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Abstract

I discuss some problems I studied but could not solve.

1 Introduction

I am not a theory builder or a visionary. Much of my mathematical activity was
trying to solve specific problems which I learned from others. I studied so many
problems that I can almost make statistics. When studying an open problem, most
of the time, the effort is largely wasted, as the problem has a negative solution, which
is provided by a counter-example to the original question. Sometimes, however, one
needs to make some kind of new observation to solve the problem, and if one is lucky
this observation develops into a powerful technique or machinery. My experience
is that, quite amazingly, the probability that such a miracle occurs is not smaller
when the problems look special and specific. It did happen to me several times that
such problems were the starting points of very fruitful research directions. For this
reason I am not shy to propose several such problems which look more like puzzles,
in the sense that the odds seem that once the solution is found (possibly after much
struggle) one will not be much wiser. This will be the case for the problems of Section
5 and especially Section 4. On the other hand, the problems of Section 2 seem more
likely to touch central issues, although it could very well happen that even there a
simple counter example dismisses the whole story. Fellow mathematicians, such is
our life, there is no guaranteed return on investment. As for Section 3, there could
also be some potential.

As this paper proposes problems on which I failed to make progress, I assume
that the reader is motivated, and some easy statements will not be proved.

1Paris, France, michel.talagrand@gmail.com
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2 Creating convexity in a few steps

Consider a subset A of RN . Then an easy result of Caratheodory asserts that every
point in the convex hull of A is a convex combination of N+1 points of A. In flowery
words, we can recover the convex hull of A in N +1 operations and we cannot do it
with fewer operations. But if A is large, can we create a large convex set from A in
a bounded number of operations? The canonical notion of “large” is for the natural
Gaussian measure γN on RN . To obtain cleaner statements, let us assume that A is
balanced, that is tx ∈ A for x ∈ A and |t| ≤ 1.

Problem 2.1 [T2] Does there exist an integer n such that whenever A is a balanced2

set in RN with γN(A) ≥ 3/4 then the sum A(n) = A+ · · ·+ A (n times) contains a
convex set C with γN(C) ≥ 1/2?

You notice that I did not dare calling this a conjecture, because it would be such
an extraordinary fact if true. In this statement, the condition γN(A) ≥ 3/4 can be
replaced by γN(A) > α for any α > 1/2 (changing if necessary the value of n). One
simply cannot believe that such a result could be true, until one tries to disprove
it. One then realizes how little is understood about the condition γN(A) ≥ 3/4.
Basically the only examples of non trivial sets A of large measure which I know are
based on (extensions of) the following idea: Under the law γN the components of a
point of RN are i.i.d. of law γ1 so the set A of points (xi)i≤N such that the empirical
measure N−1

∑
i≤N δxi

is close to γ1 in a suitable sense will be of probability close
to 1.3 This idea is used both in [T2] and [J]. In [T2] it is shown that n = 2 does
not work. More precisely, given a number L > 0 one can find N and a balanced set
A with γN(A) ≥ 3/4 such that L(A+A) does not contain a large convex set. In [J]
it is a more restrictive problem which is considered: Given n the author constructs
N and a balanced set A ⊂ RN such that the set A(n) of convex combinations of
n points of A does not contain a large convex set. To provide a negative answer
to Problem 2.1 one should require that nA(n) does not contain a large convex set.
This is a much stronger requirement because blowing up a very small (in the sense
of γN) convex set by a factor n (or even 2!) may produce a very large one. In fact,
A. Song [S] recently completed the proof that sets A constructed by the previous
method cannot provide a negative answer to Problem 2.1, see Theorem 2.5 below.

It seems to me that Problem 2.1 is fundamental. It is all the more remarkable
that 30 years after it was printed, there has been no sign of interest whatsoever from
the rather large group of people focusing on the study of convex sets. However very

2A. Song [S] has recently shown that one obtains the same problem is one removes the word
“balanced” but out of inertia we will consider only balanced sets.

3Such sets are not balanced, but then one replaces them by their balanced hull.
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recently Antoine Song [S] has made some remarkable progress on this problem, and
we will mention a few of his results.

Denoting by (·, ·) the dot product on RN we say that a RN -valued r.v. X is
subgaussian if for any x ∈ RN with ∥x∥ ≤ 1 and any t > 0 we have P(|(x,X)| ≥
t) ≤ 2 exp(−t2).

Problem 2.2 [S] Does there exist an integer n such that whenever X is an RN -
valued centered subgaussian r.v., then we can find standard Gaussian RN -valued
r.v.s G1, . . . , Gn such that X =

∑
i≤nGi.

Of course here G1, . . . , Gn are not independent.

Theorem 2.3 [S] The answer to Problem 2.1 is positive if and only if the answer
to Problem 2.2 is positive.

A considerable obstacle to a positive solution of Problem 2.1 is that one wonders by
which mechanism one could produce the convex set C. Such an ominous obstacle is
not present in Problem 2.2, but the difficulty there is that we understand very little
about subgaussian r.v.s.

A. Song could solve Problem 2.2 when N = 1. The proof is surprisingly difficult.

Theorem 2.4 [S]. There exists a number c > 0 such that whenever X is a real-
valued centered subgaussian r.v., one may find standard real-valued Gaussian r.v.s
G1, G2, G3 such that cX = G1 +G2 +G3.

Combining this deep result with some simple observations of [T2], one obtains the
following.

Theorem 2.5 There exists a number L such that if A is a balanced permutation
invariant subset of RN with γN(A) > 2/3 then L(A + A + A + A + A) contains a
convex set C with γN(C) > 1/2.

One reason behind this partial success is that the set C is absolutely explicit and
independent of A. The significance of this result is that it shows that the most
obvious approach of constructing large sets A as the sets of points (xi)i≤N such
that the empirical measure N−1

∑
i≤N δxi

is close in some sense to the measure γ1
cannot provide a negative answer to Problem 2.1 because such sets are invariant by
permutation of the coordinates.

When faced with an absolutely impregnable problem as Problem 2.1, a good
strategy is to invent a simpler problem of the same nature. A central difficulty
in Problem 2.1 is that we cannot visualize the space RN . So, let us replace R
by a set as simple as possible: {0, 1}. Instead of balanced sets in RN , identifying
{0, 1}N with the set of subsets of {1, . . . , N}, we say that the set A is hereditary if
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X ∈ A, Y ⊂ X ⇒ Y ∈ A. And we will now define A(n) as the collections of sets of
the type X1∪· · ·∪Xn for X1, . . . , Xn ∈ A: the operation of taking union replaces the
sum in RN . To measure the size of A we use the measure µp = ((1− p)δ0 + pδ1)

⊗N

where 0 < p < 1. (The value of N remains implicit in the notation µp. The case of
interest is the case p small.) To complete the formulation of the problem, we keep
in mind the following very remarkable property of Gaussian measures, see [T4]. p.
73.

Theorem 2.6 There exists a number L with the following property. For any N and
any balanced convex set A ⊂ RN with γN(A) ≥ 3/4 then the complement of LA =
{Lx;x ∈ A} is covered by a countable union of half-spaces Hℓ with

∑
ℓ≥1 γN(Hℓ) ≤

1/2.

For a subset I of {1, . . . , N} define HI = {X; I ⊂ X}. When working in {0, 1}N
rather than in RN it does not take much imagination to thinks that the sets HI are
appropriate substitutes for half-spaces. Also, µp(HI) = pcardI . We are then led to
the following definition (which is given in [T2] under a different name).

Definition 2.7 [T2] A subset A of {0, 1}N is p-small if A ⊂
⋃

ℓ≥1HIℓ with∑
ℓ≥1

µp(HIℓ) =
∑
ℓ≥1

p|Iℓ| ≤ 1/2.

For a subset A of {0, 1}N let us now denote by A(n) the complement of A(n), that
is the collection of subsets of {1, . . . , N} which cannot be covered by n sets in A.
We can now state a combinatorical version of Problem 2.1.

Problem 2.8 Does there exist a number n such that A(n) is p-small whenever A ⊂
{0, 1}N satisfies µp(A) ≥ 3/4?

Of course, it is the same problem whether or not one requires A to be hereditary.
This problem is discussed at length in [T3]. It did attract some attention from
experts in combinatorics, but, sadly, it remains as mysterious as ever. The one
progress which has been made is that J. Park and H. Pham provided in [P-P] a
magnificent proof of an exact analogue to Theorem 2.6.

Theorem 2.9 ([P-P]) There exists a number L with the following property. Con-
sider a family T of sequences t = (ti)i≤N with ti ≥ 0. Define the function fT on
{0, 1}N by fT (X) = supt∈T

∑
i∈X ti, and let EfT =

∫
fT (X)dµp(X). Then the set

{f ≥ LEfT} is p-small.

4



A positive solution to Problem 2.8 would imply Theorem 2.9, because the set
A = {f ≤ 4EfT} satisfies µp(A) ≥ 3/4 and {f > 4nEfT} ⊂ A(n). However there
seems to be no way to go the other direction, as the set A is of a very special type.
One could say that Theorem 2.9 assumes that “one already has convexity” but gives
no information about “creating convexity”.

My feeling is that the main reason that Problem 2.8 remains so mysterious is
that we do not know how to approach the operation “ taking the union of two sets
in A”. It seems clear that the resulting set is in a sense “much larger than A” and
the challenge is to find a way to express this. In Problem 2.8 we take the union of
n sets of A, but I feel that the key would be to understand what happens for n = 2.
This motivates the following.

Problem 2.10 [[T2]] Does there exist a number α > 0 with the following property:
Given any subset A of {0, 1}N with µp(A) ≥ 3/4, then the set A(2) is (αp)-small?

We leave the reader convince herself that a positive solution of this problem would
imply a positive solution of Problem 2.8 (maybe at the cost of replacing 3/4 by a
larger number in Problem 2.8.)

There is a whole line of problems in the same direction. Consider a family
X of subsets of {1, . . . , N}. What is the smallest value of p such that whenever
A ⊂ {0, 1}N satisfies µp(A) ≥ 3/4 then there is an element of A(2) which contains an
element of X , or equivalently, there is an element of X contained in the union of two
elements of A? For example, assume that {1, . . . , N} is made of q blocks of length k,
and that X consists of the sets which meet each block exactly once. We leave it as a
teaser to the reader to prove that any p large enough that (1− p)k ≤ 1/2 works. (A
stronger result will be proved below, but the present claim is simpler.) Suppose now
that N =M2 is a square and think of the N points as aM×M grid. What happens
when X is the family of sets which meet each line and each column in exactly one
point? (Equivalently X consists of sets of the type {(i, σ(i)); 1 ≤ i ≤ M} where σ
is a permutation of {1, . . . ,M}.)

These questions are connected to the idea of “weakly p-small sets” developed in
[T4]. To save some space and energy let us define:

Definition 2.11 A probability measure on {0, 1}N is α-spread if ν(HI) ≤ αcardI for
each I.

If X carries a p-spread probability measure ν and X ⊂
⋃

ℓ≥1Hℓ then 1 ≤
∑

ℓ≥1 ν(Hℓ) ≤∑
ℓ≥1 µp(Hℓ). Thus X is not p-small. A p-small set does not carry a p-spread prob-

ability measure, and we may ask the following weaker version of Problem 2.10:

Problem 2.12 Does there exist a number α > 0 with the following property: Given
any subset A of {0, 1}N with µp(A) ≥ 3/4, then the set A(2) does not carry an
αp-spread probability measure?
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As equivalent formulation is as follows.

Problem 2.13 Does there exist a number α > 0 with the following property: Given
any subset A of {0, 1}N with µp(A) ≥ 3/4 and any family X ⊂ {0, 1}N which carries
an αp-spread probability measure we can find X ∈ X which can be covered by two
elements of A?

At first sight, the definition of α-spread probability measures looks like an ap-
pealing concrete starting point for our investigations, but in fact such probability
measures are very hard to understand in general. But one can study examples. For
the two classes X considered in the previous paragraph, the uniform probability on
X is 1/k-spread in the first case and in the second case it is C/M -spread for some
number C. It follows from stronger results stated in the next section that Problem
2.13 has a positive solution in both cases.

3 Projections

This section is a continuation of the previous one, but it develops a new direction.
As there is no obvious way to handle the set A(2) one may remember the elemen-

tary fact that if µ1/2(A) ≥ 1/2 then {1, . . . , N} ∈ A(2). This suggests a more general
approach to Problem 2.10. For X ∈ {0, 1}N let us denote by PX the projection from
{0, 1}N to {0, 1}X where now X is thought of as a subset of {1, . . . , N}. Let us
denote by θX the uniform measure on {0, 1}X .

Problem 3.1 Does there exist a number α > 0 such that whenever A ⊂ {0, 1}N is
hereditary and satisfies µp(A) ≥ 3/4 then the set {X ∈ {0, 1}N ; θX(PX(A)) < 1/2}
is αp-small?

A positive solution would imply a positive solution to Problem 2.10. To provide a
position answer to Problem 3.1 one has to show that if a class X ⊂ {0, 1}N is not
αp-small, then it contains a set X such that θX(PX(A)) ≥ 1/2. The best known
result in that direction seems to be that (if α is small enough) one can find X ∈ X
and Y ∈ A such that card(Y ∩X) ≥ cardY/2.

Despite the fact that I spent a whole year studying the problems of [T2] I thought
that a little more day-dreaming might be profitable. I first must make a disclaimer.
The length of time I have though about the forthcoming problems is several orders
of magnitude shorter than for the previous ones, so I might very well have missed
an obvious reason for which the answer to these problems is a resounding “NO”.

Generally speaking, I know very little about the size of the projections of a
set. An obvious line of approach is to replace in Problem 3.1 the requirement “αp-
small” by “does not carry an αp-spread probability measure”, that is to consider
the following problem.
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Problem 3.2 Does there exist a number α > 0 such that whenever A ⊂ {0, 1}N is
hereditary and satisfies µp(A) ≥ 3/4 then for each family X ⊂ {0, 1}N which carries
an αp-spread probability measure we can find X ∈ X such that θX(PX(A)) > 1/2?

As we already mentioned the difficulty here is that the structure of αp-spread
measures is very mysterious, but at least we may start investigating what happens
for the two concrete choices we met in the previous section. In these results, ν is
the uniform measure on X .

Proposition 3.3 Consider two integers k, q, set N = kq and think of {1, . . . , N}
as made of q blocks of size k. Consider the class X of sets that meet every block in
exactly one point. Then as soon as (1− p)k ≤ 1/2, for each set hereditary set A we
have ∫

θX(PX(A))dν(X) ≥ µp(A) . (3.1)

In particular we can find X ∈ X such that θX(PX(A)) ≥ µp(A).

The way to prove a statement such as (3.1) is to prove that the measure µp can
be “pushed down” to the measure η given by η(A) =

∫
θX(PX(A))dν(X), that is to

prove that there is a disintegration η =
∫
ηXdµp(X) where the probability measure

ηX on {0, 1}N is supported by the subsets of X. It is then clear that the proof
reduces to the case q = 1 where is is really easy. The proof of the following is far
less obvious and is left as a challenge to the reader.

Proposition 3.4 There exists a number L with the following property. Assume that
N = M2 and think of {1, . . . , N} as {1, . . . ,M}2. Consider the class X of subsets
of {1, . . . ,M}2 which meet each line and each column is exactly one point. Then as
soon as p ≥ L/M , if A ⊂ {0, 1}N is hereditary then (3.1) holds.

Of course, based on these examples, one may become more greedy and ask the
following.

Problem 3.5 Does there exist a number α > 0 such that whenever ν is an αp-spread
probability measure (3.1) holds for each hereditary set A?

Even when p = 1/2, I know very little about the size of the projections of a large
set A ⊂ {0, 1}N .

Problem 3.6 For 0 < ε < 1/2, does there exist a number α(ε) > 0 with the
following property. Whenever A ⊂ {0, 1}N satisfies µ1/2(A) ≥ 3/4, then the set
{X ∈ {0, 1}N ; θX(PX(A)) < 1− ε} is α(ε)-small?
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Note that here A is not assumed to be hereditary. Howevr it is enough to consider
the case where A is hereditary.

Lemma 3.7 We do not weaken Problem 3.6 by assuming A hereditary.

This is proved using the time-honored “push-down method”. Given 1 ≤ i ≤ N
and A ⊂ {0, 1}N we define Ai as follows. Whenever i ∈ X ∈ A and X \ {i} ̸∈ A
we remove X from A and we add X \ {i} to A. Thus cardAi = cardA. On the
other hand, it is not difficult to show that νX(PX(A

i)) = νX(PX(A)).
4Iterating the

push-down method for each i proves the lemma.
In order to understand what is going on in Problem 3.6 a first goal should be to

find examples proving upper bounds for α(ε). Noga Alon showed me the following,
which proves only the very weak bound α(ε) ≤ L/(log log(1/ε)) for small ε. Consider
an integer k not too small and N = k2k. Think of {1, . . . , N} as the union of 2k

blocks of length k. Consider the set A consisting of subsets of {1, . . . , N} which miss
at least one these blocks, so that for large k we have µ1/2(A) = 1−(1−2−k)2

k ≥ 1/2.
Consider then the class X of subsets of {1, . . . , N} which meet each block in exactly
one point. Then for each X ∈ X we have νX(PX(A)) = 1 − 2−2k .The set X is not
1/k-small because the uniform probability on X is 1/k-spread.

Certainly one should ask what happens when in Problem 3.6 one replaces {0, 1}
by a more general probability space, say [0, 1] with Lebesgue’s measure. For X ⊂
{1, . . . , N} we denote PX the projection from [0, 1]N to [0, 1]X . We denote by λN
and λX the natural measures on [0, 1]N and [0, 1]X .

Problem 3.8 Does there exist a number α > 0 such that whenever A ⊂ [0, 1]N

satisfies λN(A) ≥ 3/4 then the set of X for which λX(PX(A)) < 9/10 is α-small?

To understand better this problem, it helps to consider the case where A =
[0, 1− 1/(5N)]N . This example shows that if in Problem 3.8 we rather consider the
set of X for which λX(PX(A)) < 1− θ we cannot expect better that this set being
α-small for α of order θ.

These problems are quite far from Problem 2.1, and it seems a worthy project to
investigate what happens if we come back to RN , using now projections on a subspace
of lower dimension. For a subspace W of RN we denote by PW the orthogonal
projection of RN on W and by γW the canonical Gaussian measure on W .

Problem 3.9 Is it true the for some constant L, if A ⊂ RN satisfies γN(A) ≥ 3/4,
then for M ≤ N − L

√
N the set of spaces W of RN of dimension M for which

γW (PW (A)) ≤ 9/10 is extremely small?

4In fact, for i ∈ X the operation “pushdown at i” commutes with the projection PX .

8



That the condition M ≤ N − L
√
N is necessary is shown by the case where A is a

ball centered at the origin. Part of the problem is to invent the appropriate concept
of “extremely small” which is relevant here, and which should replace the concept
of p-small sets previously used. A first step would be to show that the proportion
of such spaces is very small, but possibly a much stronger result holds.

And now the best part of this story. It seems to me that nothing is known
about Problem 3.9 even when one assumes A to be convex balanced. Isn’t that
embarrassing?

4 Matchings

The basic object of this section is a sequence (Xi)i≤N of independent r.v.s uniformly
distributed in the unit square [0, 1]2. There are typically regions of the unit square
which have a deficit or an excess of points and our goal is to quantify this in different
ways. This material is extensively discussed in the monograph [T4] to which we refer
for all references. Our goal is simply to provide an overview of the main remaining
problems. These problems touch some of the central issues of the theory of stochastic
processes, so it is not possible to have an in depth discussion of the underlying issues.
Rather, we simply try to hook a reader in considering these fascinating questions.

The basic idea to measure the irregularities of the set {Xi, i ≤ N} is to consider
another independent sequence (Yi)i≤N and to try to match the points Xi with the
points Yj in a way that two points that get matched are close to each other. Such a
matching is given by a permutation π of the set {1, . . . , N}.5 The goal is to prove the
existence of a matching in a manner that the distances d(Xi, Yπ(i)) are “small”. Two
different objectives are to minimize the sum of these distances, or their maximum.

Theorem 4.1 (The Ajtai-Komlós-Tusnády matching theorem) With high
probability we have infπ

∑
i≤N d(Xi, Yπ(i)) ≤ L

√
N logN.

Here and below L is a universal constant (i.e. a number independent of N) and
“with high probability” means “with probability going to 1 as N → ∞” (much
more precise statements are available). So, the average distance between Xi and
Yπ(i) is ≤ L

√
logN/

√
N . The factor 1/

√
N is the natural scaling factor, and the√

logN is reflects the irregularities in the distribution.

Theorem 4.2 (The Leighton-Shor matching theorem) With high probability
we have infπ maxi≤N d(Xi, Yπ(i)) ≤ L(logN)3/4/

√
N .

5We will lighten the expositions by calling such a permutation “a matching”
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These unexpected powers of logN are optimal. A fairly obvious question is whether
we can simultaneously control the sum of the distances d(Xi, Yπ(i)) and their maxi-
mum.

Problem 4.3 Is it true that with high probability we can find a matching π such
that

∑
i≤N d(Xi, Yπ(i)) ≤ L

√
N logN and maxi≤N d(Xi, Yπ(i)) ≤ L(logN)3/4/

√
N?

Later we will ask a considerably more ambitious question (whose solution is possibly
far more difficult).

Let us now denote by X1
i and X2

i the coordinates of Xi (etc.). Peter Shor has
discovered the following striking improvement of Theorem 4.1.

Theorem 4.4 (Shor’s matching theorem) With high probability we can find a
matching π such that

∑
i≤N |X1

i − Y 1
π(i)| ≤ L

√
N logN and maxi≤N |X2

i − Y 2
π(i)| ≤

L
√
logN/

√
N .

This improves Theorem 4.1 which only asserts that
∑

i≤N |X2
i −Y 2

π(i)| ≤ L
√
N logN .

We have replaced the control of the sum of these quantities by the control of each
of them. Concerning the quantities |X1 − Y 1

π(i)| it is possible to do far better than
controlling just their sum.

Conjecture 4.5 With high probability there exists a matching π such that

∑
i≤N

exp
( √

N

L
√
logN

|X1
i − Y 1

π(i)|
)2

≤ 2N (4.1)

and maxi≤N |X2
i − Y 2

π(i)| ≤ L
√
logN/

√
N .

One can use the inequality expx ≥ 1 + x to compare this with Theorem 4.4. The
best I can do in the direction of Conjecture 4.5 is to prove a result where in (4.1) the
exponent 2 is replaced by α < 1/2 (and where L is replaced by a number depending
on α.)

Conjecture 4.5 is a special case of the Ultimate Matching conjecture stated below,
but there is a very specific reason why we mention it separately: there is a clear
road to attack it, and the road block which prevents its solution looks more technical
than conceptual.

There is a deep link between matching problems and discrepancy problems. We
explain first what these are. Consider a class F of functions on a probability space
(Ω,P), all of mean 0, and an i.i.d. sequence (Xi)i≤N in Ω distributed according to
P. A discrepancy bound is a bound on supf∈F |

∑
i≤N f(Xi)|. Such bounds quantify

“how well the empirical mean approaches the true mean” uniformly on the class F ,
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and their study is a central topic of probability. The standard method to obtain
discrepancy bounds is to use tail inequalities (in particular Bernstein’s inequality)
and chaining. The possibility of using chaining requires a certain control of the size
of F seen as a subset of L2(P). It is a very beautiful fact that both Theorems 4.1
and 4.2 are obtained through a discrepancy result (and duality arguments) and that
in both cases the required smallness of the corresponding class F is deduced from
the same abstract result on ellipsoids in Hilbert space (the “Ellipsoid theorem” of
[T4]).

The appeal of Conjecture 4.5 is that it boils down to a discrepancy problem,
as is explained in [T4] (showing this requires non trivial work). We state this
problem now. Let us consider an integer p ≥ 1 and the grid G = {1, . . . , 2p}2.
The components of a point u in G are denoted by k, ℓ. We denote by P the uniform
probability on G. Consider the function θ on R+ given by θ(x) = x log(x + 3).
Consider the class F of functions f on G for which

∑
u∈G f(u) = 0 and which

satisfy the condition∑
θ(|f(k + 1, ℓ)− f(k, ℓ)|) +

∑
|f(k, ℓ+ 1)− f(k, ℓ)| ≤ 22p . (4.2)

Here, the first sum of over 1 ≤ k ≤ 2p − 1 and 1 ≤ ℓ ≤ 2p, whereas the second sum
is over 1 ≤ k ≤ 2p and 1 ≤ ℓ ≤ 2p − 1.

It is claimed in [T4] that to prove Conjecture 4.5 it suffices to prove6 (an ap-
propriate version of) the following, where the random variables Ui are independent
uniform on G.

Conjecture 4.6 For N ≥ 22p with probability ≥ 1− 2−p we have

sup
f∈F

∣∣∣∑
i≤N

f(Ui)
∣∣∣ ≤ L

√
Np2p .

The difficulty in approaching this result is that I do not even understand what is the
true size of F seen as a subset of L2(P). We can formulate the question as follows,
where (gu)u∈G are independent standard Gaussian r.v.s.

Conjecture 4.7 It holds that

E sup
f∈F

∣∣∣∑
u∈G

guf(u)
∣∣∣ ≤ L

√
p22p . (4.3)

This is a question about the supremum of a concrete Gaussian processes. The theory
of Gaussian processes has reached a very satisfactory state, in the sense that very

6It might require some work to figure out all the details, but the claim is plausible!
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precise results are known in complete generality, see [T4]. Unfortunately, as the
previous question shows there is no magic wand to understand the combinatorics
in concrete examples. Related to Conjecture 4.7 is the question of evaluating the
left-hand side of (4.3) when the condition (4.2) is replaced by∑

θ1(|f(k + 1, ℓ)− f(k, ℓ)|) +
∑

θ2(|f(k, ℓ+ 1)− f(k, ℓ)|) ≤ 22p

for two functions θ1, θ2. To show how matters are subtle, when θ1(x) = θ2(x) = x,
in the right-hand side of (4.3) it is not possible to do better then Lp3/422p. This can
be shown using the same construction which proves that the power 3/4 is necessary
in Theorem 4.2.

We are finally ready to state the following lovely (and beloved) main conjecture
of this section.

Conjecture 4.8 (The Ultimate Matching Conjecture) Consider α1, α2 > 0
with 1/α1 + 1/α2 = 1/2. Then with high probability there exists a matching π such
that for j = 1, 2 we have∑

i≤N

exp
( √

N

L
√
logN

|Xj
i − Y j

π(i)|
)αj

≤ 2N.

Conjecture 4.5 is the special case α1 = 2, α2 = ∞. The case α1 = α2 = 4 would
provide a very neat generalization of Theorems 4.1 and 4.2.

When working on an open problem, there is always the chance that one is lead
to discover a powerful new method, but still the odds seems that Conjecture 4.8 is
just a very tough puzzle to crack.

5 Regularization from L1 by convolution

My bet is again that this problem is not important. But it is very pretty.
It is well known that “convolution spreads regularity”. For example, if one want

to approximate a continuous function on R by a C∞ function, one takes convolution
with a C∞ function with (small) compact support. However, some regularization is
possible even when one takes convolution with a singular measure, and even when
convolution is applied to L1 functions. Here we consider only convolution on the
group G = {−1, 1}N provided with its Haar measure λ. The group operation is
denoted as a product.

Given a positive, finite measure µ on G we consider the operator Tµ on L1 =
L1(G, dλ) given by

Tµ(f)(x) =

∫
f(xy)dµ(y) .
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Let us recall that an Orlicz function φ is a convex function from R+ to itself with
φ(0) = 0 and that the corresponding Orlicz norm is defined by ∥f∥φ = inf{C >
0;
∫
φ(f/C)dλ ≤ 1}. As the following shows, it is quite a requirement on µ that Tµ

“improves the integrability”.

Proposition 5.1 For some Orlicz function φ we have

∥Tµ(f)∥φ ≤ C∥f∥1 (5.1)

for all f ∈ L1 if and only if µ is absolutely continuous with respect to λ and the
Radon-Nikodym derivative θ = dµ/dλ satisfies ∥θ∥φ ≤ C.

The moral is that (5.1) is a far too stringent requirement, so we shall consider
weaker conditions. We define the function

ψµ(u) = sup
{
uλ({Tµ(f) ≥ u}) ; f ≥ 0, ∥f∥1 = 1

}
.

Since
∥Tµ(f)∥1 = µ(G)∥f∥1,

from Markov inequality we see that

ψµ(u) ≤ µ(G) .

Here is another simple fact, which is almost obvious.

Proposition 5.2 If µ is absolutely continuous with respect to λ then

lim
u→∞

ψµ(u) = 0 .

The interesting phenomenon is that as we shall see it can happen that µ is
singular with respect to λ but that limu→∞ ψµ(0) = 0. As the following simple fact
shows, this does not happen when µ has a finite support.

Proposition 5.3 If µ has a finite support then lim supu→∞ ψµ(u) ≥ µ(G).

To see this, may assume that µ is a probability. The support of µ is finite, so
it generates a finite subgroup H of G. Consider then a subgroup H ′ of G, so that
HH ′ is a subgroup of G, which is invariant under translations by elements of the
support of µ. Thus if f is the indicator of HH ′ it is invariant under translations by
elements of the support of µ, and thus Tµ(f) = f . Since the measure of HH ′ can
be as small as we wish, the result should be obvious. □

Here is another simple fact showing that when µ is singular (i.e. is supported by
a set of λ-measure 0) the function ψµ cannot decrease too fast.
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Proposition 5.4 If µ is singular then∫ ∞

1

ψµ(u)

u
du = ∞ . (5.2)

Proof. For a function g ≥ 0 and a subset V of G we have, for any number A ≥ 0,∫
V

gdλ =

∫ ∞

0

λ({g ≥ u} ∩ V )du ≤ Aλ(V ) +

∫ ∞

A

λ({g ≥ u})du .

Consequently, if f ≥ 0 and ∥f∥1 = 1, using the previous inequality for g = T (f) we
obtain ∫

V

Tµ(f)dλ ≤ Aλ(V ) +

∫ ∞

A

ψµ(u)

u
du .

Consider an open set U and f ∈ L1, f ≥ 0,
∫
fdλ = 1, f supported by U . Consider

a compact set K. Set V = UK. Then for y ∈ K we have∫
V

f(xy)dλ(x) ≥
∫
Uy

f(xy)dλ(x) =

∫
U

f(x)dλ(x) = 1 .

Consequently ∫
V

Tµ(f)(x)dλ(x) =

∫
dµ(y)

∫
V

f(xy)dλ(x) ≥ µ(K)

and finally

µ(K) ≤ Aλ(UK) +

∫ ∞

A

ψµ(u)

u
du .

Since we assume that µ is singular, we can find a compact set K with µ(K) > 0
and λ(K) = 0. We can find U with λ(UK) as small as we wish. We then see that
for each A we have µ(K) ≤

∫∞
A
ψµ(u)/udu. □

We are now ready to state our main problem. Given 0 ≤ a ≤ 1 we consider the
“biased coin” probability µa on G. It is the product measure on G that on each
factor gives weight (1 + a)/2 to the point 1 (and weight (1− a)/2 to the point -1),
that is

µa =
(1 + a

2
δ1 +

1− a

2
δ−1

)⊗N
.

Here is a simple fact.

Proposition 5.5 Given 0 < a ≤ 1 there exists C(a) > 0 such that for u ≥ 2 we
have ψµa ≥ C(a)/

√
log u.
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Proof. We simply look at the density of µa when we replace G by {−1, 1}n. On a
sequence with k terms equal to 1 this density g is (1 + a)k(1− a)n−k, so that

λ({g ≥ (1 + a)k(1− a)n−k}) ≥ 2−n

(
n

k

)
.

We then choose k as close as possible to (1+a)n/2. Letting c2 = (1+a)1+a(1−a)1−a

then (1 + a)k(1− a)n−k is about cn while, using Stirling’s formula, 2−n
(
n
k

)
is about

1/(cn
√
n). □

Conjecture 5.6 Given a > 0 there exists C(a) > 0 such that for u ≥ 2 we have

ψµa(u) ≤
C(a)√
log u

.

The following is proved in [T1]. In view of (3) this is about as fast a decrease as can
be expected.

Theorem 5.7 For u ≥ 3 the probability measure µ =
∫ 1

0
µexp(−t)dt satisfies

φµ(u) ≤
C log log u

log u
.

While this paper was under review, Conjecture 5.6 was proved within an extra-
neous log log factor by Y. Chen.

Theorem 5.8 ([C]) Given a > 0 there exists C(a) > 0 such that for u ≥ 3 we have

ψµa(u) ≤
C(a) log log u√

log u
.

One may formulate in Gaussian space a conjecture similar to Conjecture 5.6.
Within an extraneous

√
log log u it was proved by R. Eldan and J. Lee in [E-L], and

the extraneous factor was removed by J. Lehec [L].
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