ON THE HOPFIELD MODEL AT
THE CRITICAL TEMPERATURE

MIiCHEL TALAGRAND

ABsTrACT. We study the Hopfield model at temperature 1, when the number M (N)
of patterns grows a bit slower than N. We reach a good understanding of the model
whenever M(N) < N/(log N)!. For example, we show that if M(N) — oo, for two
typical configurations 1,02, ( 0',}0'7;2)2 is close to NM(N).

i<N
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1. Introduction.

The behavior of the Hopfield model with extensively many patterns is now rig-
orously understood rather precisely in a large domain of parameters [B-G| [T].
Much less is known at the critical temperature 1. The physicists predict that
at this critical temperature, there is spin glass behavior as soon as the number
M = M(N) of patterns grows proportionally to N. Therefore when investigating
the model at temperature 1 it seems more reasonable in a first stage to assume that
a=«a(N)=: M(N)/N — 0. When M remains constant, a rather precise picture
is provided by a recent work of Gentz and Lowe [G-L], that motivated the present
paper. We are interested here in the case where M (N) — co. A suitable version of
the result of [G-L| (Theorem 1.1 below) remains valid if M (N) does not grow too
fast; apparently the critical rate of growth is N /3 The main thrust of the present
paper is that we succeed in getting rather precise information when M(N) = N?°
and § < 1. It is in fact likely that our result continues to hold under the condition
M(N) = o(N), but serious technical difficulties arise when o = M (IN)/N goes to
zero too slowly, and the rather small gap remaining does not seem to warrant a
major effort at this stage. This would also ruin the main appeal of the present
work, which is to present a rather non trivial situation with proofs that are rather
simple (at least by the current standards of the area). We now describe the model
and explain our results in detail.

We consider independent random variables (n;x)i<nk<m With P(n; = 1) =
P(n;x = —1) = 1/2, and to a spin configuration o € Xy = {—1,1}" we associate
its Hamiltonian

(11) HN’M(O') = —%Z(Zni,ko'i)Z

where my, = mg(6) = N~' Y 5, x0;. The quantities my (o) are called the over-
i<N

laps. We are interested in the Gibbs measure G'y ys associated to Hy as at inverse

temperature 1, that is, in the (random) probability measure on Y. given by

(1.2) Gnm({0}) = Zyly exp —Hn,m (0)
where Zn ar is the normalization factor ) exp —Hpy a (o), for a summation over
all configurations.

Since the Hamiltonian (1.1) is defined in terms of the overlaps only, it is rather
natural to study the measure G' = 9\, u defined as the image of Gy ar on RM
under the map o — (my(0))r<nm-

A very convenient tool is the Hubbard-Stratonovich transform, that is convolu-
tion by the gaussian probability v on RM of density proportional to exp(—N||z||2/2).
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It has been used in much of the literature dealing with the Hopfield model. We will
denote by G the convolution G = G’ x v. We are interested in G/, not G, and G is
only a technical tool. But G and G’ are closely related, because v is sharply con-
centrated on a ball of radius \/a. We will always be in the case where a — 0, and
it will turn out that the natural scale at which to look at G’ is a'/4, so that even
at this scale G is a good approximation of G’ (since \/a < /4 for « small). Let
us note in particular that if f is a Lipschitz function on R, of Lipschitz constant
<1 then

(1.3) | / £(2)dG!(2) - / f(2)dG(2)| < Ly/a.

There and throughout the paper, L denotes a universal constant, not necessarily
the same at each occurrence.

The reason why G is so useful is that (by a simple calculation) it has a density

proportional to exp —1(z), where

_ Ne|?
2

(1.4) Y(2) - Z logchn; -2z

i<N
for ;i = (i k)k<ar,Mi -2 = D Nik2k.
k<M
Even though the expression for 1 is formally simple, the behavior of this function
is not so clear.

Central to the paper is the fact that for many purposes, we can replace 1 by
the more explicit function 1, given by (1.5) below. Despite its technical nature, we
state it as a theorem, in homage to the paper [G-L] that very directly motivated
it. The precise way to use this result will become apparent only gradually, but
the overall philosophy is simple: We can replace the study of G by that of a more
explicit probability. It should also be pointed out that the main reason we succeed
in covering a much wider range of a than in [G-L], [G-L2] is that our formulation
of the idea of replacing 1 by an approximation 1; better preserves the balance
between two conflicting needs: the need the make 1); explicit enough to be usable,
and the need to have an approximation valid in a wide enough range.

Theorem 1.1. Consider the probability G1 on RM of density proportional to
exp —11(2), where

N N
(1.5) P1(z) = ) Zzizﬁ t 12 Z %

k<t k<M
- E Zkze( E Ui,kﬁi,e)-
k<2 i<N

Then, with probability at least 1 — N=2 (in the variables n; ), for each Borel subset
A of RM we have

(1.6) TG (4) ~ 3 < G(A) < TGL(A) + 13
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for
T = exp (LM+/a(log N)°).

Even though we are interested in G’ rather than G, we have formulated Theorem
3.1 in terms of G because the formulation is cleaner. Of course Theorem 3.1 can be
used to relate G’ and G using (1.3). The case where T — 1 is of special interest,
because in that case G; and G are virtually identical. This occurs as soon as

M+/a(log N)° — 0,

or, equivalently, M3(log N)!°/N — 0. In that case, after rescaling, Theorem 1.1
is simply a different formulation of the results of [G-L|. Theorem 1.1 is however of
interest even if it is not true that T — 1, but only that a(log N)* — 0.

Theorem 1.2. If M(N) — oo, M(N) < N/(log N)!1, then for each ¢ > 0 we have

(1.7) EGnu({o; ) mi(o) € [(2—e)va, (2 +e)val}) —

k<M

There E denotes of course expectation in the r.v. 7; 5. We can also write (1.7)
as

(1.8) EGym{z 2-eva<|z® < 2+eva}) =1

Theorem 1.2 stresses the fact that a'/4 is the correct scale to study G'. How
does G’ look at this scale? Before we state our next result, we must provide
motivation. The essential feature of the replica symmetric regime studied in [T2]
is that given two generic configurations o',62 (weighted for Gibbs’ measure) the
quantity Y myg(ol)mg(o?) is essentially independent of o!,a2, and the disorder.

k<M
It is then natural to ask whether the same is true here (taking in account the
proper scale '/4). One should observe first that G’ is symmetric around zero (in
[T2] “symmetry breaking” terms are introduced to prevent this) so we can at best

hope that | > mg(o!)m(0?)| is essentially constant. It turns out that this is the
k<M

case. The physical interpretation is that after rescaling, G’ can be seen as a super

position of two pure states related by a global symmetry around zero (see [T1], §5

for a similar situation that is also handled rigorously).

Theorem 1.3. If M(N) — oo, M(N) < N/(log N)'!, then for each ¢ > 0, as
N — oo we have

(1.9)  EGYy({(e',0%);] > mr@")mr(0®) ¢ [(1 - Ve, (1+€)val}) — 0

k<M
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In fact, even though it is hard to give a formal statement in this direction, the
underlying idea of Theorem 1.3 is that G (and hence G') is close to the scaling
by a factor v/2(MN)~'/* of the Gibbs measure of the spherical version of the
Sherrington-Kirkpatrick model at temperature 1/2, a fact that should become clear
while reading Sections 4 and 5.

Of course, one is also interested in the sum Y olo?, the behavior of which is
i<N
described by the following.

Theorem 1.4. If M(N) — oo, M(N) < N/(log N)''then for each ¢ > 0, we have

(110)  BGF({(0",0%: 15 Y olo?l 2 [(1 - Ova, (1 + )va]) = 0.

i<N

Let us now say a word about the proofs. The most striking fact is that, even
though one would expect that Theorems 1.1 to 1.3 could be (and, actually, should
be) proved using (1.4) only, we will on several occasions heavily use the fact that
(1.4) arises from Gibbs measure (1.2). A nice aspect of the proofs is that they
contain occurrences of several techniques that have been previously used in more
complicated situations; so that the present paper could be used as an introduction
to several important ideas about spin glasses.

2. Gaining control.

In this section we prove the basic facts that give us a rough understanding of
what happens. These will of course be basic in the proof of the Theorems. The

first result asserts that a'/4 is the correct scale at which to study G.

Theorem 2.1. For some constant L, if t > 0 and if Lta'/* < 1, with probability
> 1 — exp(—t*M) we have

(2.1) G({|lz]| = (1 +t)Lalt/*}) < Lexp(—t*M).

This result relies upon a lower bound and an upper bound.

Lemma 2.2. We have

1 M/2
)

(2.2) = / exp ()i > (=

There and throughout the paper, dz denotes integration with respect to Lebesgue
measure A on RM. The bound (2.2) holds for all values of the numbers (n; %), and
mimics the proof of Proposition 3.2 of [T1].
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Proof of Lemma 2.2. We denote by dU the uniform probability on the orthogonal
group Sypr of RM . Since any U in Sjs leaves A invariant, we have

I= / / exp(—ib(U (2)))dzdU
RM J Sy,
> [ exn(- [ pUE)w)
RM S
by Jensen’s inequality. Now
logchy > CEn Ly
so that

/ log chay - U(=)dU > / (i - U(2))dU — L / (n: - U (2))*dU

 llel?

- L 4
> L~ Le

because [(a-U(2)))?dU = cplla||??||2||?? /M (and cy = 2).
Thus, for all u > 0,

> / exp(—LN|z|[*)dz

> A({llz]l < u}) exp(~LNu?)

U M 4
> exp(—LNu™).
> (=)™ expl )
We obtain the result with u* = o = M/N. O

Lemma 2.3. If uy/a <1 we have

(2-3) P(Vz,2' € RM, Y (i -2)(m; - 2') < Nz - 2' + LNuV/al|2]|||'|]
i<N
> 1 —exp(—M (L — u?)).

Proof. Simple adaptation of the proof of [T1], Lemma 11.3.

Lemma 2.4. Consider t > 0, with Lta'/* < 1. Then if the event of Lemma 2.3
occurs for u such that t = L\/u, we have

(2.4) J(t) :/” st exp —(2)dz < (%)M/Z exp(—MTt).
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Remark. Even though (2.4) holds for all ¢, only for ¢ > L can we ensure that the
event of Lemma 2.3 occurs with probability close to one.

Proof. Tt is a elementary fact that the function z — logch /Z is concave on RT, so
that

1 1
N;\,bgdl 7 - 2| < logch N;(m - z)?

< logch||z]|(1 + Luy/a)

under the event of Lemma 2.3. Using that logchz < z?/2 — z*/L if |z| < 1 and
< az? for a certain a < 1/2 if z > 1, we see that we have

J(t) < Ji+ Jy

where

I2]I*

T )dz

Tu(t) = / exp N(Luy/aljz|? -
||| >tal/4

N
J2:/ exp(— 5 llz|> + Nallz|[2(1 + Luy/a)?)dz
lel121

If ¢t = L\/u, we then have

4
n< [ ep-nEE
2] >tat/4 L

< (s5=)M"? exp(—Mt* /L)

L
Ny/a
by going to polar coordinates (a line of arguments to be more detailed later). Since

t = Ly/u, if Lta'/* < 1, then

2
Jy < / eXp(—Nﬁ)dz < exp(—N/L)
I2)>1 L

as is easily seen. (This is a gaussian integral...) The result follows. O

Proof of Theorem 2.1. Tt follows from Lemmas 2.2 to 2.4, replacing ¢ by L(1 + t)
in Lemma 2.4. U

We now start another line of investigation, that finishes with Corollary 2.9. These
results are not essential for the paper, but they yield a considerably simpler proof
of Theorem 1.2 in the case where M (N)/log N — oco. At first reading the reader
should certainly content himself with these simpler arguments.
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Lemma 2.5. If P(n; =1) = P(n; = —1) = 1/2 and the r.v. (n;) are independent,
then for x > 0 we have

N 4N
(2.5) E(1{jm|>z} €Xp 5m2) < LVN eXp(—xT)
where m = N=13". ;.

Proof. A simple consequence of the Chernov bounds is that for ¢ > 0,
2t
J— + J—

(2.6) P(jm| > 1) < exp(-N( + ).

Next, we use that
B (m)Lmizar) = P(ml > 2)f @)+ [ £OP(m| > e

for f(z) = exp NT$2, and we see that the left-hand side of (2.6) is bounded by

Nzt o —t'N
exp —( ;)-ﬁ-/x Nt exp( 7 )dt.
N

N
) O
7

ow
Ntexp dt =VN vexp —dv < L\/Nexp(—
T L TN1/4 L

Proposition 2.6. For k < M and x > 0, we have that

:v4N)
7 )

(2.7) E(G({|mx| > z})) < LVN exp(—

Proof. We use the cavity method “on M”. If we denote by ( - }; the Gibbs measure
associated to the Hamiltonian

Hyy-1(0) = —g Z (mi(0))”

k<M—1
we then have the identity
(1{lmaq 22} €XP FMi1)1

(exp %mﬁl)l

(L{imarl>2}) =

so that

N
EG({Imum| > 2}) < E(({jm |2z} €XP 5 miar)1)

and the result from Lemma 2.5 integrating first in the variables n; ar. O

Comment. Tt is probable that the factor v/N is not necessary in the right hand side
of (2.7). If this factor could be removed our simpler approach to Theorem 1.2 would
work not only when M (N)/log N — oo, but as soon as M(N) — oco. Removing
this factor appears unfortunately to be a difficult problem in itself. Since theorem
1.2 does require M(N) — oo, it is not so surprising that its proof is easier when
there is more “room” and M (IN) does not go to infinity too slowly.
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Corollary 2.7. If0 <z < N, we have

(2.8) EGHY mi > HEE \/—) HEF VIR < LVNM exp(—z)

k<M

Proof. By Proposition 2.6 we have for u > 0
(2.9) EG({maxmj > LuN~"/?}) < LVNM exp(—u?).

By Theorem 2.1, for ¢ > 0, Lt*M < N, with probability at least 1 — L exp(—t*M)
we have

G({llzll > (L +t)La*/*}) < Lexp(—t*M)
so that, since G = G’ * v, and v({||z]| < La'/*}) > 1/2, we have

G'({|1z]| > 2(1 + t)Lal’*}) < Lexp(—t*M)
and thus

G [ md >2(1+1t)Lal/*}) < Lexp(~t*M)
k>M

so that we have
EG({> mi>L1+1?) ,/ ~ D) < Lexp( (—t*M).
k<M

Since

> mi < (3 mi) (macmp),

k<M k<M
we have, using (2.9),

{D . mi > L(1+*)u

k<M

To conclude we take u = \/z,t*> = \/z/VM O

g}) < LVNM (exp(—u’) + exp(—t*M)).

Proposition 2.8. If0<z <1 and k < M we have
Nzt

(2.10) EG({|z| > 2}) < LVN exp(———)

This is a result that one would like to prove directly from (1.4); but we don’t
know how to do this.

Proof. We use that G = G’ v, so that

Gflzel 2 o)) < &l 2 51 + 7] = 5))

< G({Imel > 2) + exp(~ ")

and the result from (2.7). O
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Corollary 2.9. If0 <z < N then

+\/—)

EG{Y 2> HEEYERN) < LN exp(a).

k<M

Proof. Almost identical to that of Corollary 2.7.

The thrust of Proposition 2.8 is that |z| is suitably small for G. The next result
shows that this is also the case for z - n);.

Proposition 2.10. If x > 0, we have

(2.11) EG({|z-ni| > Lza’*}) < Lexp(—z).

Proof. Consider the probability Gy on RM of density exp —¢(2), where
N|=)*

$o(2) = 9 Z logchz-n;
i<N—1
so that
a hz - NN1l{zgn >0 dG
G({Jz | > v}) = L RE I Gz 2 G0l
[ chz-nndGo(z)
and thus
(2.12) @({\z.nmzv})g/ chz - Nx1{ sy (0} G0 (2)
Iz SL(+t)at/*

+G({[l2]l > L+ t)a'/*})
Now, denoting by F, expectation in 9y, we have

E3(chz nn1l{zny >0}) < Eo(l{jzny >v}) Fo(ch® 2 - ny)
2
< exp(— +2(12]1%).
22|

Since ny is independent of G, taking expectation in (2.12) and applying Theorem
2.1 we see that for v > L(1 +t2)a/? we have, if t*M < N,

2

v
m) + L exp(—t4M).

(2.13) EG({|z-nn| > v}) < exp(—

To prove (2.11) we can assume z > 1. We then take v = Lza'/4,t = /. O
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3. Proof of Theorem 1.1.

Proposition 2.10 tells us that to understand GG, one has only to consider the values
of z where each |z-n;| is rather small. This of course greatly helps in approximating
the function 1 of (1.4) using a Taylor expension of logch at zero.

Our next task is to prove a result corresponding to Theorem 2.1 and Proposition
2.10 for Gi. Thus we will know that certain sets do not matter either for G or
G1, and the task of approximating G; by G will be reduced to the easier task of
performing this approximation outside these sets.

Proposition 3.1. For some constant L, and all t with 0 < Lta'/* < 1, with
probability > 1 — exp(—t*M) we have

(3.1) EG1({||2]| > (1 +t)La**}) < Lexp(—t*M).

Proof. It is nearly identical to that of Theorem 2.1.
Lemma 3.2. If Mz* < N then

(3.2) EG({|z-ni| > Lzal/*}) < Lexp(—z).

Proof. Tt is essentially identical to the proof of Proposition 2.10. We consider the
probability G2 on RM of density exp —;(2) where

N N
Pa(z) = EZZI%%% T Z %

k<t k<M

—szze( Z m,km,e)

k<t i<N—1
so that

Gz > o)) = L P ke BN RN Lz 21201 4G (2)
B J exp(X 1 cp zrzenn kN ,e)dG2(2)

We now observe that

1
ZZkZeTIN,an,e = 5((’7N -2)” = [l2]?).
k<t

A minor complication compared with the case of Proposition 2.10 arises from the
fact that this quantity is not always > 0. It is however > —|z||?, and thus

— 1
[ exp(S anzamanw )dGa(2) = S Gal{lel < 1)
k<{
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and
Gi({lz-nn| > v}) <Gi({ll2ll > L +t)a/*}) + LA/B

for
1
A= / exXp < (’I’)N Z) 1{|z nN|>v}dGl( )
Izl <L(1+t)at/
B =Gx({ll2ll < 1}).
One then observes that if ||2|| < 1/2 then
Eexpliy -2) < L

and that B > 1/2 with overwhelming probability to conclude as in Proposition
2.10. 0

Lemma 3.3. If u > 0 and z € B,, where

(3:3) B, = {[|z]|; Vi < N, |z -n;| < u}
then
(3.4) () —¢1(2)| < T+I1+1I1
where
(3.5) 1=Lu*) (z-m)

i<N

1

(3.6) = Z;V(éu(m -z) — Eu(ni - 2))|
(37) = | S (Bumi -2) — B -2)")

i<N
for

€ (z) = min(z*, u?).
Proof. We have

P(z) —h(z) = —||Z||2 > logchn; - 2

i<N
N N
1 Zp — ) Z Zizg + Z Zkze(z M5k 7i.)
k<M k<t k<t i<N
1 1
=y A ) 3 logeln
i<N i<N i<N

1
+EZ"72 12ZE"72

<N <N
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Now, we observe that

z2 1
logchw — —— + —a*| < La®
|logch 2+12x|_ac
and that (9; - 2)* = £,(n; - 2) for z € B,. O

Lemma 3.4. If w > v, then

P(sup | S5 (Elni-2) = Béulni-2)| > LVNMuu) < exp(~15 ).
z||<v i<N

Proof. The key point is that the random variables
Y(2) =) (¢u(ni-2) — Eu(ni - 2"))
i<N
satisfy an inequality of the type

(3-8) 1Y (2) = Y (&)l < Lu’VN|z — 2|

where the Orlicz norm || - ||, is associated to the function e® . To prove this we
observe that

|§u(x) - gu(y)‘ < LUB"/L' - y‘

so that
Eu(mi - 2) — Eu(mi 'zl)‘ < L’Ug‘m (2 — z')|

and thus
1€u(i - 2) — Eu(mi - 2")|ly, < Lud||lz — 2|

because ||; - z||y, < L||2||. Next, if the r.v. (X;);<n are centered we have

1D Xillf, <t l1Xll3,
i<N
because then for each ¢,

BexptX; < exp(LE*|[Xil[3,).

This proves (3.8), or in other words, that the process (Y (z)) is subgaussian, with a
subgaussian constant < Lu®v/N. Lemma, 3.4 simply expresses what we know about
the tails of the supremum of a subgaussian past a multiple of Dudley’s entropy
integral, see e.g. Theorem 11.2 of [L-T] for a modern formulation. O
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Lemma 3.5. If ||z|]| < v, we have
2

u
(Béu(ni - 2) = E(mi - 2)"| < Lo exp(— 5)

Proof. The left-hand side is at most

E((m; - 2) 1, 2150) < E((m; - 2)8)Y*P(|n; - 2| > u)/?
2

u
< Lv* ——). O

Lemma 3.6. With probability > 1 — N~2 we can find a subset B of RN with

(3.9) GB)>1-N3Gi(B)>1—-N"3
(3.10) Vz € B, [¢(2) — ¥1(2)| < LM+/a(log N)®.

Proof. We define u = Lal/*log N,v = La4(log N)'/*,w = La'/*(log N)3/4, and

B={zecRY;|z| <v,Vi < N,|n; - z| < u}.

Theorem 2.1 and Proposition 2.10 show that G(B) > 1 — N—3 with probability
> 1 — N~3 and Proposition 3.1 and Lemma 3.2 show that G1(B) > 1 — N~3 with
probability > 1 — N 3. This proves (3.9). To prove (3.10), we first observe that by
(2.3)

Vlizll, > (z-m:)* < LN|2|?
i<N

with probability > 1 — exp(—N/L).
Thus, the term I of (3.4) is at most

Lu*v? < La® %N (log N)?/? < LM+\/a(log N)®.

To bound the term II of (3.4) we appeal to Lemma 3.4. This lemma shows that
with probability at least

2
1
1 —exp(—%M) >1—exp(—3MlogN)>1-— N3

we have
I < LVNMu*w = Lav NM(log N)° = LM+/a(log N)®.

To bound the term IIT of (3.4), we see that by Lemma 3.5 this term is at most

2
LNv* exp(—f—2) < LNa(log N)3 exp(— log N)
v

< La(log N)® < LM+/a(log N)?
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and in fact is of lower order. The lemma is proved. O

Comment. We have made no effort to obtain the smallest possible power of log N
in (3.10).

Proof of Theorem 1.1. Given a Borel set A of RM | we write
G(A) <G(ANB)+G(B°) <G(ANB)+ N3,

where B is the set of Lemma 3.6. Let
I= /exp —(z)dz; I, = /exp —11(2)dz.

Thus, if T’ = exp(LM+/a(log N)®), using (3.10) we have

(3.11) I 2/ exp —¢(z)dz > T’_I/ exp —11(2)dz
B B
=T''Gi(BYL>T''(1-N3IL

Now,

G(ANB) =1 / exp i (2)dz < I-1T" / exp —thr (2)dz,
ANB ANB
=I"'T'"G1(ANB) < (1 - N3)"1T"?G,(A)
using (3.11), so that
G(A) < (1—-N3"T?G(A)+ N3,
and, distinguishing whether 77 < 2 or T” > 2 we see that

G(A) <TG, (A)+ LN3.

The rest is similar. O

4. Proof of Theorem 1.2.

We fix € > 0 and we set

Ce={z e RM;|lz]| £ [V2a'/*(1 — €), V2o /* (1 + )]}

We will prove that for a certain number a = a(e) > 0 depending on ¢ only we
have, as M, N — oo, N/M — oo,

(4.1) PU{G1(C.) < Lexp(—a(e)M)}) — 1.
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Since in Theorem 1.2 we assume a(log N)1® — 0, (1.6) and (4.1) imply Theorem
1.2.

To simplify notation, throughout the paper we set Az, = N~1/2 3" N kMie if
i<N
k 7é f, and Akk =0.
Consider the function

Us(2) = Sl = VNS mzedn

4
k<t

and the probability G3 on RM of density proportional to exp —3(2). Thus G has
a density proportional to exp % st a1 Z¢ With respect to G3. To prove (4.1) we
will prove the following

Proposition 4.1. There ezists ai(e) > 0 such that

(4.2) P({G3(C.) < Lexp(—ay(e)M)}) — 1.

Proposition 4.2. Given n > 0, there exists a number K (n) such that

(4.3) P({ / (expg Y 74)dGs(z) < K(n)expnM}) — 1.
k<M

The two Propositions imply (4.1) by Holder’s inequality (and since
expN Y zg >1).
k<M

We consider the function ¢ on R* given by

2
o) =it p<

1 3.
90(5):5—510%,3—1111521-

We denote by pr the uniform probability on the sphere of RM of center zero
and radius R. Propositions 4.1, 4.2 rely upon the following.

Lemma 4.3. Given n > 0,L < oo, with probability going to 1 as N — oo, we
have, if N/M and N are large enough,

(4.4) VR < Loal/*, exp M(w(Rj\]\/—;v) - )
R%V/N
< ex(\/]_\f Zk2eAke)dpr(2) < exp M (o( )+n)
/ p kzd kZeAke)AUR(Z p My VM n
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Proof. Making the change of variable z = R/M'/*, (and setting 8 = R>v/N/vVM)
we see that (4.4) is equivalent to the fact that

(4.5) VB < L?,expM (w(ﬂ) —n)
< /exp \/_ kzd zszAkg)d,U/\/_(Z) < expM(p(B) +n)

If the quantities (Age)r<e were iid. N(0,1), (4.5) would essentially be the
statement that the free energy density of the spherical version of the Sherrington-
Kirkpatrick (SK) model at inverse temperature S is —p(8)/8 [KTJ]. The integral
in (4.5) depends only upon the eigenvalues of the symmetric matrix (3Age) (with
Agr = 0). In fact more is true: the computation of the free energy density for the
spherical SK model depends only upon the fact that the (normalized) eigenvalues
(Ax) of the symmetric random matrix W = (ﬁwu) with wgr = 0 and (Wke)k<e
i.i.d N(0,1) satisfy Lemma 4.4 below (so that Lemma 4.3 follows from Lemma 4.4).
A detailed proof of the upper bound for the SK model can be found in [C], and has
inspired much of Section 5 of the present paper.

Lemma 4.4. As N,M — oo, N/M — oo, the eigenvalues (Ag)k<m of the matriz
(2\/—Ak3) satisfy the following property.

a) For each bounded continuous function f on R, the r.o. M—1 Y f(\x) con-
k<M

verges in law to

2
—/f(:v)\/l — z2dz.
s

b) For alle > 0, P(kmg\)l()\k <1l+e¢€) —1.

The proof of a) can be found in [B-Y] and the proof of b) can be found (among
other references) in [B-G-P].

Proof of Proposition 4.1. We will make use of polar coordinates; that is, for some
constant cps depending upon M only (the precise value cpr = 20M/2/T'(M/2) is
irrelevant here)

/f(z)dz =cM RM_l(/f(z)dp,R(z))dR.
R+

Thus, under (4.4), we have

4
(4.6)/ exp —93(2)dz > cpr RM-1 exp(M(p(R2\/]_v NR

— — Mn)dR
R<Lal/4 vM ) 4 )
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and

(4.7) /Cg exp —3(2)dz < /RZLal/‘l exp —3(2)dz
R2\/N) _ NR!
vair )T

where the last integral is over R < Lal/4,|R — v/2a/%| > ey/2a'/4. Making the
change of variables R = o'/4S, we see that

—|-CM/RM_1 exp(Mo( + Mn)dR

R*/N, NR* 4
A7) T 1 = MES) +logalh

where the function ¢ has its maximum at S = /2. (Indeed, for S > 1, £(S) =
—84/4+ 8% —3/4; for S < 1,£(S) = logS). Also for L large enough the first term
on the right-hand side of (4.7) gives a lower order contribution (by arguments used
in the proof of Theorem 1.1). Proposition 4.1 follows easily. 0

Mlog R+ Mg(

We turn to the proof of Proposition 4.2. It is unfortunate that this proof is
rather delicate. If we however assume that M/log N — oo, there is a much easier
argument that we give first.

For L large enough, the set

log N ++/M log N
B={zy 5 <y(N) = L(Z—0

k<M

)}

satisfies EG(B¢) — 0 by Corollary 2.9. Also

G(C.N B) < exp NyéN) G3(C)

and Ny(N)/M — 0 (since we assume M/log N — o0) so that in that case Theorem
1.2 follows from (4.2). To make the above argument work as soon as M — oo
(rather than M/log N — oo) would require removing the v/N in the right-hand
side of (2.5).

We now give a (much harder) proof of Proposition 4.2 that works as soon as
M — oo. It relies upon the following.
Lemma 4.5. Given Ly > 0, given an integer p, given n > 0, then the following
event occurs with probability — 1 as N,M, N/M — oc.

Given any subset J of {1,---, M} with card J = p, given t < La\/a, we have

(4.8) 53({2 22 >t}) < exp(Mn — NTE)
keJ
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Before we prove this, we conclude the proof of Proposition 4.2. It should be
obvious (after the work of Theorem 1.1) that to prove Proposition 4.2 it suffices to
show that

(4.9) P({ / exp% S 24dGs(2) < K(n) exp10gM}) — 1
D k<M

where
D = {z||z|| < Loa'/*}

for a suitably large Ly. We observe that N >, .3, z¢ < LM on D. To prove (4.9),
it suffices to show that, with probability — 1 as N, M, N/M — oo, we have, for
each u < %L‘OLM =: L1 M that

(4.10) Gs(D N {% S 2 > u}) < exp(3uM — bu),
k<M

where § > 1 is a number (6 = 35/32 works). Consider an integer p and z > 0 to be
determined later. Consider

N Tu
Dy ={z;3J C {1,--- ,M},cardJ:p,XZz; > 3
keJ
Dy ={z;3J Cc{1,--- ,M},cardJ = p,Vk € J, 22 > z}
D3 = D\(D; U D).

Consider z € D3, and consider ky,-- -, k, such that |z, |,-- -, |2, | are the p largest
among the M values |21, -, |zam|. Then, if J = {kq,---,kp} we write
4 4 4
DoA= D AT A
k<M keJ keJ

Since z ¢ D1, we have % > z,‘i < %“. Since z ¢ D, by construction of J we have

k€T
22 <zfork¢J,and
Zz,‘i <z Z 22 < xL3\/a.
kg J k<M

This shows that provided
(4.11) NzL2\/a = g
we have

N
Dﬁ{z;g Zz£>u}CD1UD2.
k<M
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It follows from Lemma 4.5 that with probability — 1 as N, M, N/M — oo, we have,

— Npx2
(4.12) Gs(Ds) < MP exp(Mn — Z’” )
2
pU
— MP Mp— ———
where we have used (4.11). Now,
2 874
Spu > ou- 2°LoM
25M Ly p

so that if p = p(n) is the smallest integer such that

2813

(4.13) p

<7
then (4.12) gives

G3(D2) < MP exp(2M1n) — 2u)
To bound G3(D;), we observe that

Ytz gy =Y Adzi= gy

keJ keJ
and (4.8) then shows that

35u
G3(D1) < MPexp(Mn — 3—2)

Finally we observe that MP exp(2Mn) < K(n)exp3Mn. This concludes the proof
of Proposition 4.2. 0

Proof of Lemma 4.5. We write

(4.14) (/ exp —13(2)dz)G3({ Z 22> t}) = / exp —3(2)dz = f(yo)dyo

k>M—p Ds

where Yo = (ZM—p+1,° -, 2M)

Dy={zeRY; ) =z >t}

k>M—p

Ds={yo; Y 2z >t}

k>M—p
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and

N
f(yo) = /GXP(—Z(||311||2 +loll®)? + VN Y Awezrze)dys,
k<t
where the integral is on RM =P and where y1 = (21, ,2m_p). We write
\/NZ AkeZng = U1 + U2 + U3

k<t

where

U, =VN Z Apezrze

M—p<k<t<M

Ug == \/N Z Angng

k<M—p<t<M

U3 == \/N Z Angng.

kA<M—p

We observe that

U; = Z Z Ni, ki, 02k 2e

k<M —p<t<M i<N

=3 > miez( D mikzk).

i<N M—p<t<M k<M—p

Let us denote by Ej expectation in the variables n; o (M —p < £ < M) only. Then,
(using that chz < expz?/2)
2
o) 2
(4.15) EyexpU; < exp Z Z 7( Z ik Zk)
i<SN M—p<t<M k<M-p

—1/2

and we see using Lemma 2.3 with u = « that we have

(416) Vg eRM (Y ma) < NlwlP(1+ Lot/
i<N 1<k<M—p

with probability > 1 — Lexp —v/MN. Under (4.16) we have

N
EgexpUs < exp 5(1 + Lo *)|lyol ||y |-
Given a parameter x, consider the event €2, defined as

Vk, 0> M —p, Age < .
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Then, under (4.16) we have

N
Eo(lg, exp(Us +Uy)) < exp(VNz( ) [a])” + 5 (1+ La'Hligollly )
k>M—p

and thus (since (" |2x])? < pllyol|?) we have
k>M—p

N N
@1 Folaf0) < [ eIl = Flvol +Us

+ LNo*||y1|?|lyoll* + V' Nzpllyo||*) dy:

It should be clear that we are only concerned with the domain ||z|| < La'/%, so
that in (4.17) we can assume

lyoll?, lyl* < Lat’? and Ny llyoll®* < NLa = ML

If we take 2 = M'/3 (among many other choices) then, P(Q,) — 1 and given 5
and p, for N/M large (i.e. o small) (4.16) gives

N N
Bo(la, f(y0)) < exp(n — ol*) [ exp(= a1 + Ua)dy,
and thus

(4.18) Ey(1gq, . f(yo)dyo) < 111

where

N
I, = /exp(—z||y1||4 + \/]_V Z Akezsz)dyla
k<t<M-—p

N
Iy = expnM exp(——||yol|*)dyo.
Ds 4

Thus (4.18) shows that
(419) / f(yo)dyo < exXp M’I]IlIO
Dy

with Py probability at least 1 — exp(—Mn) + Py(Q22)).

The proof of Proposition 4.1 can be modified in the obvious manner to obtain
estimates of the type

%(oze)l"f/‘1 < /exp —3(2)dz < Len (ae)™/* M*
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where a is a number (observe that £(v/2) = 1/4). Using this lower bound for
f exp —3(z)dz, as well as a similar upper bound for M — p rather than p, we see
that with probability — 1 as N, M, N/M — oo, we have

(4.20) I < expnM / exp(—1)3(2))dz.

It is elementary to show using polar coordinates that, for N large

N Nt
| exp(= T lwoll o < exp(- ),
Dy

using the fact that we assume ¢t < Loy/a < 1.
Recalling (4.14), (4.18) we see that under (4.19), given ¢, we have

(4.21) Gs({ Z 22 > t}) < exp(2Mn — N—t2)

4
k>M-—p

with Py-probability > 1 — Py(Q2;) — exp(—Mn). On the other hand, to ensure
(4.21) for all ¢ (with ¢ < Lg+/a) it suffices (replacing 2Mn by 3Mmn), to ensure
it for the values of ¢t with N¢2/4 integer and there are about M of these. The
only point remaining is to show that we can do the above not only when J =
(M,M —1,--- M — p), but simultaneously for each subset J of {1,---, M} of
cardinality p. There are fewer than MP of these; the only problem could be with
(4.19), as we have not proved that the probability where this fails is exponentially
small. The validity of (4.19) depends only upon the eigenvalues matrices obtained
from (Ag¢) by removing p rows and the corresponding columns. These matrices are
close to each other in operator norm, so their eigenvalues do not differ much. [

5. Proof of Theorem 1.3.

After having proved Theorem 1.2 through Propositions 4.1 and 4.2, it is quite
natural to try to prove Theorem 1.3 by the same method, namely by proving that,
given € > 0, there exists as(€) > 0 that

(5.1) P({@gM(Cé) < Lexp—as(e)M}) =1

for

Ci={(z",2?) e R®M; 2" - 2%| £ [(1 — o) Vr, (1 + €)v/al}.
We will prove “half” of this, namely
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Proposition 5.1. Given € > 0, there is az(e) > 0 such that

(5.2) PUGE(C) < Lexp—as(e)M}) — 1
for
(5.3) C! = {(2},2%) € R2M; |21 - 2% > (1 + €)Va}.

We have not succeeded in proving “the other half” of (5.1), and it is in fact not
clear at all to us that it is true. The difficulty has its roots in the spherical version
of the SK model, a model that is more canonical than the one considered here, so
it seems worthwhile to explain a bit in detail what happens. We first recall what
is the spherical version of the SK model. Given an i.i.d N(0,1) sequence (gr¢)k<e,
and the sphere Sys of RM radius v M, for z € Sy consider

1
(5.4) Hy(z) = ——= Gke k2
VAT 2

and, the probability SKjr g on Sy of density proportional to exp —H s (z) with
respect to the uniform measure on Sps. (Of course the physicists “know” everything
about this model). We have the following rigorous results.

Proposition 5.2. If 3 > 0, for each ¢ > 0 we have

(5:5) P({SK$({(2",2%) e M|z - 22| > (1 - % +e)M})
<exp—z3(e)M}) =1
1,2
o0 Jim BSKE S =

Combining (5.5) and (5.6), we have

1. ,2 1
(5.7) BSKEs(1 | = (1= 5)) =0

Problem 5.3. Given € > 0, is it true that with probability — 1 we have
1

(5.8) SK?}?ﬂ{(Zl,f); 2t 2% <1 - 5 €} < exp—a(e)M

where a(e) > 07

The nature of (5.5) and (5.8) are rather different. We will prove (5.5) by an
adaptation of Comet’s argument [C], and (5.5) depends only upon the properties
of Lemma 4.4, that is it remains valid if we replace (5.4) by

(5.9) Hy(z) ==Y 2 em
<M
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where
(5.10) lim max Ay =1
M—o0 £<M
1 w 2
(5.11) D O Y Z V1 — 22w
: T
<M

On the other hand, it is not true that (5.8) depends only upon (5.10), (5.11). For
example, one can show that if the numbers A, s occur with multiplicity — oo, then
for the corresponding measure Gj; one has

/(z G2 dG e () - 0.

To circumvent our inability to prove (5.8), we will observe that (5.2) together with
Proposition 4.2 and Theorem 1.1 imply that

(5.12) P{G®*(C") < Lexp(—as(e)M)}) — 1.

Using Theorem 2.1, it is easy to see that one can replace G by G’ in this statement,
so that

(513) PU{GFA({oh,0”) )] D mileh)mu(o®) = (1 +e)Va})

k<M
< exp(—as(e)M)}| — 1.

We will then prove by completely different arguments that

N
(5.14) B mi@h)mi(e)*) — 1,
k<M
completing the proof of Theorem 1.3.

Proposition 5.2 will be deduced from the following.

Proposition 5.4. Consider on Sy the random probability Wg = W v g of den-
sity

B
(5.15) exXp —F— Z ZkZeAkg
M k<t

with respect to the uniform probability on Syr. Then, for each € > 0, there exists
a(e) > 0 such that

(5.16) P({VB,B,1< B, <3;Ws @ Wa ({(z',2?);|2" - 22| > e+ ¢(B, 8
< exp(—a(e)M)}) — 0
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where

B+8 1
2VBB VBB
In this statement, the number 3 can be replaced by any other. Since the argu-

ment depends only on the properties (5.10), (5.11) of the eigenvalues of the matrix
(2\/_14,@3) it would also hold if we had g, instead of Axy, and the case 8 =

c(B,8) =

implies (5.5).

Before we prove Proposition 5.4, we show why it implies Proposition 5.2. Using
polar coordinates as in (4.5), we see that

(5.17) / F@Ga(z) = e [ R / 1(2) exp(VN' Y Ageziz)dun (2)

k<2t

and making the change of variables z = yR/M'/* the inner integral is

(/exp\/_ZAkgsze dur(z /f /A dWR2/\/_( )-

k<t

The content of Theorem 1.2 is that (if, say, f is bounded) only the values of
R close to v/2al’% have to be considered in (5.17). Proposition 5.2 follows from
Proposition 5.4 for values of 3, 5’ close to 2. The easy details are left to the reader.

To prove Proposition 5.4 we will prove the following .

Proposition 5.5. Given n > 0, with probability — 1 as N,M, N/M — oo, for
1< 8,8 <3,[t| <1, we have

(5.18) J = /eXp tz' - 22dWg(2")dWpgi (2%) < exp M(n+ Ug 4 (1)),

where

(5.19) Up,p:(0) =0,

(5.20) Tim W (1) /1 = (5, )
(5.21) M g0 (8)/t = —c(B, ).

To deduce Proposition 5.5 from Proposition 5.4, we proceed as follows. Given
€ > 0, we choose ty > 0 such that

W, (t0) < to(5 + (8, ).
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We use (5.15) with ¢ = to, 7 = €to/3. Use of Chebishev inequality then show that

1 2
. M
L B ) < e,

Ws @ Wer ({
and the other part of (5.16) is similar.

We will prove (5.18) with

(5.2) W) = H) 0 = 5001+ ),

where, for u > 1,

O(u) =ulu—Vu ) + log(u + vu?

It is elementary to see (using a Taylor expansion of order 2 of log(1 + x)...) that

(5.23) (14 z) =2z + o(x)

where lim o(x)/z = 0 so that (5.20) and (5.21) follow from (5.22) and (5.23).

z—0t

The occurrence of ®(u) is from the magic formula

2 1
(5.24) /log u—1z)V1—22du = ®(u) + 5 log 2

for u > 1.

Proof of (5.18). We consider s, s’ > 0, and we will always assume that

s’ s

(5.25) i R

Consider the integral

(5.26) Iz/ eXp Apozizy + Appz222
_— hg A2t hkzd &7
— s||lz'|? — §'||2%])? + tz' - 2%]dz"d2?.

By rational invariance of Gaussian measure we have
I=]]%&
k

where
Ie= [ exp((h = s)a” + (9N =)o + toy)dady
RZ
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as is seen by diagonalization of the quadratic form ) ﬁAkgqu in an orthogonal
kL
basis.

The quadratic forms

Qr(z,y) = (s — BA)z” + (s — B' M)y’ + tay
are positive definite provided

2
(5 = BM(' = Bh) = 5 > 0

and using (5.25), this amounts to

s t]
(5.27) 3 > Mg + 2\/@.

For a positive definite quadratic ) form on RP, we have

1
Vdet Q

(as follows from diagonalization and the case p = 1).

| ew@@.y)isdy ="
RP

In the case of I, we have p = 2, and

2
det Qr, = (5 — BXe)(s' — B'he) — =

4

B avEr BT 2/Em

—_ )\k:)

I, = exp [— 1log(i — i — ) — 1 og(i + 7 _
VBB 2 7B 2B 2 7B 2B

ol

Thus

i

_ (T M R R IR S _
I_(\/W) exp » | 210g(IB N Ak) 2log(ﬁ+2m k)]

k<M

By (5.11), (5.10), (5.24), given n > 0, and s with s/ > 1+ [t|/2/BF', (5.27)
holds for M large enough, and

(5.28) I< (\//’IBT—IB/)MeXpM[n_ %¢(£+
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If we denote by I(R, R') the integral defined as in (5.26) but with dug(2!)dug (22)
instead of dz'dz?, given 1 > 0, there is £ > 0 such that

(5.29) IR — VM| < ¢&/M;|R — VM| < ¢&VM
= I(R,R) > I(VM,VM) exp —nM
(let us recall that 3,3, s,t remain bounded). Thus we have
(5.30) 1> I(VM,VM)A{z; |||zl - VM| < £VM})? exp —nM
> I(VM, VM) exp(—nM)MM (1 + M — (1 - €))%},

where ays is the volume of the sphere of radius 1 in RM | so that, using Stirling’s
formula

M/2 1

m 2me\ M/2
31 = >

(5:31) “MZ A+ M2)MM? = L\/M(MQ)

Comparing (5.28) and (5.30) we get (if M > M (n))

1
B’

s i

(5.32) IVM, VM) < L( 5 2\//3—ﬂ’)

1
YM/2 exp M [3n — 5@(
1_,s It 3
a2 _ 2.
2 (ﬂ + 92 /ﬂﬁl) 2}
On the other hand, the lower bound of (4.5) shows that

1 1 3
2logB  2logp’ 2

I(VM,VM) > exp(—(s+ s')M — 2nM) exp M (B + ' — )J

and comparison with (5.32) yields

(5.33) J <expnMexpM(s+s —f—p — %(I)(% W @[3') _ %q)(% + ; |gﬁ/))

Since linﬁ ®(xz) = 0, given 1 we can choose s satisfying (5.27), close enough to
_).

B+ Blt|/2v/Bp" that

1 1_,s |t|

+ 7 1 t
5n+\t|(§\/ﬁ—g,)—§¢(1+ \/%)
so that
B+p 1 i
(5.35) JgexpM[5n+|t|2 ,Bﬁ'_i@(H\/W)}'
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It should be obvious from the proof that given n > 0, with probability — 1 as
N — oo this holds for 8, 8’, |t| bounded. O

We now turn to the proof of (5.14). We know of two rather different ways to
proceed. The first method is in the spirit of the previous arguments. It is to show
rather than (5.14) that

(5.36) %E / (lez2)2d@3(z1)d§z(z2) 1

This can be done using an argument of [ALR]. We know how to compute

.1 M M B
£() = lim - Ellog ( / exp(—-ll2ll3 + k%jl %t g kZdAkezm)dz)

which is a convex function of 3, so we know how to compute the (limit of the)
derivative of the right-hand side in 3, at 8 = 1. Integration by parts then brings
the relation (5.36). (A similar approach in the case of the spherical SK model
yields (5.6)). The integrations by parts would be easy if (Ax¢)k<¢ were independent
gaussian; but since they are not, one has instead to use “approximate integration
by parts” in the variables 7); j and this is rather tedious. The other approach (the
one we choose) is to prove (5.14) using the tools developed by the author to use the
cavity method for the Hopfield model. Given these tools, this method is simpler
than the previous one, and the tools seem anyway needed to prove Theorem 1.4.

We consider the Hamiltonian

M

(5.37) Hy p(0,0n41) = —ﬁ > ( Z Wik + MkON41)

k<1 i<N
where (7)) is a fresh independent sequence, P(n, = +1) = 1/2. We will denote
by ( )’ integration with respect to the Gibbs measure associated with (5.37) (at
temperature 1). The idea is that computation E(V)’ in function of quantities in-
volving only ( ) in several different ways for well chosen values of U yields interesting
relations.

Proposition 5.6. If f is a (possibly random) function on Y%, then

(5.38) E(fY = E{(f)+ E{(fm' - m?) + A

(539)  Blfoknokp) = B{fm'm?) — SE(F Y e+ A
{=1,2

where

m'-m? = Z mg(eV)mi(0?); ag = m* - m® — (m® - m?)
k<M
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and

(5.40) Al < B(FIC D (m*-m®)” + " af)).

£,0'<3 <3

In this statement, f is identified to a function on X% 4+1; and in (5.39), the
integral is over a 3-replica. A result of the same nature as Proposition 5.6 is proved
in [T2], Theorem 2.6, Proposition 5.7. The present case is much simpler. With the
notation of [T2], we have 8 = 1,b = (m) = 0, so that Y = 0, and there is no need
to consider the terms cy. The reader who likes to really understand what happens
should of course carry out the proof of Proposition 5.6.

Proposition 5.7. Consider a function f on ¥ny1, and assume that f does not
depend upon (ni)k<m - Then

(5.41) Ene(f) = E(mponi1f) — E(mponia)' (f) + S

where
EIS| < B{Av|f|[mf?).

There m = N~ Y 0ym; k, Av is average over the values of o1 = +1. Propo-
i<N
sition 5.7 is a special case of Proposition 2.12 of [T2] (an elementary approximate
integration by parts).

Proof of (5.14). Consider
U= Z uz
k<M
where

1
Ug = m Z Ni, k04,
i<N+1

where we set nn41,k = k- Using symmetry between sites we have (setting N’ =
N +1)

(5.42) EU) =Y E{monpiuk)
k<M

M N
= vt > E(mronsimi).
k<M

Now my, does not depend upon 7, so that we can appeal to (5.40) to get

(543) | > Emlonyimi) — (BEQ)_m;) — E(m' m’oy,,0%.1))|
k<M <k

< LE() mi).
k
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There we use replicas to write

((onrmi))” = (mi(o )my(0)ok 4103 41)"

We now appeal to (5.39) to get

1
(5.44)  |E(m'-m’oy,0%) — E((m' -m?*)?)| < 5E<|m1 m?| D Jag) + A
=12

where

A< E(m!-m? Y (m'-m")?+ > af)).

It should be obvious from Theorem 2.1 that A = o(a). (That is, A/a — 0 as
N, M, N/M — o). Use of Cauchy-Schwarz and independence of replicas show that

1. <(m1 -m2)2)1/2((ag)2)1/2

(llm]1){(ae)®)"/2.

The uniform integrability control provided by Theorem 2.1 together with Theo-
rem 1.2 imply that this is also o(«). It follows from Corollary 2.7 that E{}" m}) =
o(a) if M/log N — oo; but this is true as soon as M — oo, as follows from (4.3)
and Theorem 2.1 (the relevance of which being that >~ mj < (3> m?)?). Combining
these estimates, we have shown that

M

(5.45) E(U) = & + E( 3" mi) - E((m'-m?)?) + o(a).
k<M
We now prove that
(5.46) E(U) =E(Y_ m})+o(a)
k<M

which proves (5.15) when combined with (5.45). To do this, we appeal again to the
symmetry between sites to write, as in (5.42)

EUY =) E(mug)

k<M

1 N
N Z En(miony1) + ﬁﬂz my)'-
k<M k<M

Use of (5.43) on the first term, and of (5.38) on the last term easily imply (5.46)
and hence (5.15).



Proof of Theorem 1.4. We prove that

(5.47)

(5.48)

hm —

hm
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ZO’O’

’L<N

Za

7,<N

This is easy, but long, so we indicate only how to prove (5.47). The proof relies
upon the relations

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

There ~ means equality up to lower order terms.

relations is very simple. The purpose of (5.49) and (5.53) is to replace ( ) by

1 1242
B Y olod)?)
i<N
1 1 _2\2\/
E<(N Z 0;07)°)
<N
1
Bl Y olo?)) =
z'<N+1
E(J}V+1JJ2\,+1 Za o?
1<N
1
E(m' -m?(1- 3" olo?)

1 1
W= E<011V+10'12V+1( Z (F Z ni,ko'z‘l)(_

i<N+1
W~FE

E(on 108 pm’ -m?) ~

k<M

1 1 _2\2\/
~ B(( Y otod))
i<N
1
~ By Y olo?)
i<N+1
1 1
N + E<‘711v+1012v+1(ﬁ Z aia}))
i<N
1
Blm' m(5; 3 oto?)
1<N
1
Bim' - m*(1 3 oto?))
i<N

Z Mik07))"

i<N+1
1 2 1 2\ 7
<‘7N+1UN+1m -m”~)

E{(m' -m?)*> ~a.

The idea of this chain of

( - ) for which we have Proposition 5.6. The purpose of (5.50), (5.54) is to create
symmetry between the sites, symmetry that is used in (5.51), (5.54). The purpose

of (5.56) is to remove the dependence in o}y, 0%, in the term next to o5 0%, 4
of (5.55). The key steps are (5.52), (5.57) that rely upon (5.38). The difficulty is



34 MICHEL TALAGRAND

that one has to control the error terms with some care. For example, in (5.49), use

of (5.38) creates a term
1 1_2v2, 1,2
E((N ;Vgigi) m -m°)

for which we use Holder’s inequality to write

ZO’ 2m! -m?)| < (E((m'-m?)3)Y3E(( Za 3y2/3

z<N 1<N

< La(B((y; 3 ola))*°

using Theorem 2.1, and this is

L0 +VaB((x 3 oto?)?)

i<N

which is obviously a lower order term. The other relations are handled in a similar
manner. 0
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