALN(Z CLIZg)

k<N k<N k<N

1 1 ,
< -

using Cauchy-Schwarz. []
If we combine with (3.1), (and use that EAY y,_;(k,j) = EA% 3_1 (K, j) for all k, k')

we obtain that

Corollary 3.3. If A < 1, we have, for any k < N

: 2 :
(34) ER%V,M(ML?) S FEA?V,M—I(kaj)'

Our next goal is to use (2.14) to complement (3.4). This requires more work. We denote
by K a universal constant (independent of A, N, etc) that need not be the same at each

occurrence.

Lemma 3.4. Consider an integer S. Then

1 AN

3.5 S>2MN =>FE <
(3.5) (sts ck)®

Proof. If X =), _¢ ci, we write, for >0

P(X <t) < et Eexp(—pX)
(3.6)
= eMTl<sE exp(—pcy)-

We observe that
1
Eexp(—pcy) <1-— §P(H’Ck > 1),
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and, for z < 1,z > eV,

1 1
(3.7) P(cy > z) = N log ot
so that, if g4 > 1,4 < eV,
Fe ( )<1 ! Io
<p(— _
P\—UCk) = AN g
1
< — I
< exp( N og 1),

and, by (3.6),

S

1
P(X <t)<ett(=)mw~,
7’

Taking t = S/(ANp) we get, for p > 1, u < MV

1 AN S e?. s
—=>—pu)=PX < —)<(—)2

(3.8) P( ’

from which the result follows, using that X > Se™ V.

Proposition 3.5. Consider numbers (wg)e<m, (e)e<nr, (up)e<sr, and b > 0. We assume

that
(3.9) ng,u'egl,Zue:Zuész
<M <M
b
3.10 A< —.
( ) — 80

Then, if we set ¢y = ¢4 — Ecy, we have

2
> < Cowe KX [ 1 )

!
ZESM Ccotip) (ZESM Cfue) <M

Comment. A crucial fact is that we have a factor A\® (rather than A\?) on the right. It
is essential for this to have ¢, rather than ¢, in the numerator of (3.11).

Proof. The temptation is to use Lemma 3.4 and Holder’s inequality. This does not work,
because when computing E (3", Cewe)*, we get a term containing -, ,, wy, and we do
not know that this is about N~1(3 0,5, w7)?. To go around this difficulty, we introduce a
parameter L, and the set

L
(3.12) I={{< M;w?> i > wi}
k<M
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Thus,

wa > Lc;;d] Z w,%,

el k<M

and thus

(3.13) cardl <

SE

Next, we consider the set

b
le{ESM,UgZ 5}7

so that

and since uy < 1, we have cardJ; > bM /2.

Thus, if we choose

4
(3.14) L=—
b
we have
bM
(315) cardJ 2 T
where

J={0< Mt I u > g}.

We define
b
J =< M;LgI,u> 5},

and we also have

(3.16) card.J > bTM
Now, the left-hand side of (3.10) is at most

2U+V),
where
(3.17) U=E (D pet Cowe)?

(D ey ceue)® (e g couy)?
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(Zee[ ¢pwg)®
(D ees ceue)* (D g o couy)?®

The study of U is made much easier by the fact that I N (JUJ') = 0, so that the numerator

(3.18) V=FE

and the denominator are independent. Thus (using Hélder’s inequality)

(3.19) U<E() éuw)’E (ﬁ) 1/413 (ﬁ) 1/4.

/
tel D ee CoU D eer Cetty

We appeal to Lemma 3.4 to see using (3.15) that

b 1\ ke
(3.20) A == |F|=—— < ;
80 deJ ColUyg b
and similarly for J'. Thus, since E¢; < 1/2AN, we get, under (3.10) that
KX 1
(3.21) U< —(5 > wp).
<M

To study V', we use Holder’s inequality to get

1 1
V< (E( égwg)4)1/2E(—)1/8E(— 1/8

%ZI (Xees coue)® (e coup)®

(3.22) Y
< S5 (BQ_ éewe))'”?
g1
under (3.10), using (3.20) again.
Now,

(3.23) E() émwe)* < KO Eéjwi+ Y E&EGwiwy).

L1 1234 k2

Since E¢; < K/AN, E¢? < K/AN, and since for £ ¢ I we have (by definition of I)

L
wzl < w%(ﬁ Z wl%)’
k<M

we get that

1
(3.24) E() égwe)* < K(z +
@I k<M

If we recall (3.10), (3.14), we get that

and this completes the proof. []
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Corollary 3.6. If b= (M — N)/M then under (3.10) we have, for any £ < N — 1, # j

KX\ 1 . 1
L BB w0+ ).

: 2 ) <

Proof. Using (2.17), we see that for j fixed,

Y eneRnom(l§) —engun_1 () = D énewe + unm (i) Een,
e<M 4] <M

where wy = Ry_1 m(4, ) if £ # j and wj = —u%v_l,M(j), and where ¢y = ey — Ecny.

Thus, by (2.14), and since un m(j) < 1,

(ZegM énewe)”® + ALN
(Xe<nr N eun—1,m(£))*

(3.26) EA% (N, j) < 2E

Setting uy = u) = un—_1,m(¢), we see from (2.15) that (3.9) holds for b = (M — N)/M.
In the right-hand side of (3.26) we take expectation in ¢, y first. We use (3.11), and the

fact that
Ewj =ER}_, ;(£4,5) if £#]

Ew?- <1
We then observe that M/N = 1/(1 —b). []
Proof of (1.12). If we combine (3.25) and (3.4), we get,

KA\ KA\
) S bSN + bs(]. _ b) ER12V—1,M—1<I€7£)7

(3.27) ER} (N, j

where b= (M —1—-N)/(M —1).
In particular, if M > N(1 + «/2) (and, say, M < 2N to avoid trivial complications),
we get
a® L KX 1
K = ER?V,M(NJ) < BN + §ER?V—1,M_1(]€,£)

from which (3.8) follows by iteration since Rﬁvy u <4. (]

A<

Besides (1.12), there exist similar relations that will be useful for the sequel.

Proposition 3.7. Under the conditions of Theorem 1.1, we have, for j < M —1,1 < N —1,

. 12 K(a)
(3.28) E((un,m(7) — un,m-1(9))%) < =57~

. )2 K(a)
(3.29) E((un,m(f) = unv-1,m(4))°) < —
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K(«)

(3.30) E((2nm (1) — 28, m-1(1))?) < N
(331) Bz (8) = 2o ()?) < 2.

Proof. The proofs of these are similar, so let us prove only (3.29). We have

. ~_ Snm(0;7)Snm(N;0) — Snom(0;0)Sn,m (N 5)
UN,M(J) - UN_1,M(J) = SN,M(@; @)SN,M(N; @)

and, proceeding as in the proof of Lemma 2.4, this is

ZESM,E# enveRy—1,m (4, j) — CN,ju%V—l,M(j)
ZegM un—1,m(€)cn,e

Proceeding as in the proof of Corollary 3.6, we find that (for any £ # j), we have

KX, 1 1

E((unm () —un—1,1(4))?) < bT(mER%V—l,M(&j) + N)a

and thus (3.29) follows from the fact that

L _ Ko
ER%V,M(&]) < %7

as shown by (3.4), (1.12). []

4. Empirical measures.

The purpose of this section is to show that the empirical measures

1
(4.1) N My = Vi Z Oun 1 (5)
J<M
and
1
(42) UN M,z = N Z 5ZN,M('L')
i<N

are essentially non random. To do this, we consider an independent copy uly 5s(j) of the
variable un, a(j) (that is, the sequence corresponding to uw,ar(j) when the r.v. a;; are

replaced by an independent family a; ;), and we set

1
Mt = 37 D Oy ()
i<M

We define pily 5, , similarly. We will prove the following.
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Proposition 4.1. Under the conditions of Theorem 1.1, we have

(4.3) . EA(LN, Mo BN, M) = 0
(4.4) A EA(pN vz, Hv,u,z) = 0.

There and below, A denotes the square of Wasserstein’s distance. Given two probability

measures p, v on IR it is defined as
A(p,v) =inf E(X —Y)2,

where the infimum is taken over all the couples (X,Y) such that X has law p and Y has
law v. Of course in (4.3), (4.4) we could use other distances ; but the use of A will be very

convenient. We will use the duality formula

(4.5) Au,v) =sup( [ fau~ [ gav)

where the supremum is taken over all the couples (f, g) of measurable functions such that

Vz:,y € ]Raf(a:) _g(y) < ($—y)2.

We will use (4.5) only when p and v have compact support, in which case the proof of (4.5)
takes only a few lines (see [T1] p. 924.) The formula (4.5) lets us replace A by a supremum
of quantities like [ fdu— [ gdv, which are much easier than A to evaluate by induction over
N, M. In order to evaluate efficiently the expectation of a supremum of r.v., we will however
need to consider higher moments of these r.v, and this will create complications. Another
source of complications is that, while we know that 0 < un ar(j) < 1, the numbers zn,a(7)
can conceivably be very large, and we will need to prove some boundedness property of these
quantities.

It would be very nice to replace (4.5) and (4.6) by a statement with a clean rate of
convergence, such as (1.12). We could not do this. A desirable result in this direction is
stated in Conjecture 5.8

Our first task will be to prove a boundedness property for the quantities 2y ar. We will
denote by K(a, \) a number depending only upon a, A\, but not upon N. This quantity need

not be the same at each occurrence.
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Lemma 4.2. We have (under the conditions of Theorem 1.1)

. 1 K(a, )\
(46)  ¥a>0,¥b>0, lim P(5 > 2 (B a<on o<y > ( )) = 0.
k<N
Proof. We will prove that
t
(4.7) Vb > 0,Vt > 0,limsup E exp N Z (v m (k) AD)? < expt K(a, N).
N—oo k<N
This implies that
. 1 3
Jim P(< > (anp (k) AD)? > K(a, M) =0,
k<N
and (4.6). To prove (4.7), we consider
t
Onm(t)=Eexps > (anm(k) Ab)?,
k<N
so that, by symmetry,
t
O a(t) = E | znvm(N) Ab)® exp ~ > (zv,m(k) Ab)?
k<N
We appeal to (3.31) to get
t
(4.8) limsup 0y 5, (t) < limsup E | 2y 7 (N)? exp — Z (zn—1,m (k) A b)?
N—oo ’ N—oo N E<N—1

(It is here that the truncation at level b is useful). We now appeal to (2.10). We observe
that zy_1,ap is independent of cy . We integrate first in these, using Lemma 3.4 and the

argument of (3.15) to see that the right-hand side of (4.8) is at most

t
(4.9)  K(o,N)limsupE | exp D (an-1,m(k) Ab)® | < K(a,\)limsup by, (t),
N—o0 E<N—1 N—=oco
using (3.31) again.
Thus, we have (since Ox,7(0) = 1)

¢ ¢
limsup Oy am(t) <1 +/ limsup Oy 5 (z)dz < 1+ K (o, )\)/ lim sup Oy, ar (z)dx == £(2)
0 0

N—oo N—oo N—oo
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where we use (4.8), (4.9) in the last inequality. This means that

') < K(a, A1),
so that, since £(0) = 1,
£(t) <exptK(a,A). []

Lemma 4.3. We have

1 K(a, A
E(N Z Z?V,M(k)l{zN,M(k)zb}) < (b ).
k<N

Proof. It suffices to observe (as should be now obvious) that
E(2y m(N)) < K (e, A). []

There is a significant difference between the previous two results. Lemma 4.2 provides an
excellent control of the “intermediate” values of zxn s, while Lemma 4.3 provides a weak

control of the large values.

Lemma 4.4. We have

(4.10) A(% Z 0z, s % Z dy;) 1nf N Z — Yo(i))

i<N i<N i<N

where the infimum is taken over all permutations o of {1,..., N}.

Proof. The inequality < is obvious. For the converse inequality it should be obvious

that the left-hand side of (4.10) is

mf Z ai;j (T — ;)%

1,j<N

where the infimum is taken over all bistochastic matrices (a;;). The infimum is obtained at
an extreme point, and this extreme point is a permutation matrix. []

Considering two functions f,g on IR we set

t ) )
(4.11) Un,u,5.9(t) = exp 3 -( > Fluna () — glun m(5)))-
i<M
We set
(412) AN,J\/-’,Z = min(2a A(IJ’N,M,% IU'QV,M,z))

The use of the truncation at level 2 is to provide boundedness. We consider the function

(PNanp (t) = E(A%,M,ZU]\LMa.ﬂg (t))’

where the dependence of the left-hand side upon f, g is implicit.
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Lemma 4.5. Assume that |f|,|g| <1 and that

(4.13) Va,y, f(z) — g(y) < (z —y)>.

Then under the conditions of Theorem 1.1, for each p, we have

2
(4.14) O p(t) < 5oNMpi1(t) + 7,
A

where limy_, o 7Ny = 0.

Proof. Using the symmetry between sites, we have

Pivarp(t) = B ((f (wnne (M) = gty 1y (M))) AR 1y . Un, 1 1.9(8)) -

Using Proposition 3.7, we then see that

(415)  Garpt) < B ((FCunpe (M) = g(uy s (M) Ay 3 Unpa5(0)) + 7,

where 7, — 0. (This step uses the fact that Ay ar—1. 2, f, g are bounded). We now appeal to

(2.9). Since 2y, pm—1, un,m—1 are independent of ¢ ar, the left-hand side of (4.15) is at most

E(AnmAYN 1 UN-1,7,4(1) + 7,

where

1 1

-9
1+ pen 2n,m—1(k)Cr,m 1+ > ken 2n,m—1(F)Cr,m

(4.16) Anm = Ec(f(

and where E. denotes expectation in cx ar, ¢y 5(k < N) only. Given a permutation o of

{1,..., N} we have

1 1

—-4g
1+ > g<n 2N,m—1(k)cr,m L+ > <m 2, m—1(0 (K)o,

Anm = E(f(
Using (4.13), we have

Anr < Eo(() ewm(anm-1(k) = 2y -1 (0 (F)))?).
k<N
Using Lemma 3.2, we have (for A < 1)
2 1 / 2
ANy S 5 D (a1 (k) — 2y a1 (0(R))).
k

<N
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In this inequality, o is arbitrary, so that Lemma 4.4 shows that

2
Anwm < ﬁA(NN,M—Lz’ '“QV,M—Lz)'

On the other hand, since |f|, |g| < 1, it is obvious that Ay x < 2, so that,
2
Anm < ﬁAN,M—l,za

and thus the left-hand side of (4.15) is at most

2

and appealing again to Proposition 3.7 yields the result. []

Proposition 4.6. Under the conditions of Lemma 4.5, we have

2t
(4.17) limsup E(Un,um,1,4(t)) < limsup E(exp —

— AN M
N—oco N—oo A2 Z)

Proof. We prove by induction over p > 0 that

onat0() < 3 (agt)" ql B(AY 4r.)
(4.18) 7=0

where limy_,o 7n p(t) = 0. For p = 0, this follows from the fact that

¢
onmo(t) =1 +/ O ar0(T)d
0

and (4.14); while the induction step follows by integration by parts and (4.14). It follows
from (4.18) that

: . 2 !
lim sup ¢n,am,0(t) < limsup E exp(—5tAn,u, z)—l—(ﬁ)pﬂ/ o — (t—z)? limsup o, m p+1(z)dz,

N—oo N—>o0 )\2 N—>oo

from which (4.17) follows as p — oo, since Py a1 p+1(7) < 4Pe*®. []

Considering again two functions f,g on IR, we set

(4.19) ZN,M,1,9(t) = exp = Z(f zvm(2) — 9(2n,m(2)))
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and we set

(4.20) AN Mu = A(UN,M,u; M'N,M,u)-

We observe that An ar < 1, because 0 < un, am(j) < 1.

We consider the function

N Mp(t) = B(AY a0, 1,6(t))-

Lemma 4.7. We assume f, g bounded, and we assume (4.13). Then, under the condition

of Theorem 1.1, for each t, we have

K\3
(4.21) Y arpt) < ?le,M,pH(t) +rn,

where limy_, o 7N = 0.

Proof. It is essentially identical to the proof of Lemma 4.5. Rather than (4.16), we

must now deal with

1 ].
(4.22) By = EC(f(ZESM uN_1,M(€)CN,e) 9 o< Un—1,(0(6))Cy g

Using (4.13), we get

ZESM ene(un—1,m(4) — “QV—l,M(U(E)))
(o< eveun—1,m (€)X < i vty 1 ar (0(£)))

BN,M S Ec(( )2)5

and to control this we use (2.15) and Proposition 3.5. (Observe that > cowp, = Y éw, if

ng =0.) D

Proposition 4.8. Under the conditions of Lemma 4.7, we have

3
(4.23) limsup E(Zn,um,5,4(t)) < limsup E exp(——z—tAN M,u)-
N—oco N—o0 a
Proof. Identical to that of Proposition 4.6. []
We set
(4.24) ®,(t) = limsup E exp tAn m v
N—o0
(4.25) ®,(t) = limsup EexptAn .-
N—oo
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Proposition 4.9. Given ¢ > 0, there exists N(e) such that

2

(4.26) Yt > 0,®,(t) < N(s)@z(ﬁt)ets.

Proof. By (4.3) there exists a finite family F of couples (f, g) of functions satisfying

(4.11) such that, given two probabilities u, v supported by [0, 1], we have
A(p,v) <e+ sup (/fdu—/ng)-
(f,.9)€F
Since pN, M u; MIN, M, are supported by [0, 1], we then have
EexptAn pu < e®*E sup exptUn, . f.q-
(f,9)eF

Using the bound E(supY;) < >, EY; for Y, > 0, (4.17) yields the result, with N(e) =
cardF. []

Proposition 4.10. Given ¢ > 0, there exists M (e) such that

K)‘3 15te
(4.27) VE 2 0,@,(t) < M()@u(= 5 1)el™.

Proof. The extra difficulty here compared to Proposition 4.9 is that zx ar(k) is not
bounded.
According to (4.4), we can find a > 0 such that

) 1
(428) Vb > 0, I&E)noo P(N Z Z.%V,M(k)l{GSZN,M(k)Sb} > 6) =0.
k<N

We then fix a finite family F of bounded functions satisfying (4.11), such that, given any

two probability measures p, v with support in [0, a], we have

(4.29) A(p,v) <e+ sup (/fd,u—/gdz/).

(f.9)eF

Only the values of f,g on [0,a] matter there. Condition (4.11) still hold if we replace the

couple (f,g) by the couple (f%, g%), where

f*(x) = f(min(z, a)),

and where g% is defined similarly. That is, we can assume

(4.30) f(z) = f(min(z,a)), g(x) = g(min(z, a)),
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whenever (f,g) € F. For a probability measure . on IR, let us denote u® its image under

the map £ — min(z, a). Then by (4.29), for any two probabilities u,v on IR,

A(p®,v") < e+ sup (/fdu“—/gdva)

(f.9)eF

e+ swp ([ fau= [ gav)

(f.9)eF

using (4.30). Now, since A is the square of a distance,
Alp,v) < 3(A(p, p®) + A(p® v%) + A, v%)),

and, obviously
Apo) < [ (@ = min(z, 0))*du).
Thus,

1 . .
ANz i) <3e+3 sup — > (fen,m (@) — 9(2n,ae(0)))
(f.9)eF i<N

3 , 3 yoo
+N Z Z?V,M(Z)l{zN,M(i)Za} + N Z Z]\%’M(Z)l{z;v,M(i)Za}.
i<N i<N

Thus, for any b > 0, we have
AN M, <min(2,3e + 3S + 3U + 3U’ + 3V + 3V'),

where

S = sup % Z(f(ZN,M(i)) —9(zn m(4))),

(Hr9)eF =¥ icn

1 .
U= N Z Z?V,M(z)]‘{a<ZN,M(i)Sb}
i<N

1 .
V=5 2 om0l @20,
i<N

and U', V' are defined similarly, replacing z by z’. Thus, since Ay ar . < 2, we have

EexptAnar, < expl5teE | sup (Zna.fq(3t))°
(f.9)eF

+ e (P(U>e)+P(U >e)+P(V>e)+P(V' >¢)).

(4.31)

From (4.7), we have

PW2@=HV2@3K3”,
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so that, if M(e) = cardF, we see from (4.31) and Proposition 4.8 that

K3 K(a, M)

(1) < M(e)e!™ Py (1) + 2% — =,

a8
and the result follows by taking b — oo. []
Proof of Proposition 4.1. If we combine (4.26) and (4.27), we get

KA
vt > 0, Bu(t) < K (e)e’ ' @u(—g1),
where A =1+ 30/A%2. If A > a®/K, we then get
t

VE > 0,®,(t) < K(a)eAstCIJU(E).
Since @, (1) < e, we get by iteration that for all k > 1,
(4.32) B, (2%) < (K (e))Fede?".
Now, by Chebishev inequality,
P(ANmu > ) < e 2T g exp 2kAN,M,u;
so that, using (4.32)

limsup P(An 0 > 2) < (K (e))Fe(Ae02",

N—>oo

Taking x = (A + 1)e, and letting £ — oo, we get that

limsup P(An pmu > (A+1)e) = 0.

N—o0

Since Ay aru < 1, and since € is arbitrary, this proves (4.3). The proof of (4.4) is similar. []
Let us denote by £(X) the law of a r.v X.

Theorem 4.11. Under the conditions of Theorem 1.1, we have

lim EA(/],N’M,U,,C(UN’M)) =0

N—>oo
lim EA(,LLN7M7Z,[,(ZN’M)) =0.
N—oo

Proof. This is a consequence of the general fact that if v is a random probability,

(4.33) EA(u,v) > A, Ev),
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and that Funy m = L(un,a). Thus Theorem 4.11 follows from Proposition 4.1 by

“integrating in v’ inside A rather then outside”. []

5. Proof of Theorem 1.1 ; some consequences.

The distribution of ), u(f)cny,e (Where (u(£))e<m are given numbers) depends only
upon the probability M1 ZESM du(e)- Thus we see from (2.10) and Theorem 4.11 that
L(zn, ) is essentially determined by £(un—_1,a). In a similar fashion, £(un, ar) is essentially
determined by L(zn,am—1). Since L(un,m) ~ L(un—1,m—1) by Proposition 3.6, we see that
L(un,p) must be a (nearly) fixed point of a certain transformation.

We start with the following technical fact (the proof of which is probably better skipped

at first reading, since the real action starts only Proposition 5.3).

Lemma 5.1. Consider independent r.v. a, ag, uniform over [0, 1]. Consider an integer R > 1,

consider v > (0 and
(5.1) ¢ = exp(—va);c = Z exp(—vRay).
(<R

Then we can find a joint realization (X, X') of ¢, such that

(5.2) E(X-X')?<

K
i B(X - Xt <

Comment. This will be used for v = AN.
Proof. For 0 <t <1, we have

1 1
P(c>t) = min(1, — log -)
v t
. 1 1
P(exp(—vRag) > t) = min(1, R log Z)

Since ¢’ > t provided one of the summands is at least ¢, we have, by independence,

1 1
P(d>t)>1-(1—min(1, — log =))® := ©(t).
(2 1) 21— (1 min(1, - log 1)) = (1)
Since (1 — z)® > 1 — Rz, we have
. 1 1
¢(t) < min(R, - log z)
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and, since ¢(t) < 1 we have in fact

1 1
(5.3) ¢(t) < min(1, - log Z) = P(c>1t).
v
Since
xﬁlé(l—%)Rgl—m—{—m{
we have
1 1 1 1 1 1
“log=- <1 t) > —log— — (—log =)?
~log o < 1= (t) 2 ~log - — (~log )",
and since (t) > 0, we have
1. 1,
(5.4) 0< Ple> 1)~ (1) < (S log 1),
v

even when v~ log(1/t) > 1. We have

(5.5) /O Pc>1t) - P( 2t)|dt§/0 \P(th)—gp(t)|dt+/0 P > 1) — (1) dt

_ / Ple> 1) — p(t)|dt + / (P(¢ > 1) — o(t))dt

< 2/1 |P(c>t) — o(t)|dt + /1(P(c’ >t) — P(c > t))dt.
Since

/01 P(c > t)dt = Fec, /01 P(d > t)dt = Ed,
it follows readily that the left-hand side of (5.5) is at most K/v?. There exists two r.v. X, X',
with £(X) = L(¢), L(X') = L(c) and

E|X - X'| = /01 P(e> 1) — P( > )|t
(For example, if we define 1) by

Ple>t)=P(d > 4(t)),

the couple (¢(t),t) on the probability space (IR, £(c’)) works.)

In particular, since 0 < X <1,

K
E|X —min(2,X')|* < —; E|X — min(2, X')|* <
14

Q[i| N

i.e. A(L(c), £L(min(2,¢')) < K/v2. It remains to show that E((¢' — min(2,¢'))*) < K/v*, or

even E((c'1{z>0)*) < K/v*. This follows from simple tail estimates for ¢. []
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Lemma 5.2. If a is uniform over [0, 1] we have, for p > 1,
' 1 1

Ele™"* —e™ P < K| — —|.
v v

Proof. Since [e=¥% — e=*'%| < 1, we have
Ele " — e—u'a|p < Ele™ — e_yla"
= |Ee™"* — Ee™""?|
because e~V > e~V if y < V. []

Proposition 5.3. Given a number o > 0, there is a number A(«) > 0 with the following
property. If A < M(a), to each probability measure p on [0,1], such that [ zdu(z) > a/2, we

can associate a probability measure A(u) on R such that the following occurs.

1 «
(5.6) If Yi eg}\;j u(f) > E,then
1 1 M
AW £l o) < Kl + g 1 el
o] [ ante) = 57 3 0]+ T80 5 3 )
Moreover,
61 AW, AW) < 25| [adu(e) — [adyd @)+ 5 A ).

The proposition asserts only the existence of the operator A. One can show easily that
this operator is unique. In fact, one can show that A(u) is the law of (3,5, exp(—A&) X)L,
where the r.v. X; are i.i.d with distribution p, and where the variables &; are the arrival
times of a Poisson point process of intensity measure 1, independent of the variables X;.
This interpretation however does not seem to make the proof any easier.

Proof. Consider M', N’, numbers (v (£))p<ar with M =13, 00 u/(£) > /2. We will

prove that
(5.8 AL () L
' ZESM en,eu(l)” ZegM' Nt eu! (£)
1 1 M M’
< — 4 - _1_ - _1_
_K(a,)\)(N+N,+|N 1 a|+|N/ 1—al)
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K\
+ 8|MZU(£)_%Z ()|+—A Z5u(e)’M,Z5'(e>

<M <M e<M <M
A cluster point argument will prove (5.6) and the existence of A(u), from which (5.7)

follows. The main difficulty in proving (5.8) is that we can have M # M’, and the purpose
of Lemma 5.1 is to address this, by showing that one can replace both M and M’ by M M’.
Indeed using this lemma, for v = AN, R = M’, we see that we can find independent variables
(¢p)e<m, each the sum of M’ independent copies of exp(—ANM'a) (where a is uniform over

[0,1]) and such that for each ¢ < M,

(5.9) Eens—c)? < %;E(CW _e)t< %
We then write
5.10 FE 1 1 2
(5.10) ((ZZSM e eu(f) N ZESM’ Cle“(g)) )
en e — c)u(£))H)/? 1 s\l/dpm L \gv1/4
< (B o = O Bl Bl

and we use Lemma 3.4 (as in the proof of Proposition 3.5) to obtain a bound K (A, «)/N for
(5.10). This allows to replace M by M M'. Similarly, we replace M’ by M M'.
We have reduced the problem to bound the left-hand side of (5.8) when M’ and M are

replaced by MM’ i.e. we are required to bound
1 1
e )’ ‘C( !..1 g
ZegMM' cou(f) ZegMM' cpu' (¢)

There ¢ 2 exp(—ANM'a), c; £ exp(—AN'Ma). Using Lemma 5.2, and proceeding as before,

A(L( ))-

we see that we can replace ¢ by cg, making an error at most K(a,\)|M/N — M'/N'|. If
we knew that Y, u(¢) =", u'(£), we would be finished by Proposition 3.5 and Lemma 4.4.
But we simply reduce to (3.11) by writing

O éwe)® 20> éowe)® + 2(Ece)* (D we)?
£ V4 £

Proposition 5.4. We have

(5.11) A;gnoo A(ﬁ(ZN,M),A(ﬁ(uN,M))) = 0.
Proof. Using (4.33), (2.10) it is enough to prove that
1
Le
(ZESM UN—I,M(K)CN,K

where L. denotes the law at (uny_1,m(£)) given. We can replace L(un ) by L(un—1,m)

Jim EA( ), A(L(un,n))) =0,

thanks to (5.7) and Proposition 3.7. The conclusion follows from (5.6) and Theorem 4.11.
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Proposition 5.5. Given A\ > 0, to each probability measure u on IRT we can associate
a probability measure B(u) on [0,1] such that the following occurs, for any numbers

z(k) > 0,k < N:

512 ABOLL ) € T A Y )
<N Ck,M?% k<N

Moreover, for two probability measures u, ' on Rt, we have

KA( w).

(5.13) A(B(), B) < 5

Proof. Similar to Proposition 5.3, (but easier) using now Lemma 3.2.

Proposition 5.6. We have
(5.14) Z\}EHOO A(,C(UN,M), B(,C(ZN7M))) =0.

Proof. As in Proposition 5.4. []

Theorem 5.7. The limits

=1
o = i, £(u.ar)

pr = lim L(znm)

N—o00

exist.

Proof. Combining (5.11) and (5.14), we see that

lim A(L(un,m), BoA(L(un,m))) =0,

N—oo

so that any cluster point p of the sequence L(un ar) is a fixed point of BoA, and satisfies
J zdu(z) = a. But (5.7), (5.13) show that this cluster point is unique if A < o®/K. Thus
lim £(un, ar) := p, exists, and, of course, p, = A(y,).

Comment. The mysterious part of the proof is that for each o not too small, BoA

admits a fixed point g such that [ zdu(x) = «. (This is also probably true for small c.)

Conjecture 5.8. Given any integer n, there exists a constant K (a,n) such that for any N,

there exists independent r.v Yy, ---,Y, of law u, with
. K(a,n
> (i) - v? < K8,
1<i<n
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Of course one can make a similar conjecture for the variables zy ps.
Proof of (1.15). Writing
AN,M = ElOgSN,M,

we have
J— SN’M J—
(5.15) AN,M - AN,M—l = ElOg 57 = —Elog(uN,M(M - 1))
N,M—-1
Sn,m
(5.16) AN,M_AN—l,M =E10g57 = —ElOg(ZN7M(N)),
N-1,M

so that these quantities have limits — [logzdu,(z) and — [logzdu.(x) respectively as
N,M — 0o, M/N — 1+ «. (Here we skip a few simple details as that better left to the
reader.) We then write Ay 3 — A1 1 as a sum of (N —1) quantities A r(r)—Ar—1,m(r) (R <

N) where M(R) = |R(1+ «)] and of about (14 «)N quantities

AR M(R)—t — AR,M(R)—t—1

where M(R) —£—1> M(R — 1). Thus, we see that not only the limit exists in (1.15), but
that it is

—/logmd,uu(:c) -1+« /logmd,uz(a:).

As a conclusion, let us say a few informal words about Gibbs’ measure G'n 1. We recall

that
Sn,m(45)

(517) GN,M({O'(’IJ) = ]}) = C4,j5 SNM

In a similar manner, if 2; # i3 and j; # j2, we have

S, (41,925 J1, J2)

(5'18)' GN,M({J(il) = J1, 0'(7:2) = ]2}) = Ci1,51Cia,j2 S
N,M

Now we have
SN (1,923 91, J2) SN =~ S (315 51) SN, (G2 j2)
because both sides are nearly

SR SN, (i1 0)Swv, (s 0) S, a1 (05 51) S, aa (05 52).
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Combining with (5.17), (5.18) this proves as announced in the introduction that

Grnu({o(in) = g1,0(i2) = J2}) = Gy m({o (1) = 11} Gn u({o(i2) = J2})-

This even holds true if j; = j2 because in that case the right-hand side is very likely to be

small for all values of j;.
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