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e In this manner the same representation of P* can be described in many different
ways, but we do not get confused because we know that all that matters is the
restriction of V' to V and Gp-.

These methods will be illustrated in Section 9.6.

Exercise 9.5.8. Consider the case m > 0 and Ho = V = C?, and denote by
Ur the representation constructed in Theorem 9.5.3 with V(A) = A, and Uy, the
representation constructed with V(A) = Af~!. Since A = AT~! for A € SU(2)
these representations are unitarily equivalent. The purpose of this exercise is to
check this directly. We assume that D,, is Hermitian, so that x(D,) is a pure boost.
Prove that the map W from H to H given by W(p)(p) = D, *(¢(p)) satisfies
IW/(@)®)l.s = ()]l and check that Uy W = WU

9.6 Fundamental Representations

Given m > 0 and the point p* of X,,, considering an irreducible unitary representa-
tion V' of the little group G+, Theorem 9.4.2 produces an irreducible representation
of P*. In this section we name the most important representations of P* obtained
in this manner, and we show how they can be described within the more friendly
setting of Theorem 9.5.3.

9.6.1 Massive Particles

Let us start with the case m > 0. Then the little group G,- of p* is SU(2), see
(9.14). We have constructed the fundamental family 7; of unitary representations
of this group in Section 8.2. We will however use the equivalent form (8.14) of these
representations using tensor products, which will be recalled in a few lines. The
importance of the following representations cannot be overstated.

Definition 9.6.1. For m > 0, j > 0, the representation m,, ; is the unitary repre-
sentation of P* induced by the representation 7; of the little group SU(2).

It should be stressed that this representation depends on m (as does the point
p*, see (9.13)) despite the fact that the little group does not depend on m > 0.

The representation 7, o is the representation of Section 4.8. A concrete realiza-
tion of 7y, 1 is given in Proposition 9.5.6, and we can give a concrete realization
of mp,,; for j > 1 by a rather straightforward generalization of that construction.
We consider the space V = Hg = S; of symmetric tensors @ = (Zn, n,,...,n;) With
ny € {1,2}, and the representation V of SL(2,C) on S; given by

V(A)(’I’) == ( Z Anlakl N '44n,-,kj-rk1,...,kj) . (938)
ki,...,kj

It is proved in Proposition 8.3.1 that the restriction of V to V and the little group
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SU(2) is unitarily equivalent to 7;, so that the representation constructed by The-
orem 9.5.3 for this choice of V' is equivalent to 7, ;. We then have V, =V for each
p. According to Lemma 9.5.7 and the footnote on page 235 the norm ||uf|, is given
by [[ull2 = (V(M(P(p))/me)(u),u). One may also use the formula of Exercise 9.5.5
for the norm.

9.6.2 Massless Particles

In the remainder of this section we study the case of massless particles, m = 0. This
case is far more elusive than the case m > 0 due to the more complicated nature of
the little group. This material will be instrumental in understanding what photons
are in Section 9.13, but this in itself is a side story to our main line of investigation,
and it may be omitted at first reading.?® When we work specifically in the casc
m = 0 we will denote by Gy the little group G+, and the first step is to compute
this group.3! We recall that when m = 0, p* = (1,0,0,1) and then the matrix
M(p*) of (8.19) is given by

M(p*) = (3 8) . (9.39)

The condition that A € Gy, i.e. k(A)(p*) = p*, that is AM (p*)At = M (p*), yields
in a straightforward manner that A has to be of the type

A— (8 2) , (9.40)

where a,b € C and aa* = 1.
Definition 9.6.2. For j € Z and A € G as in (9.40) we define 7;(A4) = o/ € C.

Please keep in mind that 7;(A4) is a number. However, we can think of 7; as a
one-dimensional representation, by the formula 7;(A)(z) = 7, (A)x.

We recall that for a matrix A, we denote by A* the conjugate matrix, where
every entry has been replaced by its complex conjugate. The following is trivial but
useful.

Lemma 9.6.3. The map A — A* is a group automorphism of Gy and 7;(A*) =
7_;(A).

30" Generally speaking, all the considerations concerning massless particles constitute a
side story and can be omitted at first reading. The reason massless particles are
treated in great detail is that the author wanted to truly understand this situation,
but could not easily find a satisfactory treatment in the literature.

31 The reader should observe that there are only two possible values for the little group:

Go and SU(2).
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Definition 9.6.4. Assume m = 0. For j € Z, j # 0. the representation g ; is the
unitary representation of P* induced by the representation 7; of the little group
Gp.

The following exercise provides a closer look at the little group Gy, and brings
forward the fact that this group is itself a semi-direct product.

Exercise 9.6.5. (a) Consider the group U of complex numbers of modulus 1. Prove
that the operation on C x U defined by

(c,a)(c,a’) = (c+a’c,ad’)

is a group operation. This group is denoted by G.

(b) Prove that G can be naturally identified as a double cover of the group of
transformations of R? gencrated by translations and rotations. Hint: consider the
operation of G on C given by (c,a) - z = ¢ + a?z. Prove that it is an action, i.e.
(¢,a) - ((c;a) - 2) = (¢, d')(c,a)) - 2.

(c) Prove that the map which sends the matrix (9.40) to the element (ab,a) of G
is a group isomorphism from Gy to G.

(d) Given j € Z and « € C, prove that the formula

Ule,a)(f)(w) = o’ exp(ilm(ac*w)) f(a™*w)

(where Im z is the imaginary part of the complex number z) defines a unitary
representation of G in the set of square-integrable functions on C. Do you see any
connection between this formula and the formulas defining representations of P*?
Why is this the case? Hint: study Section A.5.

One may construct unitary representations of P* using the unitary representa-
tions of G exhibited in the previous exercise, but they do not correspond to any
known particle, and for physics the important case is that of Definition 9.6.4.

We now explore concrete realizations of the representation my ;. These realizations
are neither very important nor very enlightening, but they do make the point that
we are dealing with very non-trivial structures.

Proposition 9.6.6. For
a b
A= L(2, 41
(c d) € SL(2,C) (9.41)

and p € Xg let us define £(A,p) = d(p° + p®) — b(p' +ip?). Then given A, Xo-a.c.
we have £(A,p) # 0. The formula
: EAp) N
Uta, Ae)6) = explita. /W) () oA ) (042
defines a unitary representation of P* in L? := L?(Xo,d)\o). This representation is
unitarily equivalent to m ;.
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One striking feature of the formula is that the crucial factor (£(A,p)/|¢(A,p)|)
does not change if we replace p by Ap for some A\ > 0.

We are going to show that this formula is simply the formula (9.7) when V is the
representation 7; of G and when we use an adequate choice of D,,.

Proposition 9.6.7. For p € X, we have p° +p3 > 0. When p° +p°® # 0 the matriz

1 0 3
D, - <p+p 0

satisfies Dy(p*) = p, where p* = (1,0,0,1).

) € SL(2,C) (9.43)

Proof The first claim follows from the fact that (p')? + (p?)? = (p°)? — (p*)?
and p® > 0. When A is as in (9.41) it is straightforward to use the definition
M(A(p*)) = AM(p*) A" of A(p)(= k(A)(p)) to check that the relation p := A(p*)

amounts to
2lal* =p +p*; 2a*c =p' +ip?; 2Je)* =p° —p?, (9.44)

from which one readily discovers the choice a = /(p° +p3)/2 and ¢ = (p* +
ip?)/4/2(p° + p?), the last relation of (9.44) being then a consequence of the relation
(PH2+(P*)? = (p)2—(p*)%. The natural choice b = 0 together with the requirement
D, € SL(2,C) then leads to the formula (9.43). a

Proof of Proposition 9.6.6. We make the choice (9.43) when p° + p® # 0 (and
any arbitrary choice on the negligible set where p? = —p°), and we carry out the
computation of the expression (9.7).

The basic observation is that for a matrix A of the type (9.40), if we know
that a = A« for some a € C and some A > 0 then since |a|] = 1 we have a =
a/|a| and therefore 7;(A) = (a/||)?. Recalling that p° + p® > 0, D, ' is a lower-
triangular matrix with diagonal coefficients in RT. When we consider a matrix
B = (B;;) with A := D;'B € Gy it follows that Ay; = ABy; with A > 0.
Consequently 7;(D,'B) = A, = (By,1/|B11])?. Consider now A € SL(2,C).
Then 7;(D,'AD o-1()) = (B1,1/|B1,1])? where B = AD4-1(,). From (9.43) the
first column of D, is the same as A times the first column of M(p) for a certain
A > 0. Thus the first column of D 4-1(;) is the same as the A times the first column of
M(A™(p)) for a certain A > 0. Consequently Bj 1/|B11| = C11/|C1 1| where C =
AM(A=(p)). But then M(A=1(p)) = A~ M(p)(A~1) so that C = M (p)(A~1)1.
A straightforward calculation yields Cy 1 = £(4,p)*. Finally (£(A,p)*/|¢(4,p)])? =
(£(A, p) (A, p)]) . =

This near-miraculous calculation does not shed much light on why the formula
(9.42) defines a representation. The following exercise will provide a direct proof of
this fact.
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Exercise 9.6.8. (a) Prove that the formula

U(a, A)(p)(p) = exp(i(a. p)/h)g(A. p)p(A™ (p))
defines a representation of P* if for each A, B € SL(2,C) and each p € X, we have

9(B,p)g(A, B~ (p)) = g(BA,p) . (9.45)

In the sequel, please do not worry about the rare cases where the definitions make
no sense.
(b) For z € C and A € SL(2,C) as in (9.41) define A-z = (¢+dz)/(a+ bz). Prove
that this defines an action of SL(2,C) on C, i.e. A- (B -z) = (AB) - z.
(c) For A e SL(2,C) and z € C define f(A,z) = d — bz. Prove that

[(B,2)f(A,B™" . 2) = f(BA,z) . (9.46)

(d) What is the relation with Proposition 9.6.67 Hint: find a suitable identification
of the rays of Xy with C, which transforms the natural action of SL(2,C) on these
rays into the previous one.

Exercise 9.6.9. Think of v € C2? as a column matrix. We denote by vy, vy the
components of v € C2. We recall the action of matrix multiplication Av for A €
SL(2,C) and v € C2.

(a) Prove that for v € C? there exists a unique p(v) € Xg such that M (p(v)) = vo'.
(b) Consider j € Z and the space H; C L?(C?) consisting of functions f such that
for any complex number 6 of modulus 1 we have f(6v) = 877 f(v). Prove that the
formula

V(a, A)(f)(v) = exp(i(a, p(v))/h) f(A™ ") (9.47)

defines a unitary representation of P* in H;.

(c) For p € X, define (whenever possible) w(p) € C% by /p° + pdw(p) =

(po +p°
pl + 1p2

(v1/[v1])w(p).

(d) Prove that for B € SL(2,C) we have Bw(p) = (Bw(p)1/|Bw(p):1|)w(Bp).

(e) Prove that the representations (9.42) and (9.47) are unitarily equivalent. Hint:

Use the map 7' : H; — L*(Xo,d\o) given by T(f)(p) = f(w(p)).

). Prove that p(w(p)) = p. Prove that if vof = M(p) then v =

In the remainder of this section we study the description of the representation
mo,; of P* within the framework of Theorem 9.5.3, using this theorem for m = 0.
We assume j > 1. We consider again the space Hy = S; of symmetric tensors and
the representation V' of (9.38). In the important case j = 1 we then have Hoy = C?
and V is the action on C? by matrix multiplication, V (A4)(z) = A(x). Consider the
tensor g € S; given by gn, ... n; = 0 unless all indices are equal to 1, in which case
Gna,...,n; = 1. Thus, when j =1, g is the vector with g1 = 1 and g2 = 0. We denote
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by V the linear span of g, which is then a space of dimension 1. For A € G given by
(9.40) we have V(A)(g) = a’g = #;(A)g. Thus V is invariant under V' (A), and the
restriction of V' to Gy and V is unitarily equavalent to the representation 7; of G.
Consequently, the representation of P* constructed by Theorem 9.5.3 is unitarily
equivalent to the representation g ;.

Let us now compute the norm ||ul, of an element u of V,. Such an element is of
the type

u=V(A)(\g) = ()‘AMJATLQJ e Anj,]) )
and p = A(p*) = k(A)(p*) i.e. AM(p*)AT = M(p). Using (9.39), it is straightfor-
ward to see that if A is as in (9.41) then p® = |a|? + |c|%. Thus
lully = VAT @)* = [IAgl® = 1A

2

’

lal® = AP D7 (Al [Anal? = PPl + [Py = 0°) AP -

N1yeeeyNj

whereas since [A 1]? +|A21|? = |a]? + |c

Consequently [|ul|? = [|ul[*/(p°)7. We have proved the following.

Proposition 9.6.10. For j > 1 consider the space H of functions ¢ : Xo — S;
which satisfy o(p) € V, for each p, provided with the norm
2 _ le)]?
lel? = [ anm LR (9.19)
Then the formula
U(a, A)()(p) = exp(i(a, p)/R)V (A)[p(A~ (p))] (9.49)

defines a unitary representation of P* on H, which is unitarily equivalent to the
representation o, ;.

Exercise 9.6.11. Find the corresponding statement for the representation g ;.
When j = 1 our next result describes the space V, by an explicit formula.
Lemma 9.6.12. When j =1 we have
V, = {u € Ho =C?; M(Pp)(u) = 0}. (9.50)

Proof We recall that when j = 1, we have Hy = C? and g € C? is the vector
whose components are g1 = 1 and go = 0. Its linear span V is the set of vectors
which have a second component equal to zero. Thus (9.50) holds for p = p* since,

as in (9.39), we have
. (0 0
me) = (3 y) -
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For the general case, we observe that since PA(p*) = Pr(A)(p*) = x(AT"1)(Pp*)
by (8.36), it holds that

M(PA(p*)) = AT 1M (Pp)A~L . (9.51)

If now v € V, we have v = D,(u) for a certain v € V. Applying the previous
relation to v and taking A = D, shows that M (Pp)(v) = 0 for v € V,. Since V,
has dimension 1, this proves (9.50). a
Therefore the space ‘H has a very clean description as the set of functions ¢ from

Xo to C? which satisfy the equation M (Pp)(x(p)) = 0. Let us state again this
result.

Proposition 9.6.13. Consider the space H of functions ¢ : Xo — C? which satisfy
the equation M (Pp)(p(p)) = 0, provided with the norm (9.48). Then the formula

U(a. A)(0)(p) = exp(i(a, p)/h) Alp(A™ (p))] (9-52)

defines a unitary representation of P* on H, which is unitarily equivalent to the
representation Ty, _1.

Recalling that M (p) = p*o,, we can consider the matrices 5, such that M (Pp)
pt5,. That is 59 = 0g and &; = —o; for 1 < i < 3.32 The equation M (Pp)(p(p)) =
is then written as p*,v(p) = 0 in physics books.

0

Exercise 9.6.14. Find the corresponding statement for the representation g ;.

Exercise 9.6.15. In the case of a general value of j > 1 prove that v € V, if and
only if (D,DJM(Pp) @ I @ ---® I)(u) =0.

9.7 Particles, Spin, Representations

The present section is a continuation of Section 4.9, which the reader may like
to review now. What are the properties of a particle to which corresponds the
representation m,, ; or my ;7 Let us first consider the case of 7, ; where m > 0. As
on page 132 we may argue that the particle is of mass m and here we investigate
its spin. We certainly expect from Section 9.1 that

The representation m,, ; of Definition 9.6.1 describes a particle of spin j/2.
(9.53)
In Definition 8.7.1 we defined what is a particle of spin j/2 in Non-Relativistic
Quantum Mechanics. This theory is however not a part of Quantum Field Theory,
just like, say, Newton’s theory of gravitation is not a part of General Relativity.
So we cannot check that we are here in the setting of Definition 8.7.1. The best

32 So that, indeed, 6, = o*. The point of the new notation is that the formalism forbids
the expression p'c”.
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we can do is to decide that we will define the spin of a particle described by the
representation m,, ; as being j/2 and to convince ourselves that this is reasonably
consistent with Definition 8.7.1. For this let us denote by D,, € SL(2,C) the unique
positive definite Hermitian matrix with D, (p*) = (x(D,)(p*)) = p as provided by
Lemma 8.4.6.

Lemma 9.7.1. We have D;lADA—l(p) = A for each A € SU(2) and eachp € Xp,.
Proof The matrix C' := A~'D,A = A'D,A is positive Hermitian. Since A €
SU(2) it holds that A(p*) = k(A)(p*) = p* so that C(p*) = A7'D,A(p*) =

A~Y(p). Thus C equals D A-1(p), the unique positive Hermitian matrix with this

p)»
property. O
Consequently, for A € SU(2), (9.7) yields
U(0,4)(#)(p) = V(A)(p(AH(p))) - (9.54)
To understand what this means we compare it with (8.34), which we write
(U @ m)(A)(@)(p) = m;(A)(p(A}(P))) , (9.55)

since A~1(p) is the notation we now use for x(A~1)(p). The representation 7, ;
corresponds to (9.54) with V' = 7;. Then the overwhelming analogy between (9.54)
and (9.55) supports (9.53).33

The heuristic approach of Section 9.1 effortlessly discovers the method of induced
representations (9.6). That is, assuming that the particle is characterized by its spin
and its mass, it discovers how the Poincaré group acts on it. On the other hand,
Wigner proved that all the projective representations of P* are obtained as induced
representations. This goes much further: the way the Poincaré group acts on a
particle of given positive mass depends only on its spin. It proves that there is no
other possible characteristic of the particle involved there.

Next we turn to the case of the representation 7 ; of Definition 9.6.4, acting as
in this definition on the space L?(Xg, \g). As on page 132 we argue that a particle
described by this representation must be massless.

What property of this particle is reflected by the representation 7; of the little
group? In imprecise but picturesque terms, we will show that

a rotation of angle 6 around the direction of motion p
multiplies the state by a phase exp(—ij6/2). (9.56)

Keeping in mind the result of Exercise 8.8.2 we describe the situation by saying:
“the particle has helicity j/27.3% We will think of a particle with helicity j/2 as

33 None of the arguments above pretends to be a rigorous deduction of anything.

34 Tt is the desire to have o ; describe particles of helicity j/2 (vather than —j/2) which
dictates the choice 7;(A) = a™7 as opposed to the seemingly more natural choice
i (A) =a’.
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having spin |j|/2. Thus a massless particle of given spin j/2 (j > 0) comes in two
versions, with helicity +;/2. In contrast, a massive particle is determined by its
mass and its spin.

The similarity of terminology should not hide that the massive and massless cases
are very different.

Exercise 9.7.2. What differences do you see?

To prove (9.56), let us first consider the ideal case where ¢(p) = 0 unless p =
Ap* = (A,0,0,) for some A > 0. The direction of motion is then the z-axis.
The element A = exp(—ifo3/2) = (exp(:)lé/Q) exp((i)H/Z)) is such that x(A)
corresponds to a rotation of angle 6 around the z-axis. The quantity £(A4,p) of
Proposition 9.6.6 equals 2 exp(if/2) and the quantity (A, p)/|£(A, p)| then equals
exp(if/2). Thus (9.42) takes the form U(0, A)(¢)(p) = exp(ijf/2)¢(p) which proves
the claim (9.56).

To prove (9.56) in the general case, the basic observation is that if R is a rotation
of angle @ around the direction of a vector u, and S is another rotation, then SRS™1
is a rotation of angle 6 around the direction of S(u). Considering a rotation x(U,)
which sends (p°,0,0, |p|) to p = (p°, p), and

A = Uyexp(—ifos/2)U, ", (9.57)
then x(A) is a rotation of angle  around the direction of p, and
U(0, A)(¢) = U(0,U,)U (0, exp(~iflos/2))U(0, U, ) (%) - (9-58)

In the ideal case where ¢(p') is # 0 only when p’ is in the direction of p, then (9.42)
shows that ¢ := U(0,U, !)(¢) is such that ¢(p') # 0 only for p’ in the direction
of e3. We have then shown that U(0,exp(—ifo3/2))(y)) = exp(—ijf/2)y and (9.58)
implies as desired that U(0, A)(¢) = exp(—1j0/2)¢.

Exercise 9.7.3. The purpose of the present challenging exercise is to try to look
at the representation 7o ; using physicists’ tools. We denote by R(#, u) the rotation
of angle # and axis u, where w is a unit vector. Considering a representation W of
SO(3) (which models the action of rotations) one defines a self-adjoint operator J,,
by
. h
Ju = —lim —(W(R(0,u)) — 1) . (9.59)

6016
It is called the angular momentum with respect to axis w.
(a) When we consider instead a representation of SU(2), convince yourself after
studying the first three sections of Appendix D that instead of (9.59) one should
use the formula

Ju=— lim & (W (exp(—i6u - 0/2) 1) (9.60)
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where the notations are those of Appendix D.

We first assume j = 1 and consider the realization of 7y ; described in Proposition
9.6.13. In this case the representation W modeling the action of rotations is given
by W(A) =U(0, A), where U(a, A) is defined in (9.52).

(b) In the ideal case where ¢ is non-zero only for a given value of p = (p°, p) and
where the unit vector u is p/|p| show that Ji,(p) is non-zero only at p and that

h

Ju(p)(p) = —5u-a(e(p)) . (9.61)

(c) Use the condition M (Pp)(¢(p)) = 0 to show that the previous relation implies

and interpret this relation as “the spin in the direction of motion is —1/2”.
(d) Generalize the previous considerations to the case of an arbitrary value of j.

Physicists find the considerations of the previous two pages as self-evident, and
write the following argument: “since —hu - o /2 measures the angular momentum in
the direction of the unit vector u, the operator —hp-o/(2|p|) measures the angular
momentum in the direction of motion, but according the equation M (Pp)(p(p)) =
0, this operator is simply multiplication by —#/2.735

Let us then summarize the situation:

e For m > 0, the representation 7, ; corresponds to a particle of mass m and spin
/2.

o The representation 7 ; corresponds to a massless particle of spin [j]/2 and he-
licity /2.

The mathematical subtleties of the treatment of massless particles are largely
irrelevant for physics.36 It is possible for physics to assume that every particle
has a tiny mass. The results of every experiment conceivable today would be the
same if photons had a rest mass of 107!°% kg and articles finding experimental
upper bounds for this rest mass do get published.3” Still, as the mathematics are
interesting, starting with Section 9.12 we will indulge for a few pages in thinking

about massless particles.

35 T do not see how to give a precise meaning to this without the entering considerations
of the previous exercise. If you think I am nit picking ask yourself what is the state
space on which these operators act.

36 As of today, the photon is the only confirmed massless particle. The hypothetical
graviton would also be massless, but with spin 2. Neutrinos were long thought to be
be massless, but now are believed to have a very small positive mass.

3T Try the search for the words “photon mass limit”! The upper bound 10~ '%e.V. seems
very solid.
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9.8 Abstract Presentation of Induced Representations

In the present section we give a more abstract, but more intrinsic description of
the previous representations. Using it certain results become far simpler. We will
witness this when proving Proposition 9.4.6 below, again in Section 9.12, and cru-
cially in Section 10.4. The method is a special case of a very general method in
representation theory, the so-called “method of induced representations”. In the
setting of representations of a semi-direct products N x H (with N abelian) the
key idea of the method can be implemented in a simple way.3®

We carry out the method only in the case of the physically relevant representa-
tions of the Poincaré group.3® We start with a fixed point p* € X,,, (m > 0), with
little group G,» = {A € SL(2,C); A(p*) = p*} for the action of SL(2,C). For each
p € X,, we fix an element D, € SL(2,C) with D,(p*) = p. Consider a unitary
representation V' of G- in a finite-dimensional space V, and the induced represen-
tation U(a, A) of Theorem 9.4.2. It acts on the space L? = L?(X,,,V,d\,,). The
magic idea (which will transport the representation to something much nicer) is to
associate to each function ¢ € L? a function T(p) : SL(2,C) — V by the formula

T(p)(A) = V(AT Dagpe))p(Ap")) - (9.62)

This makes sense because A_lDA(p*)(p*) = A71A(p*) = p* so that A_lDA(p*) €
G)p+. Recalling the formula (9.7), let ¢ := U(a, A)(¢) so that

¥ (p) = Ula, A)(@)(p) = exp(ila, p)/R)V (D, AD a1 () ) [p(A™ (p))] -
For B € SL(2,C) we compute
T(U(a,A)(9))(B) = T(¥)(B) = V(B Dy ))[1/)( @)
= exp(i(a, B(p*))/W)V (B~ ' D))V (D ey AD a1 o) (A~ B(p"))]
= exp(i(a, B(p"))/M)V (B~ AD o-15(p)) (AT B(p"))]
( )T (

= exp(i(a, B(p*)) /)T (¢)(A™'B) . (9.63)
For a function f: SL(2,C) — V let us then define
m(a. A)(f)(B) = exp(i(a, B(p*))/h) f(A'B) , (9.64)

so that (9.63) means
TU(a, A) = 7(a, A)T . (9.65)
Thus, if we transport the representation U (a,A) by T it is given by the much
simpler formula (9.64). The function f = T'(¢) of (9.62) satisfies
Ae SL(2,C),C € Gp = f(AC) = V(Cil)f(A) , (9.66)
38 It was a character-forming experience to figure this out.
39 If it helps you to think in more abstract and general terms, a general scheme to

construct unitary representations of semi-direct products is presented in the form of a
sequence of exercises at the end of the section.
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since C(p*) = p* and V(C7PA™ D y(pey) = V(CTHV(ATID 4(p+)). Conversely, if
the function f satisfies (9.66), then f = T'(yp) where the function ¢ is given by
o(p) = f(Dp). Indeed,

T(p)(A) = V(A D)) f(Dagpn)) = F(A)

using (9.66) for C = D;zp*)A.

Theorem 9.8.1. Given a unitary representation V of the little group Gp- on a
space V, consider the space F of functions f : SL(2,C) — V which satisfy the
condition (9.66), provided with the norm

191 = [ ann@l DI (9.67)

The formula (9.64) defines a unitary representation of P* on F. This representation
is unitarily equivalent to the representation induced by V.

Proof We have shown that 7T is unitary from L? to F, so that (9.65) proves the
theorem. 0

Exercise 9.8.2. Prove directly that the formula (9.64) defines a unitary representa-
tion on F. Prove that the norm (9.67) is independent of the choice of D, € SL(2,C)
with D,(p*) = p.

Exercise 9.8.3. Following the method of Exercise 9.5.5 prove that when m > 0
there is a left-invariant measure dp on SL(2,C) such that for f € F we have

I1£17 = [ du(A) ] f (A2

Exercise 9.8.4. Find a proof of Proposition 9.4.5 using the presentation of the
present section.

We are now ready to prove that the method of induced representation constructs
irreducible representations.

Proof of Proposition 9.4.6. 1t suffices to prove the corresponding result for the repre-
sentations of Theorem 9.8.1. The “only if” part is obvious, since if W is a subspace
of V which is invariant under V', the space of W-valued functions is invariant under
ecach 7(a, A).

The non-trivial proof of the converse may be skipped at first reading. We denote
by ¢ a non-zero element of F and by (-,-) the inner product in V. Consider an
element f € F and assume that f is orthogonal to all the elements 7(a, A)(g).
We have to prove that f = 0 in the space of functions provided with the norm
(9.67), that is we have to prove that f(D,) = 0 d\,,-a.e. The inner product in F
is given by (f,g) = [ dAm(p){(f(D,),g(D,)) so that our hypothesis is that for each
value of a, A the integral [ d\,,(p){f(Dp).exp(i(a, D,(p*))/h)g(A~'D,)) is zero.
Since D,(p*) = p we prove as in Proposition 4.8.4 that for each A in SL(2,C) the
function p — (f(D,). g(A"*D,)) has to be zero d\,,-a.e. Changing A into A~ !, we
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have proved that for each A € SL(2,C) the function p — (f(D,),9(AD,)) has to
be zero dA,,-a.e.

We now use that on the locally compact group SL(2,C) there is a right-invariant
measure dyu.*® That is, dy is invariant by the transformations A — AB for B €
SL(2,C). In particular if a function A — h(A) is zero dp-a.e. then for each B €
SL(2,C) the function A — h(AB) is zero dp-a.c. (and conversely). Using Fubini’s
theorem for the measure d\,, ® du, for dA,,-almost each p the function A +—
(f(Dp),9(AD,)) has to be zero dp-a.e. Let us fix now such a value of p with the goal
of showing that f(D,) = 0 (which will conclude the proot). By right-invariance of x
the function A — (f(D,), g(A)) is zero du-a.c. and hence, again by right-invariance,
for every C' € G~ the function A — (f(D,), g(AC)) = (f(D,), V(C~1)g(A)) is zero
dp-a.e.

Denoting by dvy the Haar measure of G~ and using Fubini’s theorem again, for
dp-almost all values of A the function C +— (f(D,),V(C~1)g(A)) is zero dy-a.e.,
and hence everywhere as this function is continuous. In particular this occurs for a
value A for which g(A) # 0. But since V is irreducible, this proves as desired that
f(Dp) =0. a

In the following exercises, we sketch a general method to construct unitary rep-
resentations of a semi-direct product N x H where N is commutative and N and
H are countable.*!

Exercise 9.8.5. Consider a countable group GG and a subgroup H. The relation
ARB iff B~'A € H is an equivalence relation on G. The quotient of G by this
equivalence relation is denoted by G/H. Describe a natural action of G on G/H,
and consider a positive measure A on G/H which is invariant under this action. Let
us assume that we are given a unitary representation V of H in a Hilbert space V.
If a function f from G to V satisfies

AE€G,CeH= f(AC) = V(C~Y)f(A), (9.68)

prove that it makes sense to define

1712 = /G/H D) F(D)]?

where D, € G is such that its class in G/H is p. Consider the Hilbert space
H of these functions for which ||f|| < oo. Prove that we may define a unitary
representation 7 of G in H by the formula 7(A)(f)(B) = f(A™!B).

Exercise 9.8.6. This exercise continues the previous one. We consider a countable

40 On a locally compact group there exist both right-invariant and left-invariant
measures, which may be different, although it can be shown that this does not happen
in the case of SL(2,C). A left-invariant measure is constructed in Exercise 9.5.5.

41 1f you know about locally compact groups, you may assume that these groups are
locally compact, adding the proper continuity assumptions whenever required.
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Abelian group N and a semi-direct product N x H. The law of this group is given
by (a, A)(b, B) = (a + k(A)(b), AB) where x(AB) = k(A)x(B) and x(A)(a +b) =
r(A)(a) + k(A)(b). A character of N is a unitary representation of N on C, and
N denotes the set of these representations, called the dual of N. Prove that we
can define an action & of H on N by &(A)(w)(z) = w(k(A~1)(x)) for w € N and
x € H. Let us then fix w € N, and define the little group H,, of w as the set of
A € H for which #(A)(w) = w. Explain why the orbit of w under the action of H
identifies with the quotient H/H,,. Consider a unitary representation V of H,, in a
Hilbert space V and the space H of functions from H to V defined in the previous
exercise. Prove that we define a unitary representation m of N x H by the formula

m(a, A)f(B) = &(B)(w)(a) [ (A™'B) .
Relate this to formula (9.64).

9.9 Particles and Parity

Now, what about parity? We can act on a particle by translations, rotations, even
(in principle) Lorentz transformations. There is however no machine which takes
a particle and produces a mirror image of it. Still, many situations are mirror
images of each other, and to account for this we should try to build models which
involve a parity operator. The first step in this direction is to enlarge the group
P* by “adding a parity element”. This is done simply by considering the group
Pt =RL3 % SLT(2,C) where the group SL*(2,C) is as in Definition 8.9.3. That
is, one adds a new element P’ to SL(2,C), so the group SL*(2,C) consists of the
elements P’, A, P'A where A € SL(2,C) with the multiplication rule (8.41): P'T =
P', PPAP' = AT~ and & is extended to SL1(2,C) by (8.42), i.e. k(P'A) = Pr(A),
where P is the parity operator (p°, p) — (p°, —p). The “parity clement” of P*¥ is
then (0, P').

The obvious question is then how to construct meaningful representations of P*+.

The mass shell X,, is still an orbit under the action of P*+ and Theorem 9.4.2
extends in a straightforward manner to the setting where SL(2,C) is replaced by
SL*(2,C) and P* is replaced by P**. This extension will be called “Extended
Theorem 9.4.2”.

Let us first say a few words about the really easy case m > 0 and p* = (mec, 0,0, 0).
Then the little group of SL*(2,C) consists of the group SUT(2) generated by SU(2)
and P’, and the element P’ commutes with every element of SU™(2).

Let us compare the irreducible representations of SU(2) and SU*(2). Consider
first an irreducible representation V of SU'(2). Since P’ commutes with every
element of SUT(2) then V(P') commutes with every operator V(A). Since V is
irreducible, V' (P’) is a multiple of the identity 1 by Schur’s lemma (Lemma 4.5.7).
Since P’? is the identity, there are two cases: either V(P’) is the identity or it
is minus the identity. Conversely an irreducible representation of SU(2) can be



